300-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64 GRAY SCALE)

DESCRIPTION

The μ PD16634A is a source driver for TFT-LCDs capable of dealing with displays 64 gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ-corrected by an internal D/A converter and 5 -by- 2 external power modules. Because the
\star output dynamic range is as large as $\mathrm{Vss} 2+0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD} 2}-0.1 \mathrm{~V}$, level inversion operation of the LCD's common electrode is rendered unnecessary. Also to be able to deal with dot-line inversion when mounted on a single side, this source driver equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequent of 40 MHz when drivng at 3.0 V , this driver is applicable to XGA-standard TFT-LCD panels.

FEATURES

- 300 outputs
- CMOS level input
- Input of 6 bits (gradation data) by 6 dots
- Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter
* • Output dynamic range : Vss2+0.1 V to VdD2-0.1 V
\star - Logic part supply voltage (VDD1) : 3.3 V $\pm 0.3 \mathrm{~V}$
\star - Driver part supply voltage (VDD2) : 8.0 V $\pm 0.5 \mathrm{~V}$
- High-speed data transfer: fmax=40 MHz MIN.(internal data transfer rate when operating at 3.0 V)
- Output voltage polarity inversion is possible (POL)
- Display data inversion function (POL2)
- Single bank arrangement is possible(loaded with slim TCP).

ORDERING INFORMATION

Part Number	Package
μ PD16634AN-xxx	TCP (TAB package)

Remark The TCP's external shape is customized. To order your TCP's external shape, please contact a NEC salesperson.

The information in this document is subject to change without notice. Before using this document, please

 confirm that this is the latest version.Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

1. BLOCK DIAGRAM

Remark /xxx indicates active low signal.
^ 2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER

3. PIN CONFIGURATION (μ PD16634AN-xxx)

Caution This figure does not specify the TCP package. Therefore POL2 pins can be reduced by opening or short-circuiting to Vss2 by TCP wiring. POL2 pin can short to Vss1 on TCP. So when you not use "data inversion function", can reduce input pins.

4. PIN FUNCTIONS

Pin Symbol	Pin Name	Description
S_{1} to S_{300}	Driver output	The D/A converted 64-gray-scale analog voltage is output
D00 to D05	Display data input	The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6 dots (2 pixels). Dxo: LSB, Dx5: MSB
D_{10} to D_{15}		
D_{20} to D_{25}		
D30 to D35		
D40 to D45		
D_{50} to D ${ }_{55}$		
R,/L	Shift direction switching input	These refer to the start pulse input/output pins when cascades are connected. The shift directions of the shift registers are as follows. $R, / L=H: S T H R$ input, $S_{1} \rightarrow S_{300}$, STHL output $R, / L=L: S T H L$ input, $S_{300} \rightarrow S_{1}$, STHR output
STHR	Right shift start pulse input/output	$R, / L=H$: Becomes the start pulse input pin. $R, / L=L$: Becomes the start pulse output pin.
STHL	Left shift start pulse input/output	$R, / L=H$: Becomes the start pulse input pin. $R, / L=L$: Becomes the start pulse output pin.
CLK	Shift clock input	Refers to the shift register's shift clock input. The display data is incorporated into the data register at the rising edge. At the rising edge of the 50th clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. The initiallevel driver's 50th clock becomes valid as the next-level driver's start pulse is input. If 52 clock pulses are input after input of the start pulse, input of display data is halted automatically. The contents of the shift register are cleared at the STB's rising edge.
STB	Latch input	The contents of the data register are transferred to the latch at the rising edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure input of one pulse per horizontal period.
POL	Polarity input	$\mathrm{POL}=\mathrm{L}$; The $\mathrm{S}_{2 n-1}$ output uses V_{0} to V_{4} as the reference supply; and the $\mathrm{S}_{2 n}$ output uses V_{5} to V_{9} as the reference supply. POL $=\mathrm{H}$; The $\mathrm{S}_{2 n-1}$ output uses V_{5} to V_{9} as the reference supply; and the $\mathrm{S}_{2 n}$ output uses V_{0} to V_{4} as the reference supply. $\mathrm{S}_{2 n-1}$ indicates the odd output; and $\mathrm{S}_{2 n}$ indicates the even output. Input of the POL signal is allowed the setup time (tpol-stв) with respect to STB's rising edge.
POL2	Data inversion input	POL2 $=\mathrm{H}$: Display data is inverted. POL2 $=\mathrm{L}$: Display data is not inverted.
V_{0} to V_{9}	γ-corrected power supplies	Input the γ-corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. $\mathrm{V}_{\mathrm{DD} 2}>\mathrm{V}_{0}>\mathrm{V}_{1}>\mathrm{V}_{2}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{5}>\mathrm{V}_{6}>\mathrm{V}_{7}>\mathrm{V}_{8}>\mathrm{V}_{9}>\mathrm{V}_{\mathrm{SS} 2}$
TEST	Test pin	Set it to open.
VDD1	Logic circuit power supply	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
VDD2	Driver circuit power supply	$8.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Vss1	Logic ground	Grounding
Vss2	Driver ground	Grounding

Cautions 1. The power start sequence must be $V_{D D 1}$, logic input, and $V_{D D 2} \& V_{0}$ to V_{9} in that order. Reverse this sequence to shut down.(Simultaneous power application to $V_{d d 2}$ and V_{0} to V_{9} is possible.)
2. To stabilize the supply voltage, please be sure to insert $0.1 \mu \mathrm{~F}$ bypass capacitor between $V_{D D 1}-V_{s s 1}$ and $V_{D D 2}-V_{s S 2}$. Furthermore, for increase precision of the D / A converter, insertion of a bypass capacitor of about $0.01 \mu \mathrm{~F}$ is also advised between the $\boldsymbol{\gamma}$-corrected power supply terminals($\left.\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2} \ldots, \mathrm{~V}_{9}\right)$ and Vsss^{2}.
3. We recommend to use Operational Amplifier to lower input impedance of $\boldsymbol{\gamma}$ corrected voltage.

5. RELATIONHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches. The ladder resistors ro to r62 are so designed that the ratios between the LCD panel's γ-corrected voltages and V_{0} ' to V_{63} ', V_{0} " to V_{63} " are roughly equal; and their respective resistance values are as shown in Table 6-1. Among the 5 -by 2γ-corrected voltages, input gray scale voltages of the same polarity with respect to the common voltage, for the respective five γ-corrected voltages of V_{0} to V_{4} and V_{5} to V_{9}. If fine gray scale voltage precision is not necessary, the voltage follower circuit supplied to the γ-corrected power supplies V_{1} to V_{3} and V_{6} to V_{8} can be deleted.
Figure $5-1$ shows the relationship between the driving voltages such as liquid-crystal driving voltages VdD2 and Vss2, common electrode potential $\mathrm{V}_{\text {сом, }}$, and γ-corrected voltages V_{0} to V_{9} and the input data. Be sure to maintain the voltage relationships of $V_{D D 2}>V_{0}>V_{1}>V_{2}>V_{3}>V_{4}>V_{5}>V_{6}>V_{7}>V_{8}>V_{9}>V_{s s 2}$. Figure 6-1 and 6-2 show the relationship between the input data and the output data.
This driver IC is designed for single-sided mounting. Therefore, please do not use it for γ-corrected power supply level inversion in double-sided mounting.

Figure 5-1. Relationship between Input Data and Output Voltage

6. RESISTOR STRINGS

Figure 6-1. Relationship Between Input Data and Output Voltage : $\mathrm{V}_{\mathrm{DD} 2}>\mathrm{V}_{0}>\mathrm{V}_{1}>\mathrm{V}_{2}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{5}$, POL2 $=\mathrm{L}$

Data	Dx5	Dx4	Dх3	Dx2	Dx1	Dxo	Output Voltage	
00H	0	0	0	0	0	0	Vo,	V_{0}
01H	0	0	0	0	0	1	$V_{1}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 7250 / 8050$
02H	0	0	0	0	1	0	$\mathrm{V}_{2}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 6500 / 8050$
03H	0	0	0	0	1	1	$V_{3}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 5800 / 8050$
04H	0	0	0	1	0	0	$\mathrm{V}_{4}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 5150 / 8050$
05H	0	0	0	1	0	1	$V_{5}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 4550 / 8050$
06H	0	0	0	1	1	0	V6'	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 4000 / 8050$
07H	0	0	0	1	1	1	$V_{7}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 3450 / 8050$
08H	0	0	1	0	0	0	$\mathrm{V}_{8}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 2950 / 8050$
09H	0	0	1	0	0	1	V9'	$V_{1}+\left(V_{0}-V_{1}\right) \times 2450 / 8050$
OAH	0	0	1	0	1	0	$\mathrm{V}_{10}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 2050 / 8050$
OBH	0	0	1	0	1	1	$\mathrm{V}_{11}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 1650 / 8050$
OCH	0	0	1	1	0	0	$\mathrm{V}_{12}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 1300 / 8050$
ODH	0	0	1	1	0	1	$\mathrm{V}_{13}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 950 / 8050$
OEH	0	0	1	1	1	0	$\mathrm{V}_{14}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 600 / 8050$
OFH	0	0	1	1	1	1	$\mathrm{V}_{15}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 300 / 8050$
10H	0	1	0	0	0	0	$\mathrm{V}_{16}{ }^{\prime}$	V_{1}
11H	0	1	0	0	0	1	$\mathrm{V}_{17}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 2450 / 2750$
12 H	0	1	0	0	1	0	$\mathrm{V}_{18}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 2200 / 2750$
13H	0	1	0	0	1	1	$\mathrm{V}_{19}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 1950 / 2750$
14H	0	1	0	1	0	0	$\mathrm{V}_{20}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 1700 / 2750$
15H	0	1	0	1	0	1	$\mathrm{V}_{21}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 1500 / 2750$
16H	0	1	0	1	1	0	$\mathrm{V}_{22}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 1300 / 2750$
17H	0	1	0	1	1	1	$\mathrm{V}_{23}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 1100 / 2750$
18H	0	1	1	0	0	0	$\mathrm{V}_{24}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 950 / 2750$
19H	0	1	1	0	0	1	$\mathrm{V}_{25}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 800 / 2750$
1 AH	0	1	1	0	1	0	$\mathrm{V}_{26}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 650 / 2750$
1BH	0	1	1	0	1	1	$\mathrm{V}_{27}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 500 / 2750$
1 CH	0	1	1	1	0	0	$\mathrm{V}_{28}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 400 / 2750$
1DH	0	1	1	1	0	1	V 29 '	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 300 / 2750$
1EH	0	1	1	1	1	0	$\mathrm{V}_{30}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 200 / 2750$
1 FH	0	1	1	1	1	1	$\mathrm{V}_{31}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 100 / 2750$
20 H	1	0	0	0	0	0	$\mathrm{V}_{32}{ }^{\prime}$	V_{2}
21 H	1	0	0	0	0	1	$\mathrm{V}_{33}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 1500 / 1600$
22 H	1	0	0	0	1	0	$\mathrm{V}_{34}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 1400 / 1600$
23 H	1	0	0	0	1	1	$\mathrm{V}_{35}{ }^{\prime}$	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 1300 / 1600$
24 H	1	0	0	1	0	0	$V_{36}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 1200 / 1600$
25 H	1	0	0	1	0	1	$V_{37}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 1100 / 1600$
26 H	1	0	0	1	1	0	$V_{38}{ }^{\prime}$	$\mathrm{V}_{3}+\left(V_{2}-V_{3}\right) \times 1000 / 1600$
27H	1	0	0	1	1	1	$\mathrm{V}_{39}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 900 / 1600$
28H	1	0	1	0	0	0	$\mathrm{V}_{40}{ }^{\prime}$	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 800 / 1600$
29 H	1	0	1	0	0	1	$\mathrm{V}_{41}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 700 / 1600$
2 AH	1	0	1	0	1	0	$V_{42}{ }^{\prime}$	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 600 / 1600$
2BH	1	0	1	0	1	1	$V_{43}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 500 / 1600$
2 CH	1	0	1	1	0	0	$\mathrm{V}_{44}{ }^{\prime}$	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 400 / 1600$
2DH	1	0	1	1	0	1	$\mathrm{V}_{45}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 300 / 1600$
2EH	1	0	1	1	1	0	$\mathrm{V}_{46}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 200 / 1600$
2 FH	1	0	1	1	1	1	$\mathrm{V}_{47}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 100 / 1600$
30 H	1	1	0	0	0	0	$\mathrm{V}_{48}{ }^{\prime}$	V_{3}
31 H	1	1	0	0	0	1	$\mathrm{V}_{49}{ }^{\prime}$	$V_{4}+\left(V_{3}-V_{4}\right) \times 3350 / 3450$
32 H	1	1	0	0	1	0	$\mathrm{V}_{50}{ }^{\prime}$	$V_{4}+\left(V_{3}-V_{4}\right) \times 3250 / 3450$
33 H	1	1	0	0	1	1	V_{51} '	$V_{4}+\left(V_{3}-V_{4}\right) \times 3150 / 3450$
34 H	1	1	0	1	0	0	$\mathrm{V}_{52}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 3050 / 3450$
35 H	1	1	0	1	0	1	$\mathrm{V}_{53}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 2950 / 3450$
36 H	1	1	0	1	1	0	$\mathrm{V}_{54}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 2800 / 3450$
37H	1	1	0	1	1	1	$V_{55}{ }^{\prime}$	$V_{4}+\left(V_{3}-V_{4}\right) \times 2650 / 3450$
38 H	1	1	1	0	0	0	$\mathrm{V}_{56}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 2500 / 3450$
39 H	1	1	1	0	0	1	$\mathrm{V}_{57}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 2300 / 3450$
3AH	1	1	1	0	1	0	$\mathrm{V}_{58}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 2100 / 3450$
3BH	1	1	1	0	1	1	$\mathrm{V}_{59}{ }^{\prime}$	$V_{4}+\left(V_{3}-V_{4}\right) \times 1850 / 3450$
3 CH	1	1	1	1	0	0	V60'	$V_{4}+\left(V_{3}-V_{4}\right) \times 1600 / 3450$
3DH	1	1	1	1	0	1	$\mathrm{V}_{61}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 1300 / 3450$
3EH	1	1	1	1	1	0	$V_{62}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 800 / 3450$
3FH	1	1	1	1	1	1	$\mathrm{V}_{63}{ }^{\prime}$	V_{4}

Figure 6-2. Relationship Between Input Data and Output Voltage: $V_{4}>V_{5}>V_{6}>V_{7}>V_{8}>V_{9}>V_{s s 2}$, POL2 $=L$

Table 6-1. Ladder Resistance Values (ro to r62) : Reference Value

7. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format: 6 bits $\times 2$ RGBs (6 dots)
Input width : 36 bits (2-pixel data)
(1) $R, / L=H$ (right shift)

Output	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	\ldots	S_{299}	S_{300}
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	D_{30} to D_{35}	D_{40} to D_{45}	\ldots	D_{40} to D_{45}	D_{50} to D_{55}

(2) $R, / L=L$ (left shift)

Output	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	\ldots	S_{299}	S_{300}
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	D_{30} to D_{35}	D_{40} to D_{45}	\ldots	D_{40} to D_{45}	D_{50} to D_{55}

POL	$\mathrm{S}_{2 n-1}$	$\mathrm{~S}_{2 n}$
L	$\mathrm{~V}_{0}$ to V_{4}	$\mathrm{~V}_{5}$ to V_{9}
H	V_{5} to V_{9}	$\mathrm{~V}_{0}$ to V_{4}

Remark $\mathrm{S}_{2 n-1}$ (Odd output), S2n (Even output)n $=1,2, \ldots \ldots . ., 150$

8. RELATIONSHIP BETWEEN STB, POL, AND OUTPUT WAVEFORM

The output voltage is written to the LCD panel synchronized with the STB falling edge.

9. CAUTIONS ABOUT FRAME INVERSION

In the case of dot inversion, n frame last line and $(n+1)$ frame first line is the same polarity. When write the same polarity twice; there are two cases as follows.
(1) Last line output in n frame $>$ First line output in $(n+1)$ frame \rightarrow Positive to write
(2) Last line output in n frame < First line output in $(n+1)$ frame \rightarrow Not possible to write
μ PD16634A has charge buffer and discharge buffer, so need to inversion polarity and write in the case of both ways.

10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Parameter	Symbol	Ratings	Unit
Logic part supply voltage	VDD1	-0.5 to +5.0	V
Driver part supply voltage	VDD2	-0.5 to +10.0	V
Logic part input voltage	V_{11}	-0.5 to $\mathrm{VDD}^{+}+0.5$	V
Driver part input voltage	V_{12}	-0.5 to $\mathrm{VDD2}^{+}+0.5$	V
Logic part output voltage	Vo1	-0.5 to $\mathrm{VDD}^{+}+0.5$	V
Driver part output voltage	Vo2	-0.5 to VDD2 +0.5	V
Operating ambient temperature	TA	-10 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

\star Caution If the absolute maximum rating of even one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings.

Recommended Operating Range ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 1 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}, \mathrm{Vss} 1=\mathrm{V}_{\mathrm{ss} 2}=\mathbf{0} \mathrm{V}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Logic part supply voltage	VDD1	3.0	3.3	3.6	V
Driver part supply voltage	VDD2	7.5	8.0	8.5	V
High-level input voltage	VIH	$0.7 \mathrm{~V}_{\text {dD } 1}$		VDD1	V
Low-level input voltage	VIL	0		0.3V ${ }_{\text {DD1 }}$	V
γ-corrected supply voltage	Vo to V_{9}	Vss2		VDD2	V
Driver part output voltage	Vo	Vss2 +0.1		VdD2 - 0.1	V
Maximum clock frequency	fmax.	40			MHz

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD} 1=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{dD} 2}=8.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Input leakage current	ILL					± 1.0	$\mu \mathrm{A}$
High-level output voltage	Vон	STHR(STHL), $\mathrm{lo}=0 \mathrm{~mA}$		VDD1-0.1			V
Low-level output voltage	Vol	STHR(STHL), lo=0 mA				0.1	V
γ-corrected supply current	I_{γ}	$\mathrm{V}_{0}-\mathrm{V}_{9}=8 \mathrm{~V}$	$\mathrm{V}_{0}, \mathrm{~V}_{9}$		0.3	0.6	mA
Driver output current	Ivoh	$\mathrm{V}=7 \mathrm{~V}$, Vout $=1 \mathrm{~V}^{\text {Note } 1}$				-0.5	mA
	Ivol	$\mathrm{V} x=1 \mathrm{~V}$, Vout=7 $\mathrm{V}^{\text {Note1 }}$		0.5			mA
Output voltage deviation ${ }^{\text {Note2 }}$	$\Delta \mathrm{V}$ o	Input data : 00 H to 3FH			± 5	± 20	mV
Average output voltage variation ${ }^{\text {Note3 }}$	$\Delta \mathrm{V}_{\mathrm{AV}}$	Input data : 00 H to 3FH			± 10		mV
Output voltage range	Vo	Input data : 00 H to 3FH		0.1		V ${ }_{\text {dD2-0.1 }}$	V
Logic part dynamic current consumption ${ }^{\text {Notes4,5 }}$	IDD1	Vod1, when with no load			0.5	3.5	mA
Driver part dynamic current consumption ${ }^{\text {Notes4,5 }}$	IdD2	Vod2, when with no load			2.2	8.0	mA

Notes 1. Vx refers to the output voltage of analog output pins S_{1} to S_{300}.
Vout refers to the voltage applied to analog output pins S_{1} to S_{300}.
2. The output voltage deviation refers to the voltage difference between adjoining output pins when the display data is the same (within the chip).
3. The average output voltage variation refers to the average output voltage difference between chips. The average output voltage refers to the average voltage between chips when the display data is the same.
4. The STB cycle is defined to be $20 \mu \mathrm{~s}$ at fcLk $=40 \mathrm{MHz}$. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
5. Refers to the current consumption per driver when cascades are connected under the assumption of SVGA single-sided mounting (10 units).

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{VdD2}=8.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Vss} 1=\mathrm{Vss}^{2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Start pulse delay time	tpLH1	$\mathrm{CL}_{\mathrm{L}}=25 \mathrm{pF}$		13	20	ns
Driver output delay time	tPHL2	$C L=125 \mathrm{pF}, \mathrm{RL}=4 \mathrm{k} \Omega^{\text {Nole }}$		3.7	8	$\mu \mathrm{s}$
	tphl3			5.3	14	$\mu \mathrm{s}$
	tpLH2			3.0	8	$\mu \mathrm{s}$
	tpLH3			5.3	14	$\mu \mathrm{s}$
Input capacitance	C_{1}	STHR,STHL excluded, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.4	15	pF
	C_{2}			7.6	15	pF

Note Load condition

Timing Requirements ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}, \mathrm{tr}_{\mathrm{t}}=\mathrm{tf}_{\mathrm{f}}=8.0 \mathrm{~ns}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock pulse width	PWclk		25			ns
Clock pulse low period	PWсıк (L)		6			ns
Clock pulse high period	PWCLK (H)		6			ns
Data setup time	tsetup 1		6			ns
Data hold time	thold		6			ns
Start pulse setup time	tsetup2		5			ns
Start pulse hold time	thold 2		5			ns
Start pulse low period	tspL		6			ns
POL2 setup time	tsetup 3		6			ns
POL2 hold time	thold3		6			ns
STB pulse width	PWstb		1			$\mu \mathrm{s}$
Data invalid period	tinv		1			CLK
Final data timing	tLDT		2			CLK
CLK-STB time	tcles-stb	CLK $\uparrow \rightarrow$ STB \uparrow	6			ns
STB-CLK time	tste-clk	STB $\uparrow \rightarrow$ CLK \uparrow	6			ns
Time between STB and start pulse	tstb-sth	STB $\downarrow \rightarrow$ CLK \uparrow	60			ns
POL-STB time	tpoL-stb	POL¢or $\downarrow \rightarrow$ STB \uparrow	-5			ns
STB-POL time	tstb-poL	STB $\downarrow \rightarrow$ POL \uparrow or \downarrow	6			ns

12. RECOMMENDED MOUNTING CONDITIONS

The following conditions must be met for mounting conditions of the μ PD16634A.
For more details, refer to the Semiconductor Device Mounting Technology Manual(C10535E).
Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions.
μ PD16634AN-xxx : TCP(TAB Package)

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to $350^{\circ} \mathrm{C}$, heating for 2 to $3 \mathrm{sec} ;$ pressure 100 g (per solder)
	ACF	Temporary bonding 70 to $100^{\circ} \mathrm{C}$; pressure 3 to $8 \mathrm{~kg} / \mathrm{cm}^{2} ;$ time 3 to 5 (Adhesive Conductive sec. Real bonding 165 to $180^{\circ} \mathrm{C}$ pressure 25 to $45 \mathrm{~kg} / \mathrm{cm}^{2}$ time 30 to Film)

Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more mounting methods at a time.
[MEMO]
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.
(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

