MOS INTEGRATED CIRCUIT μ PD3788

7300 PIXELS $\times 3$ COLOR CCD LINEAR IMAGE SENSOR

The μ PD3788 is a high-speed and high sensitive color CCD (Charge Coupled Device) linear image sensor which changes optical images to electrical signal and has the function of color separation.

The μ PD3788 has 3 rows of 7300 pixels, and it is a 2-output/color type CCD sensor with 2 rows/color of charge transfer register, which transfers the photo signal electrons of 7300 pixels separately in odd and even pixels. Moreover, the spectral response characteristics of the μ PD3788 is modified from the previous device μ PD3728 to be suitable for Xe-lamp. Therefore, it is suitable for $600 \mathrm{dpi} / \mathrm{A} 3$ high-speed color digital copiers and so on.

FEATURES

- Valid photocell : 7300 pixels $\times 3$
- Photocell pitch : $10 \mu \mathrm{~m}$
- Photocell size : $10 \times 10 \mu \mathrm{~m}^{2}$
- Line spacing $: 40 \mu \mathrm{~m}$ (4 lines) Red line-Green line, Green line-Blue line
- Color filter : Primary colors (red, green and blue), pigment filter (with light resistance $10^{7} \mathrm{~lx} \cdot \mathrm{hour}$)
- Resolution : $24 \mathrm{dot} / \mathrm{mm}(600 \mathrm{dpi})$ A3 $(297 \times 420 \mathrm{~mm})$ size (shorter side)
- Drive clock level : CMOS output under 5 V operation
- Data rate : 40 MHz MAX. ($20 \mathrm{MHz} / 1$ output)
- Output type : 2 outputs in phase/color
- Power supply : +12 V
- On-chip circuits : Reset feed-through level clamp circuits

Voltage amplifiers

ORDERING INFORMATION

Part Number	Package
μ PD3788D CCD linear image sensor 36-pin ceramic DIP (15.24 mm (600))	

[^0]
COMPARISON CHART

Item				μ PD3788	μ PD3728
ABSOLUTE MAXIMUM RATINGS	Shift register clock voltage (V)			-0.3 to +8	-0.3 to +15
	Reset gate clock voltage (V)			-0.3 to +8	-0.3 to +15
	Reset feed-through level clamp clock voltage (V)			-0.3 to +8	-0.3 to +15
	Transfer gate clock voltage (V)			-0.3 to +8	-0.3 to +15
ELECTRICAL CHARACTERISTICS	Saturation exposure (lx•s)	Red	TYP.	0.36	0.35
		Green	TYP.	0.37	0.39
		Blue	TYP.	0.80	0.31
	Response (V/IX•s)	Red	MIN.	3.85	3.9
			TYP.	5.5	5.6
			MAX.	7.15	7.3
		Green	MIN.	3.78	3.6
			TYP.	5.4	5.1
			MAX.	7.02	6.6
		Blue	MIN.	1.75	4.5
			TYP.	2.5	6.4
			MAX.	3.25	8.3
	Response peak (nm)	Red	TYP.	645	630
		Green	TYP.	540	540
		Blue	TYP.	445	460
	Random noise test conditions			$\mathrm{tcp}=20 \mathrm{~ns}$	$\mathrm{t} 7=150 \mathrm{~ns}$
TIMING CHART	t3 (ns)		MIN.	17	20
	t7 (ns)		MIN.	17	20
	t10 (ns)		MIN.	-20	-10
	tcp (ns)		MIN.	5	-
			TYP.	150	-
STANDARD CHARACTERISTIC CURVES	TOTAL SPECTRAL RESPONSE CHARACTERISTICS			modified	-

BLOCK DIAGRAM

PIN CONFIGURATION (Top View)

CCD linear image sensor 36 -pin ceramic DIP (15.24 mm (600))

- μ PD3788D

PHOTOCELL STRUCTURE DIAGRAM

PHOTOCELL ARRAY STRUCTURE DIAGRAM (Line spacing)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Parameter	Symbol	Ratings	Unit
Output drain voltage	V_{oD}	-0.3 to +15	V
Shift register clock voltage	$\mathrm{V}_{\phi 1,}, \mathrm{~V}_{\phi 1 \mathrm{~L},} \mathrm{~V}_{\phi 10}, \mathrm{~V}_{\phi 2}, \mathrm{~V}_{\phi 20}$	-0.3 to +8	V
Reset gate clock voltage	$\mathrm{V}_{\phi \text { RB }}$	-0.3 to +8	V
Reset feed-through level clamp clock voltage	$\mathrm{V}_{\phi \mathrm{CLB}}$	-0.3 to +8	V
Transfer gate clock voltage	$\mathrm{V}_{\phi T \mathrm{G} 1}$ to $\mathrm{V}_{\phi \text { TG3 }}$	-0.3 to +8	V
Operating ambient temperature	T_{A}	-25 to +60	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

Caution Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The parameters apply independently.

RECOMMENDED OPERATING CONDITIONS (TA $=+25^{\circ} \mathrm{C}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Output drain voltage	Vod	11.4	12.0	12.6	V
Shift register clock high level	$\mathrm{V}_{\phi 1 \mathrm{H}}, \mathrm{V}_{\phi 1 \mathrm{LH}}, \mathrm{V}_{\phi 10 \mathrm{H}}, \mathrm{V}_{\phi 2 \mathrm{H}}, \mathrm{V}_{\phi 20 \mathrm{H}}$	4.5	5.0	5.5	V
Shift register clock low level	$\mathrm{V}_{\phi 1 \mathrm{~L}}, \mathrm{~V}_{\phi 1 \mathrm{LL}}, \mathrm{V}_{\phi 10 \mathrm{~L}}, \mathrm{~V}_{\phi 2 L}, \mathrm{~V}_{\phi 20 \mathrm{~L}}$	-0.3	0	+0.5	V
Reset gate clock high level	$\mathrm{V}_{\text {¢RBH }}$	4.5	5.0	5.5	V
Reset gate clock low level	$\mathrm{V}_{\text {¢RBL }}$	-0.3	0	+0.5	V
Reset feed-through level clamp clock high level	$\mathrm{V}_{\text {¢CLb }}$	4.5	5.0	5.5	V
Reset feed-through level clamp clock low level	$\mathrm{V}_{\phi \text { CLBL }}$	-0.3	0	+0.5	V
Transfer gate clock high level ${ }^{\text {Note }}$	$\mathrm{V}_{\phi \text { TG1 }}$ to $\mathrm{V}_{\phi \text { TG3 }}$	4.5	$\begin{gathered} \mathrm{V}_{\phi 1 \mathrm{H}} \\ \left(\mathrm{~V}_{\phi 10 \mathrm{H}}\right) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\phi 1 \mathrm{H}} \\ \left(\mathrm{~V}_{\phi 10 \mathrm{H}}\right) \end{gathered}$	V
Transfer gate clock low level	$\mathrm{V}_{\text {¢TG1L }}$ to $\mathrm{V}_{\text {¢TG3L }}$	-0.3	0	+0.5	V
Data rate	$2 f_{\phi R B}$	-	2	40	MHz

Note When Transfer gate clock high level ($\mathrm{V}_{\phi \text { TG1H }}$ to $\left.\mathrm{V}_{\phi \mathrm{TG} 3 \mathrm{H}}\right)$ is higher than Shift register clock high level $\left(\mathrm{V}_{\phi 1 \mathrm{H}}\left(\mathrm{V}_{\phi 10 \mathrm{H}}\right)\right.$), Image lag can increase.

Remark Pin $9(\phi 10)$ and pin $28(\phi 20)$ should be open to decrease the influence of input clock noise to output signal waveform, in case of operating at low or middle speed range; data rate under 24 MHz or so.

ELECTRICAL CHARACTERISTICS

$\binom{T_{A}=+25^{\circ} \mathrm{C}, \mathrm{VoD}_{0}=12 \mathrm{~V}, \mathrm{f}_{\phi R B}=1 \mathrm{MHz}$, data rate $=2 \mathrm{MHz}$, storage time $=10 \mathrm{~ms}$, input signal clock $=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}}{$, light source: 3200 K halogen lamp $+\mathrm{C}-500 \mathrm{~S}$ (infrared cut filter, $\mathrm{t}=1 \mathrm{~mm}$) $+\mathrm{HA}-50$ (heat absorbing filter, $\mathrm{t}=3 \mathrm{~mm}$) }

Parameter		Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Saturation voltage		$\mathrm{V}_{\text {sat }}$		1.5	2.0	-	V
Saturation exposure	Red	SER			0.36		Ix.s
	Green	SEG			0.37		Ix.s
	Blue	SEB			0.80		Ix.s
Photo response non-uniformity		PRNU	Vout $=1 \mathrm{~V}$		6	18	\%
Average dark signal Note 1		ADS1	Light shielding		1.0	5.0	mV
		ADS2			0.5	5.0	mV
Dark signal non-uniformity Note 1		DSNU1	Light shielding		2.0	5.0	mV
		DSNU2			1.0	5.0	mV
Power consumption		Pw			600	800	mW
Output impedance		Zo			0.3	0.5	$\mathrm{k} \Omega$
Response	Red	RR		3.85	5.5	7.15	V/Ix.s
	Green	Rg		3.78	5.4	7.02	V/Ix.s
	Blue	RB		1.75	2.5	3.25	V/Ix.s
Image lag Note 1		IL1	Vout $=1 \mathrm{~V}$		2.0	5.0	\%
		IL2			1.0	5.0	\%
Offset level Note 2		Vos		4.0	5.0	6.0	V
Output fall delay time Note 3		td	Vout $=1 \mathrm{~V}$		20		ns
Register imbalance		RI	Vout $=1 \mathrm{~V}$	0		4.0	\%
Total transfer efficiency		TTE	$\begin{aligned} & \text { Vout }=1 \mathrm{~V}, \\ & \text { data rate }=40 \mathrm{MHz} \end{aligned}$	95	98		\%
Response peak	Red				645		nm
	Green				540		nm
	Blue				445		nm
Dynamic range Note 1		DR11	$\mathrm{V}_{\text {sat }}$ DSNU1		1000		times
		DR12	$\mathrm{V}_{\text {sat }}$ DSNU2		2000		times
		DR21	$\mathrm{V}_{\text {sat/ }}$ /bit1		2000		times
		DR22	$V_{\text {sat/ }}$ /bit2		4000		times
Reset feed-through noise Note 2		RFTN	Light shielding	-500	+200	+500	mV
Random noise Note 1		obit1	Light shielding, bit clamp mode (tcp $=20 \mathrm{~ns}$)	-	1.0	-	mV
		obit2		-	0.5	-	mV
		oline1	Light shielding, line clamp mode (t19 = $3 \mu \mathrm{~s}$)	-	4.0	-	mV
		бline2		-	2.0	-	mV

Notes 1. ADS1, DSNU1, IL1, DR11, DR21, obit1 and oline1 show the specification of Vout1 and Vout2.
ADS2, DSNU2, IL2, DR12, DR22, obit2 and oline2 show the specification of Vout3 to Vout6.
2. Refer to TIMING CHART 2, 5.
3. When the fall time of $\phi 1 \mathrm{~L}$ (t2') is the TYP. value (refer to TIMING CHART 2, 5).

INPUT PIN CAPACITANCE ($\mathrm{TA}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{Vod}=12 \mathrm{~V}$)

Parameter	Symbol	Pin name	Pin No.	MIN.	TYP.	MAX.	Unit
Shift register clock pin capacitance 1	$\mathrm{C}_{\phi 1}$	$\phi 1$	13		350	500	pF
			23		350	500	pF
		¢10	9		350	500	pF
Shift register clock pin capacitance 2	$\mathrm{C}_{\text {¢ } 2}$	$\phi 2$	14		350	500	pF
			24		350	500	pF
		\$20	28		350	500	pF
Last stage shift register clock pin capacitance	CpL	$\phi 1 \mathrm{~L}$	29		10		pF
Reset gate clock pin capacitance	Corb	ϕ RB	8		10		pF
Reset feed-through level clamp clock pin capacitance	Coclb	ϕ CLB	30		10		pF
Transfer gate clock pin capacitance	CоtG	ϕ TG1	22		100		pF
		фTG2	21		100		pF
		¢TG3	15		100		pF

Remark Pins 13, $23(\phi 1)$ and pin $9(\phi 10)$ are connected each other inside of the device.
Pins 14, $24(\phi 2)$ and pin $28(\phi 20)$ are connected each other inside of the device.

Note Input the $\phi \mathrm{RB}$ and $\phi \mathrm{CLB}$ pulses continuously during this period, too.

TIMING CHART 2 (Bit clamp mode, for each color)

Symbol	MIN.	TYP.	MAX.	Unit
$\mathrm{t} 1, \mathrm{t} 2$	0	50		ns
$\mathrm{t} 1^{\prime}, \mathrm{t}$ '	0	5		ns
t 3	17	50		ns
t 4	5	200	-	ns
$\mathrm{t} 5, \mathrm{t} 6$	0	20		ns
t 7	17	150		ns
$\mathrm{t} 8, \mathrm{t} 9$	0	20		ns
t 10	$-20^{\text {Note } 1}$	+50	-	ns
t 11	$-5^{\text {Note } 2}$	+50		ns
tcp	5	150		ns

Notes 1. MIN. of t 10 shows that the $\phi \mathrm{RB}$ and $\phi \mathrm{CLB}$ overlap each other.

2. MIN. of t 11 shows that the $\phi 1 \mathrm{~L}$ and $\phi \mathrm{CLB}$ overlap each other.

TIMING CHART 3 (Bit clamp mode, for each color)

Symbol	MIN.	TYP.	MAX.	Unit
t 11	$-5^{\text {Note 2 }}$	+50		ns
t 12	3000	10000		ns
$\mathrm{t} 13, \mathrm{t} 14$	0	50		ns
$\mathrm{t} 15, \mathrm{t} 16$	900	1000		ns

Notes 1. Input the $\phi R B$ and $\phi C L B$ pulses continuously during this period, too.
2. MIN. of t 11 shows that the $\phi 1 \mathrm{~L}$ and $\phi \mathrm{CLB}$ overlap each other.

$\phi 1(\phi 10), \phi 2(\phi 20)$ cross points

$\phi 1 \mathrm{~L}, \phi 2(\phi 20)$ cross points

Remark Adjust cross points ($\phi 1(\phi 10), \phi 2(\phi 20)$) and ($\phi 1 \mathrm{~L}, \phi 2(\phi 20)$) with input resistance of each pin.

Remark Inverse pulse of the ϕ TG1 to ϕ TG3 can be used as ϕ CLB.

TIMING CHART 5 (Line clamp mode, for each color)

Symbol	MIN.	TYP.	MAX.	Unit
$\mathrm{t} 1, \mathrm{t} 2$	0	50		ns
$\mathrm{t} 1^{\prime}, \mathrm{t} 2^{\prime}$	0	5		ns
t 3	17	50		ns
t 4	5	200	-	ns
$\mathrm{t} 5, \mathrm{t} 6$	0	20		ns

TIMING CHART 6 (Line clamp mode, for each color)

Symbol	MIN.	TYP.	MAX.	Unit
t 12	3000	10000		ns
$\mathrm{t} 13, \mathrm{t} 14$	0	50		ns
$\mathrm{t} 15, \mathrm{t} 16$	900	1000		ns
$\mathrm{t} 17, \mathrm{t} 18$	100	1000		ns
t 19	200	t 12		ns
$\mathrm{t} 20, \mathrm{t} 21$	0	20		ns

Note Set the $\phi \mathrm{RB}$ to high level during this period.

Remark Inverse pulse of the $\phi \mathrm{TG} 1$ to $\phi \mathrm{TG} 3$ can be used as ϕ CLB.
$\phi 1$ ($\phi 10$), $\phi 2$ ($\phi 20$) cross points

$\phi 1 \mathrm{~L}, \phi 2(\phi 20)$ cross points

Remark Adjust cross points ($\phi 1(\phi 10), \phi 2(\phi 20))$ and ($\phi 1 \mathrm{~L}, \phi 2(\phi 20)$) with input resistance of each pin.

DEFINITIONS OF CHARACTERISTIC ITEMS

1. Saturation voltage: Vsat

Output signal voltage at which the response linearity is lost.
2. Saturation exposure: SE

Product of intensity of illumination (1x) and storage time (s) when saturation of output voltage occurs.
3. Photo response non-uniformity: PRNU

The output signal non-uniformity of all the valid pixels when the photosensitive surface is applied with the light of uniform illumination. This is calculated by the following formula.

$$
\begin{aligned}
& \operatorname{PRNU}(\%)=\frac{\Delta x}{\bar{x}} \times 100 \\
& \Delta x \text { : maximum of }\left|\mathrm{X}_{\mathrm{j}}-\overline{\mathrm{x}}\right| \\
& \bar{x}=\frac{\sum_{j=1}^{7300} x_{j}}{7300} \\
& x_{j} \text { : Output voltage of valid pixel number } \mathrm{j}
\end{aligned}
$$

4. Average dark signal: ADS

Average output signal voltage of all the valid pixels at light shielding. This is calculated by the following formula.

$$
\operatorname{ADS}(\mathrm{mV})={\frac{\sum_{\mathrm{j}=1}^{7300} \mathrm{~d}_{\mathrm{j}}}{7300}}_{d_{j}: \text { Dark signal of valid pixel number } \mathrm{j}}
$$

5. Dark signal non-uniformity: DSNU

Absolute maximum of the difference between ADS and voltage of the highest or lowest output pixel of all the valid pixels at light shielding. This is calculated by the following formula.

DSNU (mV) : maximum of $\left|d_{j}-\operatorname{ADS}\right|_{j=1 \text { to } 7300}$
d_{j} : Dark signal of valid pixel number j

6. Output impedance: Zo

Impedance of the output pins viewed from outside.
7. Response: R

Output voltage divided by exposure (IX.s).
Note that the response varies with a light source (spectral characteristic).
8. Image lag: IL

The rate between the last output voltage and the next one after read out the data of a line.

IL $(\%)=\frac{V_{1}}{\text { Vout }} \times 100$
9. Register imbalance: RI

The rate of the difference between the averages of the output voltage of Odd and Even pixels, against the average output voltage of all the valid pixels.

$$
R I(\%)=\frac{\frac{2}{n}\left|\sum_{j=1}^{\frac{n}{2}}\left(V_{2 j-1}-V_{2 j}\right)\right|}{\frac{1}{n} \sum_{j=1}^{n} V_{j}} \times 100
$$

n : Number of valid pixels
V_{j} : Output voltage of each pixel
10. Random noise: σ

Random noise σ is defined as the standard deviation of a valid pixel output signal with 100 times (=100 lines) data sampling at dark (light shielding).

$$
\sigma(\mathrm{mV})=\sqrt{\frac{\sum_{i=1}^{100}\left(\mathrm{~V}_{\mathrm{i}}-\overline{\mathrm{V}}\right)^{2}}{100}} \quad, \overline{\mathrm{~V}}=\frac{1}{100} \sum_{\mathrm{i}=1}^{100} \mathrm{~V}_{\mathrm{i}}
$$

V_{i} : A valid pixel output signal among all of the valid pixels for each color

This is measured by the DC level sampling of only the signal level, not by CDS (Correlated Double Sampling).

STANDARD CHARACTERISTIC CURVES (Nominal)

TOTAL SPECTRAL RESPONSE CHARACTERISTICS
(without infrared cut filter and heat absorbing filter) ($\mathrm{T}_{\mathrm{A}}=\mathbf{+ 2 5}{ }^{\circ} \mathrm{C}$)

APPLICATION CIRCUIT EXAMPLE

Remarks 1. Pin 9 ($\phi 10$) and pin 28 ($\phi 20$) should be open to decrease the influence of input clock noise to output signal waveform, in case of operating at low or middle speed range; data rate under 24 MHz or so.
2. The inverters shown in the above application circuit example are the 74AC04.

PACKAGE DRAWING
 CCD LINEAR IMAGE SENSOR 36-PIN CERAMIC DIP (15.24mm (600))

(Unit : mm)

Name	Dimensions	Refractive index
Glass cap	$93.0 \times 13.6 \times 1.0$	1.5

NOTES ON THE USE OF THE PACKAGE

The application of an excessive load to the package may cause the package to warp or break, or cause chips to come off internally. Particular care should be taken when mounting the package on the circuit board.

When mounting the package, use a circuit board which will not subject the package to bending stress, or use a socket.

For this product, the reference value for the three-point bending strength ${ }^{\text {Note }}$ is 300 [N$]$. Avoid imposing a load, however, on the inside portion as viewed from the face on which the window (glass) is bonded to the package body (ceramic).

Note Three-point bending strength test
Distance between supports: 70 mm , Support R: R 2 mm , Loading rate: $0.5 \mathrm{~mm} / \mathrm{min}$.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to $V_{D D}$ or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of May, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

