
The RF Line Microwave Pulse Power Transistor

... designed for 1025-1150 MHz pulse common base amplifier applications such as TCAS, TACAN and Mode-S transmitters.

- Guaranteed Performance @ 1090 MHz
 Output Power = 150 Watts Peak
 Gain = 9.5 dB Min, 10.0 dB (Typ)
- 100% Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- Hermetically Sealed Package
- · Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- · Internal Input and Output Matching
- Characterized with 10 μs, 10% Duty Cycle Pulses
- Recommended Driver for a Pair of MRF10500 Transistors

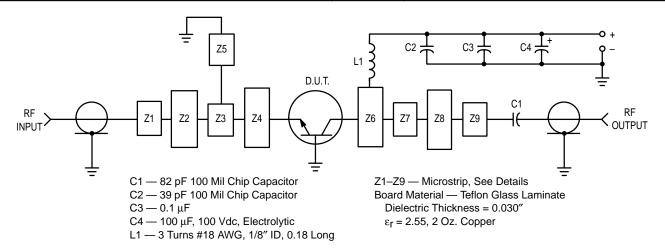
MRF10150

150 W (PEAK) 1025-1150 MHz MICROWAVE POWER TRANSISTOR NPN SILICON

MAXIMUM RATINGS

Rating	Symb	ool Value	Unit
Collector–Emitter Voltage	VCE	S 65	Vdc
Collector–Base Voltage	V _{CB}	O 65	Vdc
Emitter-Base Voltage	VEB	O 3.5	Vdc
Collector Current — Peak (1)	lC	14	Adc
Total Device Dissipation @ T _C = 25°C (1), (2) Derate above 25°C	PD	700 4.0	Watts W/°C
Storage Temperature Range	T _{stç}	-65 to +200	°C
Junction Temperature	TJ	200	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)	$R_{\theta JC}$	0.25	°C/W

NOTES:

- 1. Under pulse RF operating conditions.
- 2. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as pulsed RF amplifiers.
- 3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques. (Worst case θ_{JC} value measured @ 10 μs, 10%.)

Characteristic	Complete	Min	T	Mari	11	
Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector–Emitter Breakdown Voltage ($I_C = 60 \text{ mAdc}$, $V_{BE} = 0$)	V(BR)CES	65	_	_	Vdc	
Collector–Base Breakdown Voltage (I _C = 60 mAdc, I _E = 0)	V(BR)CBO	65	_	_	Vdc	
Emitter–Base Breakdown Voltage ($I_E = 10 \text{ mAdc}, I_C = 0$)	V(BR)EBO	3.5	_	_	Vdc	
Collector Cutoff Current (V _{CB} = 36 Vdc, I _E = 0)	ICBO	_	_	25	mAdc	
ON CHARACTERISTICS	•					
DC Current Gain (I _C = 5.0 Adc, V _{CE} = 5.0 Vdc)	hFE	20	_	_	_	
FUNCTIONAL TESTS	•					
Common–Base Amplifier Power Gain (V _{CC} = 50 Vdc, P _{Out} = 150 W Peak, f = 1090 MHz)	G _{PB}	9.5	10	_	dB	
Collector Efficiency (V _{CC} = 50 Vdc, P _{Out} = 150 W Peak, f = 1090 MHz)	η	40	_	_	%	
Load Mismatch (V _{CC} = 50 Vdc, P _{out} = 150 W Peak, f = 1090 MHz, VSWR = 10:1 All Phase Angles)	Ψ	No Degradation in Output Power				

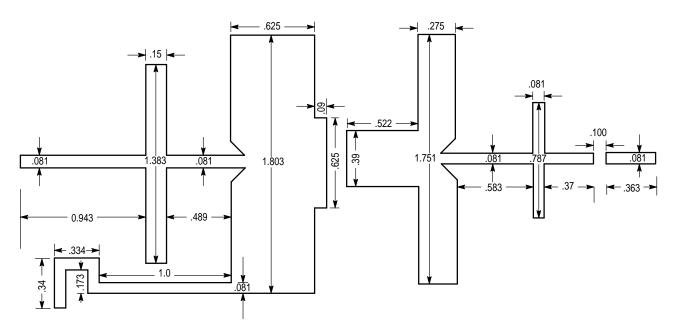


Figure 1. Test Circuit

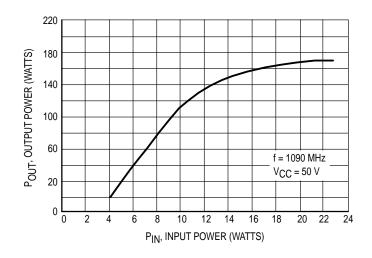
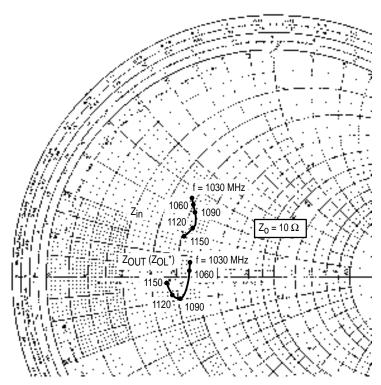
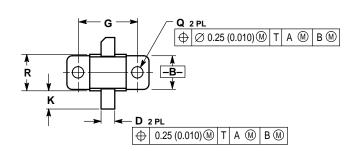



Figure 2. Output Power versus Input Power

P_{OUT} = 150 W Pk V_{CC} = 50 V


f MHz	Z _{in} OHMS	Z _{OL*} (Z _{OUT}) OHMS
1030	3.8 + j3.5	4.6 + j0.7
1060	4.0 + j3.3	4.6 + j0.3
1090	4.2 + j3.0	4.1 – j1.0
1120	4.4 + j2.3	3.8 – j0.8
1150	4.1 + j1.8	3.6 – j0.3

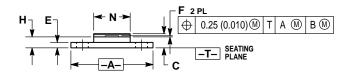

 $\mathbf{Z}_{OL}{}^{\star}$ is the conjugate of the optimum load impedance into which the device operates at a given output power voltage and frequency.

Figure 3. Series Equivalent Input/Output Impedances

MRF10150 3 MOTOROLA RF DEVICE DATA

PACKAGE DIMENSIONS

CASE 376B-02 **ISSUE B**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.890	0.910	22.61	23.11	
В	0.370	0.400	9.40	10.16	
С	0.145	0.160	3.69	4.06	
D	0.140	0.160	3.56	4.06	
Е	0.055	0.065	1.40	1.65	
F	0.003	0.006	0.08	0.15	
G	0.650 BSC		16.51 BSC		
Н	0.110	0.130	2.80	3.30	
K	0.180	0.220	4.57	5.59	
N	0.390	0.410	9.91	10.41	
Q	0.115	0.135	2.93	3.42	
R	0.390	0.140	9 91	10.41	

PIN 1. COLLECTOR 2. EMITTER

3. BASE

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and 👫 are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

