

# 2-Mbit (128K x 16) Static RAM

### **Features**

• Temperature Ranges

Commercial: 0°C to 70°C
 Industrial: -40°C to 85°C
 Automotive: -40°C to 125°C
 High speed: 55 ns and 70 ns

• 70-ns speed bin offered in both Industrial and Automotive grades

Wide voltage range: 2.7V-3.6VUltra-low active, standby power

• Easy memory expansion with CE and OE features

• TTL-compatible inputs and outputs

· Automatic power-down when deselected

· CMOS for optimum speed/power

 Package available in a standard 44-pin TSOP Type II (forward pinout) package

### Functional Description[1]

The CY62136V is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current.

This is ideal for providing More Battery Life<sup>TM</sup> (MoBL<sup>®</sup>) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH). The input/output pins (I/O<sub>0</sub> through I/O<sub>15</sub>) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

<u>Writing</u> to the device is <u>acc</u>omplished by taking Chip Enable (<u>CE</u>) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$  through I/O $_7$ ), is written into the location specified <u>on the</u> address pins (A $_0$  through A $_{16}$ ). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$  through I/O $_{15}$ ) is written into the location specified on the address pins (A $_0$  through A $_{16}$ ).

Reading from the device is accomplished by taking Chip Enable ( $\overline{\text{CE}}$ ) and Output Enable ( $\overline{\text{OE}}$ ) LOW while forcing the Write Enable ( $\overline{\text{WE}}$ ) HIGH. If Byte Low Enable ( $\overline{\text{BLE}}$ ) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$  to I/O $_7$ . If Byte High Enable ( $\overline{\text{BHE}}$ ) is LOW, then data from memory will appear on I/O $_8$  to I/O $_{15}$ . See the Truth Table at the back of this data sheet for a complete description of read and write modes.



Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.



### **Product Portfolio**

|            |     |                            |     |       |            | Power Dissipation (Industrial) |                          |                            |                            |  |
|------------|-----|----------------------------|-----|-------|------------|--------------------------------|--------------------------|----------------------------|----------------------------|--|
|            | V   | <sub>CC</sub> Range (      | V)  |       |            | Operatin                       | ıg, I <sub>CC</sub> (mA) | Stan                       | dby, I <sub>SB2</sub> (μA) |  |
| Product    | Min | <b>Typ.</b> <sup>[2]</sup> | Max | Speed | Grades     | <b>Typ.</b> <sup>[2]</sup>     | Maximum                  | <b>Typ.</b> <sup>[2]</sup> | Maximum                    |  |
| CY62136VLL | 2.7 | 3.0                        | 3.6 | 55    | Industrial | 7                              | 20                       | 1                          | 15                         |  |
|            |     |                            |     | 70    | Industrial | 7                              | 15                       | 1                          | 15                         |  |
|            |     |                            |     | 70    | Automotive | 7                              | 20                       | 1                          | 20                         |  |
| CY62136VSL |     |                            |     | 55    | Industrial | 7                              | 20                       | 1                          | 5                          |  |
|            |     |                            |     | 70    | Industrial | 7                              | 15                       | 1                          | 5                          |  |

### Pin Configurations[3]

### TSOP II (Forward) Top View

| A <sub>4</sub> [   | 1  | 44 | Ь | A <sub>5</sub>    |
|--------------------|----|----|---|-------------------|
| A <sub>3</sub> □   | 2  | 43 | П | $A_6$             |
| A <sub>2</sub>     | 3  | 42 | b | A <sub>7</sub>    |
| A <sub>1</sub> □   | 4  | 41 | Ы | ŌĒ                |
| Ao 🗆               | 5  | 40 | П | BHE               |
| CĔ                 | 6  | 39 | Ы | BLE               |
| I/O <sub>0</sub> [ | 7  | 38 | Ы | I/O <sub>15</sub> |
| I/O <sub>1</sub> [ | 8  | 37 | Б | I/O <sub>14</sub> |
| I/O2 [             | 9  | 36 | Ы | I/O <sub>13</sub> |
| 1/O <sub>3</sub> [ | 10 | 35 | Ы | I/O <sub>12</sub> |
| V <sub>CC</sub> [  | 11 | 34 | П | V <sub>SS</sub>   |
| V <sub>SS</sub> [  | 12 | 33 | П | V <sub>CC</sub>   |
| I/O₄ [             | 13 | 32 | П | I/O <sub>11</sub> |
| I/O <sub>5</sub>   | 14 | 31 |   | I/O <sub>10</sub> |
| 1/O <sub>6</sub> [ | 15 | 30 | П | I/O <sub>9</sub>  |
| I <u>/O</u> 7 □    | 16 | 29 | П | I/O <sub>8</sub>  |
| WE 🗆               | 17 | 28 | П | NC                |
| A <sub>16</sub>    | 18 | 27 | П | A <sub>8</sub>    |
| A <sub>15</sub> [  | 19 | 26 | Р | $A_9$             |
| A <sub>14</sub>    | 20 | 25 | П | A <sub>10</sub>   |
| A <sub>13</sub> [  | 21 | 24 | Ц | $A_{11}$          |
| A <sub>12</sub>    | 22 | 23 | μ | NC                |

<sup>2.</sup> Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V<sub>CC</sub> = V<sub>CC</sub> Typ, T<sub>A</sub> = 25°C.

3. NC pins are not connected on the die



### **Maximum Ratings**

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature ......-65°C to +150°C

Ambient Temperature with

Power Applied .....-55°C to +125°C

Supply Voltage to Ground Potential ....-0.5V to +4.6V

DC Voltage Applied to Outputs
in High-Z State<sup>[4]</sup> .....-0.5V to V<sub>CC</sub> + 0.5V

| Output Current into Outputs (LOW)                      | 20 mA    |
|--------------------------------------------------------|----------|
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | > 2001V  |
| Latch-up Current                                       | > 200 mA |

### **Operating Range**

| Range      | Ambient Tempera-<br>ture[T <sub>A</sub> ] <sup>[6]</sup> | V <sub>CC</sub> |  |  |
|------------|----------------------------------------------------------|-----------------|--|--|
| Industrial | –40°C to +85°C                                           | 2.7V to 3.6V    |  |  |
| Automotive | −40°C to +125°C                                          |                 |  |  |

### **Electrical Characteristics** Over the Operating Range

DC Input Voltage<sup>[4]</sup>.....-0.5V to V<sub>CC</sub> + 0.5V

|                  |                                                       |                                                                                                                                                                                                                                     |                                       | CY             | ′62136\ | /-55                       | CY                        |      |                            |                           |      |
|------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|---------|----------------------------|---------------------------|------|----------------------------|---------------------------|------|
| Parameter        | Description                                           | Test Conditions                                                                                                                                                                                                                     |                                       |                | Min.    | <b>Typ.</b> <sup>[2]</sup> | Max.                      | Min. | <b>Typ.</b> <sup>[2]</sup> | Max.                      | Unit |
| V <sub>OH</sub>  | Output HIGH<br>Voltage                                | $I_{OH} = -1.0 \text{ mA}$                                                                                                                                                                                                          | $V_{CC} = 2.7V$                       |                | 2.4     |                            |                           | 2.4  |                            |                           | V    |
| V <sub>OL</sub>  | Output LOW Voltage                                    | I <sub>OL</sub> = 2.1 mA                                                                                                                                                                                                            | $V_{CC} = 2.7V$                       |                |         |                            | 0.4                       |      |                            | 0.4                       | V    |
| V <sub>IH</sub>  | Input HIGH Voltage                                    |                                                                                                                                                                                                                                     | $V_{CC} = 3.6V$                       |                | 2.2     |                            | V <sub>CC</sub> +<br>0.5V | 2.2  |                            | V <sub>CC</sub> +<br>0.5V | V    |
| V <sub>IL</sub>  | Input LOW Voltage                                     |                                                                                                                                                                                                                                     | $V_{CC} = 2.7V$                       |                | -0.5    |                            | 8.0                       | -0.5 |                            | 0.8                       | V    |
| I <sub>IX</sub>  | Input Load Current                                    | $GND \le V_I \le V_{CC}$                                                                                                                                                                                                            |                                       | Industrial     | -1      |                            | +1                        | -1   |                            | +1                        | μА   |
|                  |                                                       |                                                                                                                                                                                                                                     |                                       | Automotive     |         |                            |                           | -10  |                            | +10                       | μА   |
| l <sub>OZ</sub>  | Output Leakage                                        | $GND \le V_O \le V_{CC}$                                                                                                                                                                                                            |                                       | Industrial     | -1      |                            | +1                        | -1   |                            | +1                        | μА   |
|                  | Current                                               | Output Disabled                                                                                                                                                                                                                     |                                       | Automotive     |         |                            |                           | -10  |                            | +10                       | μА   |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating                             | $f = f_{MAX} = 1/t_{RC}$                                                                                                                                                                                                            | $V_{CC} = 3.6V$ ,                     |                |         | 7                          | 20                        |      | 7                          | 15                        | mA   |
|                  | Supply<br>Current                                     |                                                                                                                                                                                                                                     | I <sub>OUT</sub> = 0 mA,<br>CMOS      | Automotive     |         |                            |                           |      | 7                          | 20                        | mA   |
|                  | Carrent                                               | f = 1 MHz,                                                                                                                                                                                                                          | Levels                                |                |         | 1                          | 2                         |      | 1                          | 2                         | mA   |
| I <sub>SB1</sub> | Automatic CE<br>Power-down<br>Current— CMOS<br>Inputs | $\begin{array}{l} \text{CE} \geq \text{V}_{\text{CC}} - 0.3 \text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3 \text{V or} \\ \text{V}_{\text{IN}} \leq 0.3 \text{V},  \text{f} = \text{f}_{\text{MAX}} \end{array}$ |                                       |                |         |                            | 100                       |      |                            | 100                       | μА   |
| I <sub>SB2</sub> | Automatic CE                                          | $CE \ge V_{CC} - 0.3V$                                                                                                                                                                                                              | $V_{CC} = 3.6V$                       | Industrial(LL) |         | 1                          | 15                        |      | 1                          | 15                        | μА   |
|                  | Power-down<br>Current— CMOS                           | $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$ , $f = 0$                                                                                                                                                                           | $N \ge V_{CC} - 0.3V$ or $0.3V$ f = 0 | Industrial(SL) |         | 1                          | 5                         |      | 1                          | 5                         | μА   |
|                  | Inputs                                                | V IIV = 0.0 V, 1 = 0                                                                                                                                                                                                                |                                       | Automotive     |         |                            |                           |      | 1                          | 20                        | μА   |

### **Thermal Resistance**

| Parameter       | Description                                             | Test Conditions                                                           | TSOPII | Unit |
|-----------------|---------------------------------------------------------|---------------------------------------------------------------------------|--------|------|
| $\Theta_{JA}$   | [6]                                                     | Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board | 60     | °C/W |
| Θ <sub>JC</sub> | Thermal Resistance<br>(Junction to Case) <sup>[5]</sup> |                                                                           | 22     | °C/W |

### Capacitance<sup>[5]</sup>

| Parameter        | Description        | Test Conditions                    | Max. | Unit |
|------------------|--------------------|------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C$ , $f = 1$ MHz, | 6    | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = V_{CC(typ)}$             | 8    | pF   |

- 4.  $V_{IL}(min) = -2.0V$  for pulse durations less than 20 ns.
- 5. Tested initially and after any design or process changes that may affect these parameters.
- 6. T<sub>A</sub> is the "Instant-On" case temperature.



### **AC Test Loads and Waveforms**







Equivalent to:

THÉVENIN EQUIVALENT



| Parameters      | 3.0V | Unit  |
|-----------------|------|-------|
| R1              | 1105 | Ohms  |
| R2              | 1550 | Ohms  |
| R <sub>TH</sub> | 645  | Ohms  |
| V <sub>TH</sub> | 1.75 | Volts |

### **Data Retention Characteristics** (Over the Operating Range)

| Parameter                       | Description                             | Conditions <sup>[8]</sup>                                                                                                                  |          | Min. | Typ. <sup>[2]</sup> | Max.     | Unit |
|---------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|------|---------------------|----------|------|
| $V_{DR}$                        | V <sub>CC</sub> for Data Retention      |                                                                                                                                            |          | 1.0  |                     | 3.6      | V    |
| I <sub>CCDR</sub>               | Data Retention Current                  | $V_{CC}$ = 1.0V, $\overline{CE} \ge V_{CC} - 0.3V$ , $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$ , No input may exceed $V_{CC} + 0.3V$ | LL<br>SL |      | 0.5                 | 7.5<br>5 | μА   |
| t <sub>CDR</sub> <sup>[5]</sup> | Chip Deselect to Data<br>Retention Time |                                                                                                                                            |          | 0    |                     |          | ns   |
| t <sub>R</sub> <sup>[7]</sup>   | Operation Recovery Time                 |                                                                                                                                            |          | 70   |                     |          | ns   |

### **Data Retention Waveform**



### Switching Characteristics Over the Operating Range [8]

|                   |                                | 55   | 5 ns | 70   |      |      |
|-------------------|--------------------------------|------|------|------|------|------|
| Parameter         | Description                    | Min. | Max. | Min. | Max. | Unit |
| Read Cycle        |                                | 1    | •    |      |      |      |
| t <sub>RC</sub>   | Read Cycle Time                | 55   |      | 70   |      | ns   |
| t <sub>AA</sub>   | Address to Data Valid          |      | 55   |      | 70   | ns   |
| t <sub>OHA</sub>  | Data Hold from Address Change  | 10   |      | 10   |      | ns   |
| t <sub>ACE</sub>  | CE LOW to Data Valid           |      | 55   |      | 70   | ns   |
| t <sub>DOE</sub>  | OE LOW to Data Valid           |      | 25   |      | 35   | ns   |
| t <sub>LZOE</sub> | OE LOW to Low-Z <sup>[9]</sup> | 5    |      | 5    |      | ns   |

- 7. Full device operation requires linear  $V_{CC}$  ramp from  $V_{DR}$  to  $V_{CC(min)} \ge 100$  ms or stable at  $V_{CC(min)} \ge 100$  ms.

  8. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to  $V_{CC}$  typ., and output loading of the specified  $I_{\rm OL}/I_{\rm OH}$  and 30-pF load capacitance.
- 9. At any given temperature and voltage condition, t<sub>HZCE</sub> is less than t<sub>LZCE</sub>, t<sub>HZCE</sub> is less than t<sub>LZCE</sub>, and t<sub>HZWE</sub> is less than t<sub>LZWE</sub> for any given device. 10. t<sub>HZCE</sub>, and t<sub>HZWE</sub> are specified with C<sub>L</sub> = 5 pF as in (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.



### Switching Characteristics Over the Operating Range (continued)<sup>[8]</sup>

|                                 |                                           | 55   | 5 ns | 70   |      |      |
|---------------------------------|-------------------------------------------|------|------|------|------|------|
| Parameter                       | Description                               | Min. | Max. | Min. | Max. | Unit |
| t <sub>HZOE</sub>               | OE HIGH to High-Z <sup>[9, 10]</sup>      |      | 25   |      | 25   | ns   |
| t <sub>LZCE</sub>               | CE LOW to Low-Z <sup>[9]</sup>            | 10   |      | 10   |      | ns   |
| t <sub>HZCE</sub>               | CE HIGH to High-Z <sup>[9, 10]</sup>      |      | 25   |      | 25   | ns   |
| t <sub>PU</sub>                 | CE LOW to Power-up                        | 0    |      | 0    |      | ns   |
| t <sub>PD</sub>                 | CE HIGH to Power-down                     |      | 55   |      | 70   | ns   |
| t <sub>DBE</sub>                | BLE / BHE LOW to Data Valid               |      | 25   |      | 35   | ns   |
| t <sub>LZBE</sub>               | BLE / BHE LOW to Low-Z <sup>[9, 10]</sup> | 5    |      | 5    |      | ns   |
| t <sub>HZBE</sub>               | BLE / BHE HIGH to High-Z <sup>[11]</sup>  |      | 25   |      | 25   | ns   |
| Write Cycle <sup>[11, 12]</sup> |                                           | - 1  | •    | · ·  | l .  | 1    |
| t <sub>WC</sub>                 | Write Cycle Time                          | 55   |      | 70   |      | ns   |
| t <sub>SCE</sub>                | CE LOW to Write End                       | 45   |      | 60   |      | ns   |
| t <sub>AW</sub>                 | Address Set-up to Write End               | 45   |      | 60   |      | ns   |
| t <sub>HA</sub>                 | Address Hold from Write End               | 0    |      | 0    |      | ns   |
| t <sub>SA</sub>                 | Address Set-up to Write Start             | 0    |      | 0    |      | ns   |
| t <sub>PWE</sub>                | WE Pulse Width                            | 40   |      | 50   |      | ns   |
| t <sub>BW</sub>                 | BLE / BHE LOW to Write End                | 50   |      | 60   |      | ns   |
| t <sub>SD</sub>                 | Data Set-up to Write End                  | 25   |      | 30   |      | ns   |
| t <sub>HD</sub>                 | Data Hold from Write End                  | 0    |      | 0    |      | ns   |
| t <sub>HZWE</sub>               | WE LOW to High-Z <sup>[9, 10]</sup>       |      | 20   |      | 25   | ns   |
| t <sub>LZWE</sub>               | WE HIGH to Low-Z <sup>[9]</sup>           | 5    |      | 10   |      | ns   |

### **Switching Waveforms**



- Notes:

  11. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

  12. The minimum write cycle time for write cycle 3 (WE controlled, OE LOW) is the sum of t<sub>HZWE</sub> and t<sub>SD</sub>.

  13. Device is continuously selected. OE, CE = V<sub>IL</sub>.

  14. WE is HIGH for read cycle.



### Switching Waveforms (continued)

### **Read Cycle No. 2** [14, 15]



# Write Cycle No. 1 (WE Controlled) [11, 16, 17]



- 15. Address valid prior to or coincident with  $\overline{\text{CE}}$  transition LOW.

  16. Data I/O is high impedance if  $\overline{\text{OE}} = \text{V}_{\text{IH}}$ .

  17. If  $\overline{\text{CE}}$  goes HIGH simultaneously with  $\overline{\text{WE}}$  HIGH, the output remains in a high-impedance state.

  18. During this period, the I/Os are in output state and input signals should not be applied.



DATA I/O-

### Switching Waveforms (continued)

# Write Cycle No. 2 (CE Controlled) ADDRESS CE t<sub>SCE</sub> t<sub>SCE</sub> t<sub>BHE/BLE</sub> t<sub>PWE</sub>

DATAN VALID







### Switching Waveforms (continued)

### Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[18]



### **Typical DC and AC Characteristics**









### **Truth Table**

| CE | WE | OE | BHE | BLE | Inputs/Outputs                                                                                   | Mode                     | Power                      |
|----|----|----|-----|-----|--------------------------------------------------------------------------------------------------|--------------------------|----------------------------|
| Н  | Х  | Х  | Х   | Х   | High-Z                                                                                           | Deselect/Power-down      | Standby (I <sub>SB</sub> ) |
| L  | Н  | L  | L   | L   | Data Out (I/O <sub>O</sub> -I/O <sub>15</sub> )                                                  | Read                     | Active (I <sub>CC</sub> )  |
| L  | Н  | L  | Н   | L   | Data Out (I/O <sub>O</sub> -I/O <sub>7</sub> );<br>I/O <sub>8</sub> -I/O <sub>15</sub> in High-Z | Read                     | Active (I <sub>CC</sub> )  |
| L  | Н  | L  | L   | Н   | Data Out (I/O <sub>8</sub> –I/O <sub>15</sub> );<br>I/O <sub>0</sub> –I/O <sub>7</sub> in High-Z | Read                     | Active (I <sub>CC</sub> )  |
| L  | Н  | L  | Н   | Н   | High-Z                                                                                           | Deselect/Output Disabled | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | L   | L   | High-Z                                                                                           | Deselect/Output Disabled | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | Н   | L   | High-Z                                                                                           | Deselect/Output Disabled | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | L   | Н   | High-Z                                                                                           | Deselect/Output Disabled | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | L   | L   | Data In (I/O <sub>O</sub> -I/O <sub>15</sub> )                                                   | Write                    | Active (I <sub>CC</sub> )  |
| Ĺ  | L  | Х  | Н   | L   | Data In (I/O <sub>O</sub> –I/O <sub>7</sub> );<br>I/O <sub>8</sub> –I/O <sub>15</sub> in High-Z  | Write                    | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | L   | Н   | Data In (I/O <sub>8</sub> –I/O <sub>15</sub> );<br>I/O <sub>0</sub> –I/O <sub>7</sub> in High-Z  | Write                    | Active (I <sub>CC</sub> )  |

### **Ordering Information**

| Speed<br>(ns) | Ordering Code    | Package<br>Name | Package Type   | Operating<br>Range |
|---------------|------------------|-----------------|----------------|--------------------|
| 55            | CY62136VLL-55ZSI | ZS44            | 44-pin TSOP II | Industrial         |
|               | CY62136VSL-55ZSI |                 |                | Industrial         |
| 70            | CY62136VLL-70ZSI |                 |                | Industrial         |
|               | CY62136VLL-70ZSE |                 |                | Automotive         |
|               | CY62136VSL-70ZSI |                 |                | Industrial         |



### **Package Diagrams**

## DIMENSION IN MM (INCH) 44-pin TSOP II ZS44 PIN 1 LD. <u>ÉARRARARARARARAAAA</u> 888888888888888888888 EJECTOR PIN TOP VIEW BOTTOM VIEW 0.800 BSC BASE PLANE 18.517 (0.729) 18.313 (0.721) 0.597 (0.0235) 0.406 (0.0160) SEATING PLANE 51-85087-\*A

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the products of their respective holders.



# **Document History Page**

| Document Title: CY62136V MoBL <sup>®</sup> 2-Mbit (128K x 16) Static RAM Document Number: 38-05087 |         |            |                    |                                                                                                                                                                                                                                                                                                                                              |  |  |
|----------------------------------------------------------------------------------------------------|---------|------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| REV.                                                                                               | ECN NO. | Issue Date | Orig. of<br>Change | Description of Change                                                                                                                                                                                                                                                                                                                        |  |  |
| **                                                                                                 | 107347  | 05/25/01   | SZV                | Changed from Spec #: 38-00728 to 38-05087                                                                                                                                                                                                                                                                                                    |  |  |
| *A                                                                                                 | 116509  | 09/04/02   | GBI                | Added footnote 1 Added SL power bin Deleted fBGA package; replacement fBGA package available in CY62136CV30                                                                                                                                                                                                                                  |  |  |
| *B                                                                                                 | 269729  | See ECN    | SYT                | Added Automotive Information for 70-ns Speed Bin. Added Footnotes # 3 and # 6. Corrected Typo in Electrical Characteristics for I <sub>CC</sub> (Max)-55 ns from 15 to 20 mA. Added SL row for I <sub>SB2</sub> in the Electrical Characteristics table. Changed Package Name from Z44 to ZS44. Replaced 'Z' with 'ZS' in the Ordering Code. |  |  |