2-Mbit (128K x 16) Static RAM ### **Features** • Temperature Ranges Commercial: 0°C to 70°C Industrial: -40°C to 85°C Automotive: -40°C to 125°C High speed: 55 ns and 70 ns • 70-ns speed bin offered in both Industrial and Automotive grades Wide voltage range: 2.7V-3.6VUltra-low active, standby power • Easy memory expansion with CE and OE features • TTL-compatible inputs and outputs · Automatic power-down when deselected · CMOS for optimum speed/power Package available in a standard 44-pin TSOP Type II (forward pinout) package ### Functional Description[1] The CY62136V is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW). <u>Writing</u> to the device is <u>acc</u>omplished by taking Chip Enable (<u>CE</u>) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified <u>on the</u> address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{16}$). Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the Truth Table at the back of this data sheet for a complete description of read and write modes. Note: 1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com. ### **Product Portfolio** | | | | | | | Power Dissipation (Industrial) | | | | | |------------|-----|----------------------------|-----|-------|------------|--------------------------------|--------------------------|----------------------------|----------------------------|--| | | V | _{CC} Range (| V) | | | Operatin | ıg, I _{CC} (mA) | Stan | dby, I _{SB2} (μA) | | | Product | Min | Typ. ^[2] | Max | Speed | Grades | Typ. ^[2] | Maximum | Typ. ^[2] | Maximum | | | CY62136VLL | 2.7 | 3.0 | 3.6 | 55 | Industrial | 7 | 20 | 1 | 15 | | | | | | | 70 | Industrial | 7 | 15 | 1 | 15 | | | | | | | 70 | Automotive | 7 | 20 | 1 | 20 | | | CY62136VSL | | | | 55 | Industrial | 7 | 20 | 1 | 5 | | | | | | | 70 | Industrial | 7 | 15 | 1 | 5 | | ### Pin Configurations[3] ### TSOP II (Forward) Top View | A ₄ [| 1 | 44 | Ь | A ₅ | |--------------------|----|----|---|-------------------| | A ₃ □ | 2 | 43 | П | A_6 | | A ₂ | 3 | 42 | b | A ₇ | | A ₁ □ | 4 | 41 | Ы | ŌĒ | | Ao 🗆 | 5 | 40 | П | BHE | | CĔ | 6 | 39 | Ы | BLE | | I/O ₀ [| 7 | 38 | Ы | I/O ₁₅ | | I/O ₁ [| 8 | 37 | Б | I/O ₁₄ | | I/O2 [| 9 | 36 | Ы | I/O ₁₃ | | 1/O ₃ [| 10 | 35 | Ы | I/O ₁₂ | | V _{CC} [| 11 | 34 | П | V _{SS} | | V _{SS} [| 12 | 33 | П | V _{CC} | | I/O₄ [| 13 | 32 | П | I/O ₁₁ | | I/O ₅ | 14 | 31 | | I/O ₁₀ | | 1/O ₆ [| 15 | 30 | П | I/O ₉ | | I <u>/O</u> 7 □ | 16 | 29 | П | I/O ₈ | | WE 🗆 | 17 | 28 | П | NC | | A ₁₆ | 18 | 27 | П | A ₈ | | A ₁₅ [| 19 | 26 | Р | A_9 | | A ₁₄ | 20 | 25 | П | A ₁₀ | | A ₁₃ [| 21 | 24 | Ц | A_{11} | | A ₁₂ | 22 | 23 | μ | NC | ^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C. 3. NC pins are not connected on the die ### **Maximum Ratings** (Above which the useful life may be impaired. For user guide-lines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-55°C to +125°C Supply Voltage to Ground Potential-0.5V to +4.6V DC Voltage Applied to Outputs in High-Z State^[4]-0.5V to V_{CC} + 0.5V | Output Current into Outputs (LOW) | 20 mA | |--|----------| | Static Discharge Voltage(per MIL-STD-883, Method 3015) | > 2001V | | Latch-up Current | > 200 mA | ### **Operating Range** | Range | Ambient Tempera-
ture[T _A] ^[6] | V _{CC} | | | |------------|--|-----------------|--|--| | Industrial | –40°C to +85°C | 2.7V to 3.6V | | | | Automotive | −40°C to +125°C | | | | ### **Electrical Characteristics** Over the Operating Range DC Input Voltage^[4].....-0.5V to V_{CC} + 0.5V | | | | | CY | ′62136\ | /-55 | CY | | | | | |------------------|---|---|---------------------------------------|----------------|---------|----------------------------|---------------------------|------|----------------------------|---------------------------|------| | Parameter | Description | Test Conditions | | | Min. | Typ. ^[2] | Max. | Min. | Typ. ^[2] | Max. | Unit | | V _{OH} | Output HIGH
Voltage | $I_{OH} = -1.0 \text{ mA}$ | $V_{CC} = 2.7V$ | | 2.4 | | | 2.4 | | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 2.1 mA | $V_{CC} = 2.7V$ | | | | 0.4 | | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | $V_{CC} = 3.6V$ | | 2.2 | | V _{CC} +
0.5V | 2.2 | | V _{CC} +
0.5V | V | | V _{IL} | Input LOW Voltage | | $V_{CC} = 2.7V$ | | -0.5 | | 8.0 | -0.5 | | 0.8 | V | | I _{IX} | Input Load Current | $GND \le V_I \le V_{CC}$ | | Industrial | -1 | | +1 | -1 | | +1 | μА | | | | | | Automotive | | | | -10 | | +10 | μА | | l _{OZ} | Output Leakage | $GND \le V_O \le V_{CC}$ | | Industrial | -1 | | +1 | -1 | | +1 | μА | | | Current | Output Disabled | | Automotive | | | | -10 | | +10 | μА | | I _{CC} | V _{CC} Operating | $f = f_{MAX} = 1/t_{RC}$ | $V_{CC} = 3.6V$, | | | 7 | 20 | | 7 | 15 | mA | | | Supply
Current | | I _{OUT} = 0 mA,
CMOS | Automotive | | | | | 7 | 20 | mA | | | Carrent | f = 1 MHz, | Levels | | | 1 | 2 | | 1 | 2 | mA | | I _{SB1} | Automatic CE
Power-down
Current— CMOS
Inputs | $\begin{array}{l} \text{CE} \geq \text{V}_{\text{CC}} - 0.3 \text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3 \text{V or} \\ \text{V}_{\text{IN}} \leq 0.3 \text{V}, \text{f} = \text{f}_{\text{MAX}} \end{array}$ | | | | | 100 | | | 100 | μА | | I _{SB2} | Automatic CE | $CE \ge V_{CC} - 0.3V$ | $V_{CC} = 3.6V$ | Industrial(LL) | | 1 | 15 | | 1 | 15 | μА | | | Power-down
Current— CMOS | $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, $f = 0$ | $N \ge V_{CC} - 0.3V$ or $0.3V$ f = 0 | Industrial(SL) | | 1 | 5 | | 1 | 5 | μА | | | Inputs | V IIV = 0.0 V, 1 = 0 | | Automotive | | | | | 1 | 20 | μА | ### **Thermal Resistance** | Parameter | Description | Test Conditions | TSOPII | Unit | |-----------------|---|---|--------|------| | Θ_{JA} | [6] | Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board | 60 | °C/W | | Θ _{JC} | Thermal Resistance
(Junction to Case) ^[5] | | 22 | °C/W | ### Capacitance^[5] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|------------------------------------|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C$, $f = 1$ MHz, | 6 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = V_{CC(typ)}$ | 8 | pF | - 4. $V_{IL}(min) = -2.0V$ for pulse durations less than 20 ns. - 5. Tested initially and after any design or process changes that may affect these parameters. - 6. T_A is the "Instant-On" case temperature. ### **AC Test Loads and Waveforms** Equivalent to: THÉVENIN EQUIVALENT | Parameters | 3.0V | Unit | |-----------------|------|-------| | R1 | 1105 | Ohms | | R2 | 1550 | Ohms | | R _{TH} | 645 | Ohms | | V _{TH} | 1.75 | Volts | ### **Data Retention Characteristics** (Over the Operating Range) | Parameter | Description | Conditions ^[8] | | Min. | Typ. ^[2] | Max. | Unit | |---------------------------------|---|--|----------|------|---------------------|----------|------| | V_{DR} | V _{CC} for Data Retention | | | 1.0 | | 3.6 | V | | I _{CCDR} | Data Retention Current | V_{CC} = 1.0V, $\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, No input may exceed $V_{CC} + 0.3V$ | LL
SL | | 0.5 | 7.5
5 | μА | | t _{CDR} ^[5] | Chip Deselect to Data
Retention Time | | | 0 | | | ns | | t _R ^[7] | Operation Recovery Time | | | 70 | | | ns | ### **Data Retention Waveform** ### Switching Characteristics Over the Operating Range [8] | | | 55 | 5 ns | 70 | | | |-------------------|--------------------------------|------|------|------|------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Unit | | Read Cycle | | 1 | • | | | | | t _{RC} | Read Cycle Time | 55 | | 70 | | ns | | t _{AA} | Address to Data Valid | | 55 | | 70 | ns | | t _{OHA} | Data Hold from Address Change | 10 | | 10 | | ns | | t _{ACE} | CE LOW to Data Valid | | 55 | | 70 | ns | | t _{DOE} | OE LOW to Data Valid | | 25 | | 35 | ns | | t _{LZOE} | OE LOW to Low-Z ^[9] | 5 | | 5 | | ns | - 7. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100$ ms or stable at $V_{CC(min)} \ge 100$ ms. 8. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified $I_{\rm OL}/I_{\rm OH}$ and 30-pF load capacitance. - 9. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device. 10. t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. ### Switching Characteristics Over the Operating Range (continued)^[8] | | | 55 | 5 ns | 70 | | | |---------------------------------|---|------|------|------|------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Unit | | t _{HZOE} | OE HIGH to High-Z ^[9, 10] | | 25 | | 25 | ns | | t _{LZCE} | CE LOW to Low-Z ^[9] | 10 | | 10 | | ns | | t _{HZCE} | CE HIGH to High-Z ^[9, 10] | | 25 | | 25 | ns | | t _{PU} | CE LOW to Power-up | 0 | | 0 | | ns | | t _{PD} | CE HIGH to Power-down | | 55 | | 70 | ns | | t _{DBE} | BLE / BHE LOW to Data Valid | | 25 | | 35 | ns | | t _{LZBE} | BLE / BHE LOW to Low-Z ^[9, 10] | 5 | | 5 | | ns | | t _{HZBE} | BLE / BHE HIGH to High-Z ^[11] | | 25 | | 25 | ns | | Write Cycle ^[11, 12] | | - 1 | • | · · | l . | 1 | | t _{WC} | Write Cycle Time | 55 | | 70 | | ns | | t _{SCE} | CE LOW to Write End | 45 | | 60 | | ns | | t _{AW} | Address Set-up to Write End | 45 | | 60 | | ns | | t _{HA} | Address Hold from Write End | 0 | | 0 | | ns | | t _{SA} | Address Set-up to Write Start | 0 | | 0 | | ns | | t _{PWE} | WE Pulse Width | 40 | | 50 | | ns | | t _{BW} | BLE / BHE LOW to Write End | 50 | | 60 | | ns | | t _{SD} | Data Set-up to Write End | 25 | | 30 | | ns | | t _{HD} | Data Hold from Write End | 0 | | 0 | | ns | | t _{HZWE} | WE LOW to High-Z ^[9, 10] | | 20 | | 25 | ns | | t _{LZWE} | WE HIGH to Low-Z ^[9] | 5 | | 10 | | ns | ### **Switching Waveforms** - Notes: 11. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. 12. The minimum write cycle time for write cycle 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}. 13. Device is continuously selected. OE, CE = V_{IL}. 14. WE is HIGH for read cycle. ### Switching Waveforms (continued) ### **Read Cycle No. 2** [14, 15] # Write Cycle No. 1 (WE Controlled) [11, 16, 17] - 15. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW. 16. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$. 17. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state. 18. During this period, the I/Os are in output state and input signals should not be applied. DATA I/O- ### Switching Waveforms (continued) # Write Cycle No. 2 (CE Controlled) ADDRESS CE t_{SCE} t_{SCE} t_{BHE/BLE} t_{PWE} DATAN VALID ### Switching Waveforms (continued) ### Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[18] ### **Typical DC and AC Characteristics** ### **Truth Table** | CE | WE | OE | BHE | BLE | Inputs/Outputs | Mode | Power | |----|----|----|-----|-----|--|--------------------------|----------------------------| | Н | Х | Х | Х | Х | High-Z | Deselect/Power-down | Standby (I _{SB}) | | L | Н | L | L | L | Data Out (I/O _O -I/O ₁₅) | Read | Active (I _{CC}) | | L | Н | L | Н | L | Data Out (I/O _O -I/O ₇);
I/O ₈ -I/O ₁₅ in High-Z | Read | Active (I _{CC}) | | L | Н | L | L | Н | Data Out (I/O ₈ –I/O ₁₅);
I/O ₀ –I/O ₇ in High-Z | Read | Active (I _{CC}) | | L | Н | L | Н | Н | High-Z | Deselect/Output Disabled | Active (I _{CC}) | | L | Н | Н | L | L | High-Z | Deselect/Output Disabled | Active (I _{CC}) | | L | Н | Н | Н | L | High-Z | Deselect/Output Disabled | Active (I _{CC}) | | L | Н | Н | L | Н | High-Z | Deselect/Output Disabled | Active (I _{CC}) | | L | L | Х | L | L | Data In (I/O _O -I/O ₁₅) | Write | Active (I _{CC}) | | Ĺ | L | Х | Н | L | Data In (I/O _O –I/O ₇);
I/O ₈ –I/O ₁₅ in High-Z | Write | Active (I _{CC}) | | L | L | Х | L | Н | Data In (I/O ₈ –I/O ₁₅);
I/O ₀ –I/O ₇ in High-Z | Write | Active (I _{CC}) | ### **Ordering Information** | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|------------------|-----------------|----------------|--------------------| | 55 | CY62136VLL-55ZSI | ZS44 | 44-pin TSOP II | Industrial | | | CY62136VSL-55ZSI | | | Industrial | | 70 | CY62136VLL-70ZSI | | | Industrial | | | CY62136VLL-70ZSE | | | Automotive | | | CY62136VSL-70ZSI | | | Industrial | ### **Package Diagrams** ## DIMENSION IN MM (INCH) 44-pin TSOP II ZS44 PIN 1 LD. <u>ÉARRARARARARARAAAA</u> 888888888888888888888 EJECTOR PIN TOP VIEW BOTTOM VIEW 0.800 BSC BASE PLANE 18.517 (0.729) 18.313 (0.721) 0.597 (0.0235) 0.406 (0.0160) SEATING PLANE 51-85087-*A MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the products of their respective holders. # **Document History Page** | Document Title: CY62136V MoBL [®] 2-Mbit (128K x 16) Static RAM Document Number: 38-05087 | | | | | | | |--|---------|------------|--------------------|--|--|--| | REV. | ECN NO. | Issue Date | Orig. of
Change | Description of Change | | | | ** | 107347 | 05/25/01 | SZV | Changed from Spec #: 38-00728 to 38-05087 | | | | *A | 116509 | 09/04/02 | GBI | Added footnote 1 Added SL power bin Deleted fBGA package; replacement fBGA package available in CY62136CV30 | | | | *B | 269729 | See ECN | SYT | Added Automotive Information for 70-ns Speed Bin. Added Footnotes # 3 and # 6. Corrected Typo in Electrical Characteristics for I _{CC} (Max)-55 ns from 15 to 20 mA. Added SL row for I _{SB2} in the Electrical Characteristics table. Changed Package Name from Z44 to ZS44. Replaced 'Z' with 'ZS' in the Ordering Code. | | |