Current Transducer HTA 100..1000-S For the electronic measurement of DC, AC and pulsed currents, with a galvanic isolation between the primary (high power) circuit and the secondary (electronic) circuit. | FI | ectrical data | | | |---|---|--------------------------------------|-------| | | | _ | | | Primary nominal Primary current .m.s. current measuring range | | Туре | | | | eurrent measuring range | | | | PN (A) | F ' ' | | | | 100 | ± 300 | HTA 10 | | | 200
300 | ± 600
± 900 | HTA 200-S
HTA 300-S | | | 400 | ± 1000 | HTA 400-S | | | 500 | ± 1000 | HTA 500-S | | | 600 | ± 1000 | HTA 600-S | | | 1000 | ± 1000 | HTA 10 | 000-S | | Î _p | Overload capacity (Ampere Turns) | 30000 | А | | V _{OUT} | Analogue output voltage @ ± I _{PN} | ± 4 | V | | R _L | Load resistance $T_A = 0 + 70^{\circ}C$ | > 1 | kΩ | | L | T _A = - 25 + 85°C | > 3 | kΩ | | V _C | Supply voltage (± 5 %) | ± 15 | V | | - c
 _C | Current consumption (max) | 25 | mA | | C
V _b | Rms rated voltage ¹⁾ | 500 | V | | V _d | Rms voltage for AC isolation test, 50 Hz, 1 mn | 3 | kV | | | Isolation resistance @ 500 V _{DC} | > 500 | MΩ | | R _{is} | isolation resistance & 500 v _{DC} | 7 300 | 10122 | | Ac | curacy - Dynamic performance data | | | | X | Accuracy $^{2)}$ @ I_{PN} , T_{A} = 25°C, @ ± 15 V | ± 1 | % | | $\mathbf{e}_{\scriptscriptstyle oldsymbol{oldsymbol{arepsilon}}}$ | Linearity ²⁾ | ± 0.5 | % | | - | | Max | | | V _{OE} | Electrical offset voltage @ $I_p = 0$, $T_A = 25$ °C | ± 10 | mV | | V _{OM} | Residual offset voltage $(\mathbf{l}_p = 0)$ | | | | OM | after an overload of 3 x I _{PN} | ± 10 | mV | | V _{OT} | Thermal drift of offset voltage $T_A = -25 + 85^{\circ}C$ | ± 1 | mV/°K | | TCe _G | Thermal drift of gain $T_A = -25 + 85^{\circ}C$ | ± 0.05 | %/°K | | | Response time @ 90 % of I _p | < 3 | | | t _,
di/d+ | · · | | μs | | di/dt | di/dt accurately followed | > 50 | A/µs | | f | Frequency bandwidth (- 3 dB) 3) | DC 50 | kHz | | Ge | eneral data | | | | T _A | Ambient operating temperature | - 25 + 85 | 5 °C | | T _s | Ambient storage temperature | - 25 + 85 | | | m s | Mass | 230 | g | | - | Standards Safety | | | | | EMC | EN50178 (1994)
EN50082-2 (1992) | | | | LIVIO | EN50082-2 (1992)
EN50081-1 (1992) | | | | | □N30001-1 (1992) | | $I_{PN} = 100 A$ ### **Features** - Open loop transducer using Hall Effect - Panel mounting Horizontal or Vertical - Insulated plastic case to UL 94-V0. ## **Advantages** - Very good linearity - Very good accuracy - Low temperature drift - Wide frequency bandwidth - Very low insertion losses - High immunity to external interference - · Current overload capability - Low power consumption - Wide dynamic range, 100 to 1000 A in one package. #### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptable Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. Notes: 1) Overvoltage Category III, Pollution Degree 2 Deviation in output when tested to EN 61000-4-6 Deviation in output when tested to EN 61000-4-4 - 2) Excludes the electrical offset - ³⁾ Refer to derating curves in the technical file to avoid excessive core heating at high frequency < 10 < 10 % of \mathbf{I}_{PN} % of \mathbf{I}_{PN} 001107/1 Left view ## Dimensions HTA 100..1000-S (in mm) ## Secondary terminals Terminal 1 : supply voltage + 15 V Terminal 2 : supply voltage - 15 V Terminal 3 : output Terminal 4 : 0V #### **Mechanical characteristics** • General tolerance • Primary through-hole • Connection of secondary ± 0.5 mm Ø 32 mm Molex 5045-04-A #### **Remarks** - $\bullet~\mathbf{V}_{\text{OUT}}$ is positive when \mathbf{I}_{P} flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 90°C. - This is a standard model. For different versions (supply voltages, secondary connections, unidirectional measurements, operating temperatures, etc.) please contact us.