DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4006B
 MSI

18-stage static shift register
Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4006B is an 18-stage shift register arranged as two 4-stage and two 5-stage shift registers with a common clock input ($\overline{\mathrm{CP}}$). The two 4-stage shift registers each have a data input $\left(\mathrm{D}_{\mathrm{A}}, \mathrm{D}_{\mathrm{B}}\right)$ and a data output $\left(\mathrm{O}_{3 \mathrm{~A}}, \mathrm{O}_{3 \mathrm{~B}}\right)$; the two

Fig. 1 Functional diagram.

FUNCTION TABLE

$\mathbf{D}_{\mathbf{n}}$	$\overline{\mathbf{C P}}$	$\mathbf{O}_{\mathbf{n}}{ }^{(5)}$
D_{1}	\square	D_{1}
X		no change

Notes

1. $\mathrm{X}=$ state is immaterial
2. $\int=$ positive-going transition
3. \downarrow = negative-going transition
4. $\mathrm{D}_{1}=$ either HIGH or LOW
5. The moment D_{1} appears at O depends on the register length.

5-stage shift registers each have a data input ($\mathrm{D}_{\mathrm{C}}, \mathrm{D}_{\mathrm{D}}$) and data outputs from the fourth and fifth stages $\left(\mathrm{O}_{3 \mathrm{C}}, \mathrm{O}_{4 \mathrm{C}}\right.$, $\mathrm{O}_{3 \mathrm{D}}, \mathrm{O}_{4 \mathrm{D}}$).

The registers can be operated in parallel or interconnected to form a single shift register of up to 18 bits. Data are shifted into the first register position of each register from the data inputs (D_{A} to D_{D}) and all the data in each register are shifted one position to the right on the HIGH to LOW transition of $\overline{\mathrm{CP}}$.

Fig. 2 Pinning diagram.

```
HEF4006BP(N): 14-lead DIL; plastic (SOT27-1)
HEF4006BD(F): 14-lead DIL; ceramic (cerdip) (SOT73)
HEF4006BT(D): 14-lead SO; plastic
(SOT108-1)
( ): Package Designator North America
```

PINNING

$\frac{D_{A} \text { to } D_{D}}{C P}$	data inputs clock input (HIGH to LOW; edge-triggered)
$O_{3 A}$ to $O_{3 D} ; O_{4 C} ; O_{4 D}$	data outputs

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

Fig. 3 Logic diagram.

18-stage static shift register

\qquad

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN	TYP	MAX		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\overline{\mathrm{CP}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$		$\begin{aligned} & 90 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} 180 \\ 80 \\ 60 \end{array}$	ns ns ns	$\begin{aligned} & 63 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$		$\begin{aligned} & 90 \\ & 40 \\ & 35 \end{aligned}$	$\begin{array}{r} \hline 180 \\ 85 \\ 70 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} & 63 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$		$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {th }}$ H		$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} \hline 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Minimum clock pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twCPH	$\begin{aligned} & 60 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 15 \end{aligned}$		ns ns ns	see also waveforms Fig. 4
Set-up time $\mathrm{D}_{\mathrm{n}} \rightarrow \overline{\mathrm{CP}}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {su }}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ 5 \\ 0 \end{array}$		ns ns ns	
Hold time $\mathrm{D}_{\mathrm{n}} \rightarrow \overline{\mathrm{CP}}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {hold }}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} \hline-5 \\ 0 \\ 0 \\ \hline \end{array}$		ns ns ns	
Maximum clock pulse frequency	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	$\begin{array}{r} 9 \\ 15 \\ 18 \end{array}$	$\begin{aligned} & 18 \\ & 30 \\ & 36 \end{aligned}$		MHz MHz MHz	

	$\mathbf{V}_{\mathbf{D D}}$	TYPICAL FORMULA FOR $\mathbf{P}(\mu \mathbf{W})$	
Dynamic power	5	$600 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$3200 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$11600 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
		$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)	
		$\sum\left(\mathrm{f}_{0} C_{\mathrm{L}}\right)=$ sum of outputs	
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

Fig. 4 Waveforms showing minimum clock pulse width, and set-up and hold-times for D_{n} to $\overline{C P}$. Set-up and hold times are shown as positive values but may be specified as negative values.

