INCREMENTAL ENCODER 8-BIT UP/DOWN COUNTER CMOS INTEGRATED CIRCUITS

DESCRIPTION

The μ PD4702 is 8 -bit up/down counters for an incremental encoder. Two-phase (A, B) incremental input signals are phase-differentiated, and on each signal edge, an up-count is executed if the A phase is leading, or a down-count if the B phase is leading. Eight-bit count data is output in real time. A carry output and borrow output are also provided for counter overflow and underflow.

The μ PD4704 is also available; use of these enables the count width to be extended.

FEATURES

- Incremental inputs (A, B)
- On-chip phase discrimination circuit (up-count mode when the phase order is $A \rightarrow B$, down-count mode when $B \rightarrow A$) 4-multiplication count method
- On-chip edge detection circuit
- 8-bit up/down counter latch output o Carry output, borrow output
- Count data output controllable (3-state output)
- CMOS, single +5 V power supply

ORDERING INFORMATION

Part Number	Package	
μ PD4702C	20-pin plastic DIP	$(300 \mathrm{mil})$
μ PD4702G	20-pin plastic SOP	$(300 \mathrm{mil})$

PIN CONFIGURATION (Top View)

PIN NAMES

A B	$\}$ 2-phase incremental signal inputs
Reset	: Counter reset input
STB	: Latch strobe signal input
OE	: Output control signal input
CD $_{0-7}$: Count data outputs
Carry	: Carry pulse output
Borrow $:$ Borrow pulse output	

BLOCK DIAGRAM

PIN FUNCTIONS

Pin Name	Input/Output	Function
A, B	Input (Schmitt)	Incremental signal A phase and B phase signal input pins (Schmitt input)
Doto 7	Output (3-state)	Count data output pins. Activated when OE is " L ", high impedance outputs when OE is " H ".
Carry	Output	8 -bit counter carry signal output pin (active-low)
Borrow	Output	8 -bit counter borrow signal output pin (active-low)
RESET	Input (Schmitt)	8 -bit counter reset signal output pin Counter is reset when this pin is " H ".
OE	Input	Count data output control signal input pin
STB	Input	Counter data output latch signal. Data is latched on the fall of STB, and is held while STB = "L".
Vdo		Power supply input pin
GND		Ground pin

1. DESCRIPTION OF OPERATIONS

(1) Count operation

The μ PD4702 incorporates a phase discrimination circuit, and counts by 4-multiplication of the A and B input 2phase pulses. Therefore, a count operation is performed by an A input edge and a B input edge.

Fig. 1 Count Operation Timing Chart

(2) Latch operation

An R-S flip-flop is inserted in the strobe input of the latch circuit as shown in Fig. 2, and when STB changes from " H " to " L " during a count operation, the internal latch signal STB remains at " H " until the end of the count operation. Therefore, the count value is latched correctly even if STB input is performed asynchronously from the A and B input (if STB changes from " H " to " L " within tsabstb (40 ns) after the A input or B input edge, the latch contents will be either the pre-count or post-count value). However, when a μ PD4704 is added, the correct value cannot be latched if all digits are latched simultaneously when a carry or borrow is generated (the high-order digit may be latched before carry/borrow transmission).

Fig. 2 STB Input Circuit

If tsabstb is 40 ns or longer, the post-count value is input to the latch.

(3) Carry \& borrow outputs

If the counter performs an up-count operation when the count value is 0FFH, an active-low pulse is output to the Carry output (the pulse width is 25 ns MIN. 120 ns MAX. irrespective of the A/B phase input cycle. Similarly, if the counter performs a down-count operation when the count value is 00 H , an active-low pulse is output to the Borrow output.

A Borrow pulse is also output if a down-count operation is performed while RESET is " H " (during a reset), and therefore, when a μ PD4704 is added, a reset must be executed at the same time.

2. OPERATING PRECAUTIONS

As the μ PD4702 incorporates an 8-bit counter, a large transient current flows in the case of a count value which changes all the bits (such as $00 н \leftrightarrow 0 \mathrm{FF}$ н or $7 \mathrm{FH} \leftrightarrow 080 \mathrm{H}$). This will cause misoperation unless the impedance of the power supply line is sufficiently low. It is therefore recommended that a decoupling capacitor (of around $0.1 \mu \mathrm{~F}$) be connected between VDD and Vss right next to the IC as shown in Fig. 3.

Fig. 3 Decoupling Capacitor

Also, if a pulse shorter than the phase difference time tsAB (70 ns) is input to the A / B phase inputs, this will result in a miscount. Therefore, if this kind of pulse is to be input because of encoder bounds, etc., a filter should be inserted in the $A \& B$ phase inputs.

Fig. 4 A \& B Phase Input Pulses

If a pulse such that $\mathrm{PW}<70 \mathrm{~ns}$ is input in the A or B phase, there is a danger of a miscount.

If PW is at 70 ns or more, the count value remains the same before and after pulse input. (UP count \rightarrow DOWN count or DOWN count \rightarrow UP count is implemented, and therefore the the result is no change in the count value.)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vss}=\mathbf{0} \mathrm{V}$)

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}, \mathrm{VDD}=\boldsymbol{+ 5} \mathrm{V} \pm \mathbf{1 0} \%$)

PARAMETER	SYMBOL	TEST CONDITIONS	RATING		UNIT
			MIN.	MAX.	
Input voltage high	VIL			0.8	V
Input voltage low	V_{H}	A, B, Reset	2.6		V
	VIH	Other than the above	2.2		V
Output voltage low	Vol	$\mathrm{loL}=12 \mathrm{~mA}$		0.45	V
Output voltage high	Vor	I он $=-4 \mathrm{~mA}$	VDD - 0.8		V
Static consumption current	IdD	$V_{I}=V_{\text {dD }}, V_{s s}$		50	$\mu \mathrm{A}$
Input current	11	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {ss }}$	-1.0	1.0	$\mu \mathrm{A}$
3-state output leak current	loff		-10	10	$\mu \mathrm{A}$
Dynamic consumption current	IDD dyn	$\mathrm{fin}=3.6 \mathrm{MHz}, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$		12	mA
Hysteresis voltage	V_{H}	A, B, Reset	0.2		V

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{DD}}=\boldsymbol{+ 5} \mathrm{V} \pm \mathbf{1 0} \%$)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN.	MAX	UNIT
A, B	Cycle	tcyab	$\mathrm{fin}_{\text {in }}=3.6 \mathrm{MHz}$	280		ns
	High-level width	tPWABH		140		ns
	Low-level width	tpWABL		140		ns
	Phase difference time	tsab		70		ns
	Setting time	tsrsab		0		ns
CDoto 7	Reset time	tDrsci			60	ns
	Output delay	tmabci			100	ns
	Output delay	tboecd			50	ns
	Output delay	tostbid			60	ns
	Float time	tfoecid			40	ns
Carry	Output delay	tdabcb			120	ns
Borrow	Output pulse width	tpwCB		25	120	ns
RESET	Reset pulse width	tPWRS		40		ns
STB	Setting time	tsabstb		40		ns

AC Timings

Fig. 1 Two-Phase Signal Input Timing

Fig. 2 Count Data Output Timing

Fig. 3 Carry/Borrow Signal Output Timing

Consumption Current Measurement Circuit

AC Test Input Waveform

$\mathrm{V}_{\mathbb{H}}=2.6 \mathrm{~V}$ (A, B, RESET inputs)
$\mathrm{V}_{\mathbb{H}}=2.2 \mathrm{~V}$ (inputs other than $\mathrm{A}, \mathrm{B}, \mathrm{RESET}$)
$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
Timing measurement is performed at 1.5 V .

Sample Application Circuits

16-bit counter

The application circuits and their parameters are for references only and are not intended for use in actual design-in's.

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.
Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

TYPES OF SURFACE MOUNT DEVICE

For more details, refer to our document "Semiconductor Device Mounting Technology Manual" (IEI-1207).
μ PD4702G

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$ or below, Reflow time: 30 seconds or below (210 ${ }^{\circ} \mathrm{C}$ or higher), Number of reflow process: 2, Exposure limit*: None	IR35-00-2
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ or below, Reflow time: 40 seconds or below $\left(200^{\circ} \mathrm{C}\right.$ or higher), Number of reflow process: 2, Exposure limit*: None	VP15-00-2
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below, Number of flow process: 1, Exposure limit*: None	WS60-00-1
Partial heating method	Terminal temperature: 300 ${ }^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below, Exposure limit*: None	

* Exposure limit before soldering after dry-pack package is opened.

Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at 65% or less.

Note Do not apply more than a single process at once, except for "Partial heating method".

TYPES OF THROUGH HOLE MOUNT DEVICE

μ PD4702C

Soldering process	Soldering conditions	Symbol
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below	

REFERENCE

	Dcodument name
NEC semiconductor device reliability/quality control system	Document No.
Quality grade on NEC semiconductor devices	IEI-1212
Semiconductor device mounting technology manual	IEI-1209
Semiconductor device package manual	IEI-1207
Guide to quality assurance for semiconductor devices	IEI-1213
Semiconductor selection guide	MEI-1202

20PIN PLASTIC DIP (300 mil)

NOTES

1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	25.40 MAX.	1.000 MAX.
B	1.27 MAX.	0.050 MAX.
C	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ± 0.10	$0.020{ }_{-0.004}^{+0.004}$
F	1.1 MIN.	0.043 MIN .
G	3.5 ± 0.3	0.138 ± 0.012
H	0.51 MIN .	0.020 MIN .
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	7.62 (T.P.)	0.300 (T.P.)
L	6.4	0.252
M	$0.25{ }_{-0.10}^{+0.05}$	$0.010{ }_{-0.004}^{+0.004}$
N	0.25	0.01
P	0.9 MIN .	0.035 MIN .
R	0~15 ${ }^{\circ}$	0~15 ${ }^{\circ}$
P20C-100-300A,C-1		

20 PIN PLASTIC SOP (300 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.
detail of lead end

ITEM	MILLIMETERS	INCHES
A	13.00 MAX.	0.512 MAX.
B	0.78 MAX.	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	$0.40{ }_{-0.05}^{+0.10}$	$0.016_{-0.004}^{+0.004}$
E	0.1 ± 0.1	0.004 ± 0.004
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
H	7.7 ± 0.3	0.303 ± 0.012
I	5.6	0.220
J	1.1	0.043
K	$0.20{ }_{-0.05}^{+0.10}$	$0.008_{-0.002}^{+0.004}$
L	0.6 ± 0.2	$0.024{ }_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3{ }^{\circ}+3^{\circ}{ }^{\circ}$	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$

[MEMO]
[MEMO]
[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

