Features

- This Circuit is Processed in Accordance to MIL-STD883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Block Oriented 24-Bit Sequencer
- Configurable as Two Independent 12-Bit Sequencers
- 24×24 Crosspoint Switch
- Programmable Delay on 12 Outputs 9-
- Multi-Chip Synchronization Signals
- Standard $\mu \mathbf{P}$ Interface
- 100pF Drive on Outputs
- DC to 40MHz Clock Rate

Applications

- 1-D, 2-D Filtering
- Pan/Zoom Addressing
- FFT Processing
- Matrix Math Operations

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
HSP45240GM-25/883	-55 to 125	68 Ld PGA	
HSP45240GM-33/883	-55 to 125	68 Ld PGA	
HSP45240GM-40/883	-55 to 125	68 Ld PGA	

Description

The Intersil HSP45240/883 is a high speed Address Sequencer which provides specialized addressing for functions like FFTs, 1-D and 2-D filtering, matrix operations, and image manipulation. The sequencer supports block oriented addressing of large data sets up to 24 bits at clock speeds up to 40 MHz .

Specialized addressing requirements are met by using the onboard 24×24 crosspoint switch. This feature allows the mapping of the 24 address bits at the output of the address generator to the 24 address outputs of the chip. As a result, bit reverse addressing, such as that used in FFTs, is made possible.
A single chip solution to read/write addressing is also made possible by configuring the HSP45240 as two 12-bit sequencers. To compensate for system pipeline delay, a programmable delay is provided on 12 of the address outputs.
The HSP45240 is manufactured using an advanced CMOS process, and is a low power fully static design. The configuration of the device is controlled through a standard microprocessor interface and all inputs/outputs, with the exception of clock, are TTL compatible.

Block Diagram

Absolute Maximum Ratings	
Supply Voltage	+8.0V
Input, Output Voltage Applied.	GND -0.5V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
ESD Classification	Class 1
Operating Conditions	
Temperature Range	. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Voltage Range	+4.5 V to +5.5V

Absolute Maximum Ratings

GND -0.5 V to V CC
ESD Classification . Class 1

Operating Conditions

Voltage Range +4.5 V to +5.5 V

Thermal Information

Die Characteristics

Gate Count

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

TABLE 1. DC ELECTRICAL SPECIFICATIONS
Device Guaranteed and 100\% Tested

PARAMETER	SYMBOL	TEST CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE (${ }^{\circ} \mathrm{C}$)	LIMITS		UNITS
					MIN	MAX	
Logical One Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	2.2	-	V
Logical Zero Input Voltage	V_{IL}	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	0.8	V
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}(\text { Note 2) } \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	2.6	-	V
Output LOW Voltage	V_{OL}	$\begin{aligned} & \hline \mathrm{OL}=+2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 2) \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-10	+10	$\mu \mathrm{A}$
Output Leakage Current	Io	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-10	+10	$\mu \mathrm{A}$
Clock Input High	$\mathrm{V}_{\text {IHC }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	3.0	-	V
Clock Input Low	$\mathrm{V}_{\text {ILC }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	0.8	V
Standby Power Supply Current	${ }^{\text {I }} \mathrm{CCSB}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \text { Outputs Open } \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	${ }^{\text {I CCOP }}$	$\begin{aligned} & \mathrm{f}=33 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text { (Note 3) } \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	99	mA
Functional Test	FT	(Note 4)	7, 8	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	-	

NOTES:
2. Interchanging of force and sense conditions is permitted.
3. Operating Supply Current is proportional to frequency, typical rating is $3 \mathrm{~mA} / \mathrm{MHz}$.
4. Tested as follows: $\mathrm{t}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IH}}=2.6, \mathrm{~V}_{\mathrm{IL}}=0.4, \mathrm{~V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHC}}=3.4 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{ILC}}=0.4 \mathrm{~V}$.

TABLE 2. AC ELECTRICAL SPECIFICATIONS
Device Guaranteed and 100% Tested

PARAMETER	SYMBOL	GROUP A SUBGROUP	TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$	-25 (25MHz)		-33 (33MHz)		-40 (40MHz)		UNITS
				MIN	MAX	MIN	MAX	MIN	MAX	
Clock Period	t_{CP}	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	39	-	30	-	25	-	ns
Clock Pulse Width High	${ }_{\text {t }}^{\text {CH }}$	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	15	-	12	-	10	-	ns
Clock Pulse Width Low	${ }^{\text {t CL }}$	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	15	-	12	-	10	-	ns
Setup Time D0-6 to WR High	${ }_{\text {t }}$ S	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	17	-	16	-	14	-	ns
Hold Time D0-6 from $\overline{W R}$ Low	${ }_{\text {t }}$ H	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	0	-	0	-	0	-	ns
Setup Time A, $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Low	${ }^{\text {t }}$ S	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	5	-	5	-	5	-	ns
Hold Time A, $\overline{C S}$ from $\overline{\mathrm{WR}}$ High	${ }^{\text {t }}$ H	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	0	-	0	-	0	-	ns
Pulse Width for WR Low	twRL	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	18	-	14	-	12	-	ns
Pulse Width for WR High	twRH	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	18	-	14	-	12	-	ns
$\overline{\text { WR Cycle Time }}$	twp	9,10,11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	39	-	30	-	25	-	ns
Set-up Time STARTIN, DLYBLK, to Clock High	$\mathrm{t}_{\text {IS }}$	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	15	-	12	-	10	-	ns
Hold Time STARTIN, DLYBLK, to Clock High	t_{H}	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	0	-	0	-	0	-	ns
Clock to Output Prop. Delay on OUTO-23	tpDO	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	18	-	16	-	14	ns
Clock to Prop. Delay, on STARTOUT, BLKDONE, DONE, ADVAL, and BUSY	tpDS	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	18	-	16	-	14	ns
Output Enable Time (Note 6)	t_{EN}	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	22	-	20	-	15	ns
$\overline{\text { RST Low Time }}$	${ }_{\text {tRST }}$	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	2 Clock Cycles						ns

NOTES:
5. AC Testing: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and 5.5 V , inputs are driven at 3.0 V for Logic " 1 " and 0.0 V for a Logic " 0 ". Input and output timing measurements are made at 1.5 V for both a logic " 1 " and " 0 ". CLK is driven at 4.0 V and 0 V and measured at 2.0 V .
6. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage with loading as specified by test load circuit and $C_{L}=40 \mathrm{pF}$.

TABLE 3. ELECTRICAL PERFORMANCE SPECIFICATIONS

PARAMETERS	SYMBOL	TEST CONDITIONS	NOTES	TEMPERATURE	$\begin{gathered} \hline-25 \\ (25 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} \hline-33 \\ (33 \mathrm{MHz}) \end{gathered}$		-40 (40MHz)		UNITS
					MIN	MAX	MIN	MAX	MIN	MAX	
Input Capacitance	C_{IN}	$\mathrm{V}_{\mathrm{CC}}=$ Open, $f=1 \mathrm{MHz}$, All measurements are referenced to device GND.	7	$\mathrm{T}_{\mathrm{A}}=25$	-	10	-	10	-	10	pF
Output Capacitance	COUT	$\mathrm{V}_{\mathrm{CC}}=$ Open, $f=1 \mathrm{MHz}$, All measurements are referenced to device GND.	7	$\mathrm{T}_{\mathrm{A}}=25$	-	10	-	10	-	10	pF
Output Disable	toez		7, 8	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	22	-	20	-	15	ns

TABLE 3. ELECTRICAL PERFORMANCE SPECIFICATIONS (Continued)

PARAMETERS	SYMBOL	TEST CONDITIONS	NOTES	TEMPERATURE	$\begin{gathered} -25 \\ (25 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} -33 \\ (33 \mathrm{MHz}) \end{gathered}$		-40 (40MHz)		UNITS
					MIN	MAX	MIN	MAX	MIN	MAX	
Output Rise Time	tor		7, 8	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	5	-	5	-	3	ns
Output Fall Time	tof		7, 8	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	5	-	5	-	3	ns

NOTES:
7. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.
8. Loading is as specified in the test load circuit with $C_{L}=40 \mathrm{pF}$.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 \mathrm{~A}, 8 \mathrm{~B}, 10,11$
Group A	-	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C and D	Samples/5005	$1,7,9$

Burn-In Circuit

$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURNIN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURNIN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURNIN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURNIN SIGNAL
A2	GND	GND	B9	OUT14	$\mathrm{V}_{\mathrm{CC}} / 2$	F11	OUT8	$\mathrm{V}_{\mathrm{CC}} / 2$	K6	BUSYB	$\mathrm{V}_{\mathrm{CC}} / 2$
A3	OUT23	$\mathrm{V}_{\mathrm{CC}} / 2$	C1	D2	F10	G1	CSB	F5	K7	DONEB	$\mathrm{V}_{\mathrm{CC}} / 2$
A4	V_{CC}	V_{CC}	C2	D1	F9	G2	A0	F6	K8	OUT0	$\mathrm{V}_{\mathrm{CC}} / 2$
A5	OUT20	$\mathrm{V}_{\mathrm{CC}} / 2$	C10	GND	GND	G10	OUT6	$\mathrm{V}_{\mathrm{CC}} / 2$	K9	V_{CC}	V_{CC}
A6	OUT19	$\mathrm{V}_{\mathrm{CC}} / 2$	C11	OUT12	$\mathrm{V}_{\mathrm{CC}} / 2$	G11	OUT7	$\mathrm{V}_{\mathrm{CC}} / 2$	K11	OUT3	$\mathrm{V}_{\mathrm{CC}} / 2$
A7	V_{CC}	V_{CC}	D1	D4	F12	H1	CLK	F0	L2	OEHB	F13
A8	OUT16	$\mathrm{V}_{\mathrm{CC}} / 2$	D2	D3	F11	H2	GND	GND	L3	DLYBLK	F11
A9	OUT15	$\mathrm{V}_{\mathrm{CC}} / 2$	D10	OUT10	$\mathrm{V}_{\mathrm{CC}} / 2$	H10	OUTS	$\mathrm{V}_{\mathrm{CC}} / 2$	L4	STARTOUTB	$\mathrm{V}_{\mathrm{CC}} / 2$
A10	OUT13	$\mathrm{V}_{\mathrm{CC}} / 2$	D11	OUT11	$\mathrm{V}_{\mathrm{CC}} / 2$	H11	V_{CC}	V_{CC}	LS	V_{CC}	V_{CC}
B1	D0	F8	E1	D6	F7	J1	RSTB	F14	L6	BLOCKDONEB	$\mathrm{V}_{\mathrm{CC}} / 2$
B3	OUT22	$\mathrm{V}_{\mathrm{CC}} / 2$	E2	D5	F13	J2	V_{CC}	V_{CC}	L7	GND	GND
B4	OUT21	$\mathrm{V}_{\mathrm{CC}} / 2$	E10	OUT9	$\mathrm{V}_{\mathrm{CC}} / 2$	J10	GND	GND	L8	OUT1	$\mathrm{V}_{\mathrm{CC}} / 2$
B5	GND	GND	E11	V_{CC}	V_{CC}	J1 1	OUT4	$\mathrm{V}_{\mathrm{CC}} / 2$	L9	OUT2	$\mathrm{V}_{\mathrm{CC}} / 2$
B6	OUT18	$\mathrm{V}_{\mathrm{CC}} / 2$	F1	WRB	F4	K3	OELB	F12			
B7	OUT17	$\mathrm{V}_{\mathrm{CC}} / 2$	F2	GND	GND	K4	START1NB	F6			
B8	GND	GND	F10	GND	GND	K5	ADVALB	$\mathrm{V}_{\mathrm{CC}} / 2$			

NOTES:
9. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
10. $47 \Omega(\pm 20 \%)$ resistor connected to all pins except V_{CC} and GND.
11. $\mathrm{V}_{\mathrm{CC}}=5.5 \pm 0.5 \mathrm{~V}$.
12. $0.1 \mu \mathrm{~F}(\mathrm{~min})$ capacitor between V_{CC} and GND per position.
13. $F 0=100 \mathrm{kHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots . . . F 11=F 10 / 2,40 \%-60 \%$ Duty Cycle.
14. Input voltage limits: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ max., $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$.

Die Characteristics

DIE DIMENSIONS:
186 mils x 222 mils x 19 ± 1 mils

METALLIZATION:

Type: Si - Al or $\mathrm{Si}-\mathrm{Al}-\mathrm{Cu}$
Thickness: 8k \AA

GLASSIVATION:

Type: Nitrox
Thickness: 10k \AA

WORST CASE CURRENT DENSITY:

$1.8 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

Metallization Mask Layout

HSP45240/883

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

