SANHW	LC7940YD,7941YD

Overview

The LC7940YD and LC7941YD are segment driver ICs for driving large, dot-matrix LCD displays. They read 4bit parallel or serial input, display data from a controller into an 80-bit latch, and then generate LCD drive signals corresponding to that data.

The LC7940YD and LC7941YD feature mirror-image pin assignments, allowing them to be used together to increase component density. They are designed to be used with the LC7942YD common driver to drive large LCD panels.

Features

- 80 built-in LCD display drive circuits
- $1 / 8$ to $1 / 128$ display duty cycle
- Serial or 4-bit parallel data input
- Chip disable for low power dissipation for large-sized panels
- Bias supply voltags can be supplied externally
- Operating supply voltage and ambient temperature
- 2.7 to 5.5 V logic supply $\left(\mathrm{V}_{\mathrm{DD}}\right)$ at $\mathrm{Ta}=-20$ to $+85^{\circ} \mathrm{C}$
- 8 to 20 V LCD supply $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right)$ at $\mathrm{Ta}=-20$ to $+85{ }^{\circ} \mathrm{C}$
- CMOS process
- 100-pin flat plastic package

Package Dimensions

unit: mm
3180-QIP100D

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Ratings	Unit
Logic supply voltge	$V_{D D} \max$	-0.3 to +7.0	V
LCD supply voltage, See Note below.	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}} \max$	to 22	V
Input voltage	$\mathrm{V}_{1} \max$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+03$	V

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Parameter	Symbol	Ratings	Unit
Operating temperature range	$\mathrm{T}_{\text {opr }}$	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

Note

$V_{D D} \geq V_{1}>V_{3}>V_{4}>V_{E E}$
Recommended Operating Condltions at $\mathrm{Ta}=-20$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Logic supply voltage	$V_{D D}$		2.7	-	5.5	V
LCD supply voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$	See Notes 1 and 2.	8	-	20	V
HIGH-level input voltage	V_{IH}	CP, CDI, DI1 to DI3, M, SDI, P/S, DISPOFF and LOAD	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
LOW-level inpvt voltage	$\mathrm{V}_{\text {IL }}$	CP, CDI, DI1 to DI3, M, SDI, P/S,DISPOFF and LOAD	-	-	$0.2 \mathrm{~V}_{\text {DD }}$	V
CP shift clock frequency	f_{CP}			-	3.3	MHz
CP pulsewidth	${ }^{\text {tw }}$		100	-	-	ns
LOAD pulsewidth	twL		100	-	-	ns
DIn and SDI to CP setup time	$\mathrm{t}_{\text {SETUP }}$		80	-	-	ns
DIn and SDI to CP hold time	thold		80	-	-	ns
CP to LOAD time	$\mathrm{t}_{\text {CL1 }}$		0	-	-	ns
	$\mathrm{t}_{\mathrm{CL} 2}$		100	-	-	ns
LOAD to CP time	tLC		100	-	-	ns
CP rise time	t_{R}		-	-	50	ns
CP fall time	$t_{\text {F }}$		-	-	50	ns
LOAD rise time	t_{RL}		-	-	50	ns
LOAD fall time	t_{FL}		-	-	50	ns

Notes

1. $\mathrm{V}_{\mathrm{DD}} \geq \mathrm{V}_{1}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{\mathrm{EE}}$
2. At turn ON, the LCD supply should be energized after or simultaneously with the logic supply. At turn OFF, the logic supply should be cut after or simultaneously with the LCD supply.

Electrlcai Characterfstlcs at $\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.7$ to 5.5 V

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
HIGH-level input current	I_{H}	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{DD}} ;$ LOAD, CP, CDI, P/S, DI1 to DI3, SDI, M, and DISPOFF	-	-	1	$\mu \mathrm{A}$
LOW-level input current	ILL	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{S S} ;$ LOAD, CP, CDI, P/S, DI1 to DI3, SDI, M, and DISPOFF	-	-	-1	$\mu \mathrm{A}$
CDO HIGH-level output voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V
CDO LOW-levef output voltage	V_{OL}	$\mathrm{I}_{0 \mathrm{~L}}=400 \mu \mathrm{~A}$	-	-	0.4	V
01 to O80 driver ON resistance	$\mathrm{R}_{\text {ON }}$	$\begin{aligned} & V_{D D}-V_{E E}=18 \mathrm{~V}, \\ & \left\|V_{D E}-V_{D}\right\|=0.25 \mathrm{~V} \text {. } \\ & \text { See note } \end{aligned}$	-	2	4	$\mathrm{k} \Omega$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
V_{DD} to $\mathrm{V}_{S S}$ standby supply current	$I_{\text {ST }}$	$\begin{array}{\|l\|} \hline C D I=V_{D D}, \\ V_{D D}-V_{E E}=18 \mathrm{~V}, \\ \mathrm{f}_{\mathrm{CP}}=3.3 \mathrm{MHz}, \\ \text { no output load } ; \mathrm{V}_{S S} \end{array}$	-	-	200	$\mu \mathrm{A}$
V_{D} to $\mathrm{V}_{\text {SS }}$ operating supply current	Iss	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=18 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{CP}}=3.3 \mathrm{MHz}, \\ & \mathrm{I}_{\mathrm{LOAD}}=5.156 \mathrm{kHz}, \\ & \mathrm{f}_{\mathrm{M}}=52 \mathrm{~Hz} ; \mathrm{VSS} \end{aligned}$	-	-	1.0	mA
V_{DD} to V_{EE} operating supply current	$\mathrm{I}_{\text {EE }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=18 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{CP}}=3.3 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{LOAD}}=5,156 \mathrm{kHz}, \\ & \mathrm{f}_{\mathrm{M}}=52 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{EE}} \end{aligned}$	-	-	0.1	mA
CP input capacitance	C_{1}	$\mathrm{f}_{\mathrm{CP}}=3.3 \mathrm{MHz} ; \mathrm{CP}$	-	5	-	pF

Note
$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{1}$ or V_{3}, or V_{4} or $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{3}=9 / 11 \times\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right), \mathrm{V}_{4}=2 / 11 \times\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right)$
Switching Characteristics at $\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.7$ to 5.5 V

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
CDO output delay time	t_{D}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	-	-	200	ns

Switching Characteristics Waveform

Pad Layout (Top view)

Block Diagram

Pin Functions

Pin No.		Synbol	1/0	Functions
LC7940YD	LC7941YD			
91	90	$V_{D D}$	Supply	$V_{D D}-V_{S S}$ is the logic supply. $V_{D D}-V_{E E}$ is the LCD supply.
86	95	$\mathrm{V}_{\text {SS }}$		
87	94	V_{EE}		
92	89	V_{1}	Supply	LCD panel drive voltage supplies V_{1} and $V_{E E}$ are selected levels. V_{3} and V_{4} are not-selected levels.
89	92	V_{3}		
88	93	V_{4}		
100	81	CP	1	Display data Input clock (falling-edge trigger).
99	82	CDI	I	Chip disable. Data is read in when LOW, and not road in when HIGH.
98	83	LOAD	I	Display data latch clock (falling-edge trigger). On the falling edge, the LCD drive signals set by the display data are output.
97	84	SDI	I	Serial data input.

Application Notes

LCD Panel 1

LCD Panel 2

100×240-pixel LCD Panel Application

A 100×240-pixel LCD panel requires the following drivers.

- $3 \times$ LC7940YD (or LC7941YD) drivers
- $2 \times$ LC7942YD drivers

An example using $1 / 100$ duty cycle is shown below.

1. The LC7942YD chips are cascaded by connecting DIO64 on chip I to DIO1 on chip 2. For a 100-bit shift register, 037 to 064 on chip 2 are left open.
2. The LC7940YD (or LC7941YD) chips are cascaded by connecting CDO on chip I to CDI on chip 2, and CDO on chip 2 to CDI on chip 3. CDI on chip I is tied to GND, and CDO on chip 3 is not used. This configuration allows the input of 240-bit serial data.

100×240-pixel LCD Panel Timing Diagram

LCD drive output data

Segment Data Not Multiples of 4

Example.

If this timing data is sent, data elements (m, 229), (m, 230), $(\mathrm{m}+1,229),(\mathrm{m}+1.230) \ldots$ will not appear in the output (O69 and O70 on chip 3). This is because the LC7940YD (or LC7941YD) converts serial/parallel data
in 4-bit units, which also decreases power dissipation. For data that is not a multiple of 4 , like 230, the following scheme is used.

Multiple of 4
In this case, $(\mathrm{m}, 231)$ is output on O 71 on chip 3, and (m , connected to the panel and are, therefore, invalid. 232) on O72 on chip 3. However, these outputs are not

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co. , Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1999. Specifications and information herein are subject to change without notice.

