DESCRIPTION

The M64892 is a semiconductor integrated circuit consisting of PLL frequency synthesizer for TV/VCR using Bip process. It contains the prescaler with operating up to $1.0 \mathrm{GHz}, 4$ band drivers and Op. Amp for direct tuning.

FEATURES

- 4 integrated PNP band drivers (lo=40mA,Vsat=0.2V typ@Vcc1 to 13.2 V)
- Built-in Op. Amp for direct tuning voltage output (33V)
- Low power dissipation (Icc=20mA, Vcc1=5V)
- Built-in prescaler with input amplifier (Fmax $=1.0 \mathrm{GHz}$)
- PLL lock/unlock status display out put (Built-in pull up resistor)
- X'tal 4 MHz is used to realize 3 type of tuning steps (Division ratio $1 / 512,1 / 640,1 / 1024$)
- Serial data input. (3 wire bus)
- Software and pin compatible with M64092/M64892
- Automatic switching of tuning step according to the number of data bits (62.5 kHz at $18 \mathrm{bits}, 31.25 \mathrm{kHz}$ at 19bits)
- Built-in Power on reset system
- 16-pin small SOP/SSOP package

APPLICATION

TV, VCR tuners
RECOMMENDED OPERATING CONDITION
$\left.\begin{array}{r}\text { Supply voltage range... } \mathrm{Vcc1}=4.5 \text { to } 5.5 \mathrm{~V} \\ \mathrm{Vcc} 2=\mathrm{Vcc1} \text { to } 13.2 \mathrm{~V} \\ \mathrm{Vcc3}=28 \text { to } 35 \mathrm{~V}\end{array}\right)$

PIN CONFIGURATION (TOP VIEW)

FUNCTION

- 2-modulus prescaler (1/32 and $1 / 33$)
- Built-in 4 MHz crystal oscillator and reference divider
- Programmable divider (10-bit M counter, 5-bit S counter)
- Tri-state phase comparator
- Lock detector
- Band switch driver
- Op. Amp for direct tuning

DESCRIPTION OF PIN

Pin No.	Symbol	Pin name	Function
1	fin	Prescaler input	Input for the VCO frequency.
2	GND	GND	Ground to OV.
3	Vcc1	Power supply voltage 1	Power supply voltage terminal. $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
4	Vcc2	Power supply voltage 2	Power supply for band switching, Vcc1 to 13.2V
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	BS4 BS3 BS2 BS1	Band switching outputs	PNP open collector method is used. When the band switching data is " H ", the output is ON . When it is "L", the output is OFF.
9	Vin	Filter input (Charge pump output)	This is the output terminal for the LPF input and charge pump output. When the phase of the programmable divider output ($\mathrm{f} 1 / \mathrm{N}$) is ahead compared to the reference frequency (fref), the "source" current state becomes active. If it is behind, the "sink" current becomes active. If the phases are the same, the high impedance state becomes active.
10	Vtu	Tuning output	This supplies the tuning voltage.
11	Vcc3	Power supply voltage 3	Power supply voltage for tuning voltage 28 to 35V
12	LD/ftest	Lock detect/Test port	When $18 / 19$ bit data is input, lock detector is output. When 27 bit data is input, lock detector is output, the programmable freq. Divider output and reference freq. Output is selected by the test mode.
13	CLK	Clock input	Data is read into the shift register when the clock signal falls.
14	DATA	Data input	Input for band SW and programmable freq. divider set up.
15	ENA	Enable input	This is normally at a "L". When this is at "H", data and clock signals are received. Data is read into the latch when the enable signal after the 18th signal of the clock signal falls or when the 19th pulse of the clock signal falls.
16	Xin	This is connected to the crystal oscillator	4.0 MHz crystal oscillator is connected.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc1	Supply voltage 1	Pin3	6.0	V
Vcc2	Supply voltage 2	Pin4	14.4	V
Vcc3	Supply voltage 3	Pin11	36.0	V
VI	Input voltage	Not to exceed Vcc1	6.0	V
Vo	Output voltage	LD output	6.0	V
Vbsoff	Voltage applied when the band output is OFF		14.4	V
IBSON	Band output current	Per 1 band output circuit	50.0	mA
tBSON	ON the time when the band output is ON	50 mA per 1 band output circuit 3circuits are pn at same time	10	sec
Pd	Power dissipation	Ta $=+75^{\circ} \mathrm{C}$ (SOP/SSOP)	FP: 450 (GP: 470)	mW
Topr	Operating temperature		-20 to +75	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS ($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc1	Supply voltage 1		4.5 to 5.5	V
Vcc2	Supply voltage 2		Vcc1 to 13.2	V
Vcc3	Supply voltage 3	Crystal oscillation circuit	28 to 35	
fopr1	Operating frequency (1)		4.0	V
fopr2	Operating frequency (2)	Normally 1 circuit is ON. 2 circuits on at the same time is max. It is prohibited to have 3 or more circuits turned on at the same time.	80 to 1,000	MHz
IBDL	Band output current 5 to 8	0 to 40	mA	

ELECTRICAL CHARACTERISTICS $\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{Vcc} 1=5.0 \mathrm{~V}, \mathrm{Vcc} 2=12 \mathrm{~V}, \mathrm{Vcc} 3=33 \mathrm{~V}$, unless otherwise noted)

Symbol	Parameter		Test pin	Test conditions	Limits			Unit	
			Min.		Typ.	Max.			
VIH	Input pin	"H" input voltage		13 to 15		3.0	-	Vcc1+0.3	V
VIL		"L" input voltage	13 to 15		-	-	1.5	V	
IIH		"H" input current	13 to 15	Vcc1=5.5V, Vi=4.0V	-	-	10	$\mu \mathrm{A}$	
IIL		"L" input current	13, 15	$\mathrm{Vcc} 1=5.5 \mathrm{~V}, \mathrm{Vi}=0.4 \mathrm{~V}$	-	-6	-20	$\mu \mathrm{A}$	
		"L" input current	14	Vcc1 $=5.5 \mathrm{~V}, \mathrm{Vi}=0.4 \mathrm{~V}$	-	-18	-30	$\mu \mathrm{A}$	
Voh	Lock output	"H" output voltage	12	Vcc1 $=5.5 \mathrm{~V}$	5.0	-	-	V	
VoL		"L" output voltage	12	Vcc1=5.5V	-	0.3	0.5	V	
VBS	Band SW	Output voltage	5 to 8	$\mathrm{Vcc} 2=12 \mathrm{~V}, \mathrm{lo}=-40 \mathrm{~mA}$	11.6	11.8	-	V	
IoLK1		Leak current	5 to 8	$\mathrm{VCC2}=12 \mathrm{~V}$ band SW is OFF	-	-	-10	$\mu \mathrm{A}$	
VTOH	Tuning output	Output voltage "H"	10	Vcc3=33V	32.5	-	-	V	
VTOL		Output voltage "L"	10	Vcc3=33V	-	0.2	0.4	V	
IOH	Charge pump	"H" output current	9	Vcc1 $=5.0 \mathrm{~V}, \mathrm{Vo}=2.5 \mathrm{~V}$	-	± 270	± 370	$\mu \mathrm{A}$	
IOL		"L" output current	9	Vcc1 $=5.0 \mathrm{~V}, \mathrm{Vo}=2.5 \mathrm{~V}$	-	± 70	± 110	$\mu \mathrm{A}$	
ICPLK		Leak current	9	$\mathrm{Vcc} 1=5.0 \mathrm{~V}, \mathrm{Vo}=2.5 \mathrm{~V}$	-	-	± 50	nA	
ICC1	Supply current 1		3	Vcc1=5.5V	-	20	30	mA	
ICC2A	Supply current 2	4 circuits: OFF	4	Vcc2=12V	-	-	0.3	mA	
ICC2B		1 circuits: ON, Output: OPEN	4	$\mathrm{Vcc} 2=12 \mathrm{~V}$	-	6.0	8.0	mA	
Icc2C		1 circuits: ON, Output current 40mA	4	$\mathrm{Vcc} 2=12 \mathrm{~V}$ Io $=-40 \mathrm{~mA}$	-	46.0	48.0	mA	
Icc3	Supply current 3		11	Vcc3=33V Output ON	-	3.0	4.0	mA	

Note. Typical values are measured at $\mathrm{VCC} 1=5.0 \mathrm{~V}, \mathrm{VCC2}=12 \mathrm{~V}, \mathrm{VCC} 3=33 \mathrm{~V}$ and $\mathrm{Ta}=+25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS $\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{Vcc1}=5.0 \mathrm{~V}, \mathrm{Vcc} 2=12 \mathrm{~V}, \mathrm{Vcc} 3=33 \mathrm{~V}$, unless otherwise noted)

Symbol	Parameter	Test pin	Test conditions		Limits			Unit
					Min.	Typ.	Max.	
fopr	Prescaler operating frequency	1	$\begin{aligned} & \text { Vcc1=4.5 to } 5 . t \\ & \text { Vin }=\text { Vinmin to } \end{aligned}$	nmax	80	-	1000	MHz
Vin	Operating input voltage	1	$\begin{aligned} \mathrm{VCC}= & =4.5 \\ & \text { to } 5.5 \mathrm{~V} \end{aligned}$	80 to 100 MHz	-24	-	4	dBm
				100 to 200 MHz	-27	-	4	
				200 to 800 MHz	-30	-	4	
				800 to 1000 MHz	-27	-	4	
tPWC	Clock pulse width	13	$\mathrm{Vcc} 1=4.5$ to 5.5 V		1	-	-	$\mu \mathrm{s}$
tsu (D)	Data setup time	14	$\mathrm{VcC} 1=4.5$ to 5.5 V		2	-	-	$\mu \mathrm{s}$
th (D)	Data hold time	14	$\mathrm{VcC1}=4.5$ to 5.5 V		1	-	-	$\mu \mathrm{s}$
tSU (E)	Enable setup time	15	$\mathrm{Vcc} 1=4.5$ to 5.5 V		3	-	-	$\mu \mathrm{s}$
th (E)	Enable hold time	15	$\mathrm{VCC1}=4.5$ to 5.5 V		3	-	-	$\mu \mathrm{s}$
tINT	Enable data interval time	15, 14	$\mathrm{Vcc1}=4.5$ to 5.5 V		1	-	-	$\mu \mathrm{s}$
tr	Rise time	13, 14, 15	$\mathrm{Vcc1}=4.5$ to 5.5 V		-	-	1	$\mu \mathrm{s}$
tf	Fall time	13, 14, 15	Vcc1 $=4.5$ to 5.5 V		-	-	1	$\mu \mathrm{s}$
tbt	Next enable prohibit time	15	$\mathrm{Vcc} 1=4.5$ to 5.5 V		5	-	-	$\mu \mathrm{s}$
tbcl	Next clock prohibit time	13, 15	$\mathrm{VCC1}=4.5$ to 5.5 V		5	-	-	$\mu \mathrm{s}$

METHOD OF SETTING DATA

The frequency demultiplying ratio uses 15 bits. Setting up the band switching output uses 4bits.
The test mode data uses 8 bits. The total bits used is 27bits. Data is read in when the enable signal is " H " and the clock signal falls.
The band switching data is read in at the 4th pulse of the clock signal. The program counter data is read into the latch by the fall of the enable signal after the 18 th pulse of the clock signal or the fall of

(1) Transfer of the 18th bit data

Data is latched by the fall of the enable signal after the 18th clock signal. At this time, the division of the $1 / 512$ of the reference frequency is used.
the 19th pulse of the clock signal. When the enable signal goes to "L" before the 18th pulse of the enable signal, only the band SW data is updated and other data is ignored.
The shift register is equipped with the 18/19 bit automatic decision function. When the 18th bit data is used, the M9 bit of the program counter is reset and the $1 / 512$ division of the reference frequency is set. In case of the 19th bit, 1/1024 division of the reference frequency is set. reque is set.

(2) Transfer of the 19th bit data

The data is latched at the 19th pulse of the clock signal. At this time, $1 / 1024$ frequency division ratio is used. Clock signals after the above are invalid.

Notice) To change reference frequency, set up as ENA in "L" after 19th pulse of clock signal by all means

METHOD OF SET THE DIVIDING RATIO OF THE PROGRAMMABLE DIVIDER

(1) Transfer of the 18th bit data

Total division N is given by the following formulas in addition to the prescaler used in the previous stage.
$\mathrm{N}=8(32 \mathrm{M}+\mathrm{S}) \mathrm{M}: 9$ bit main counter division
$\mathrm{S}: 5$ bit swallow counter division
The M and S counters are binary the possible ranges of division are as follows.
$32 \leq M \leq 511$
$0 \leq S \leq 31$
Therefore, the range of division N is 8,192 to 131,064 .
The tuning frequency fvco is given in the following equations.
fvco $=$ fref $\times N$
$=7.8125 \times 8 \times(32 \mathrm{M}+\mathrm{S})$
$=62.5 \times(32 \mathrm{M}+\mathrm{S}) \quad[\mathrm{kHz}]$
Therefore, the tuning frequency range is 64 MHz to 1023.9375 MHz .
(2) Transfer of the 19th bit data

Total division N is given by the following formulas in addition to the prescaler used in the previous stage.
$N=8(32 M+S) M: 10$ bit main counter division S:5 bit swallow counter division
The M and S counters are binary the possible ranges of division are as follows.
$32 \leq M \leq 1023$
$0 \leq S \leq 31$
Therefore, the range of division N is 8,192 to 262,136 .
The tuning frequency fvco is given in the following equations.

```
fvco =fREF }\times
    = 3.90625\times8\times(32M+S)
    = 31.25\times(32M+S) [kHz]
```

Therefore, the tuning frequency range is 32 MHz to $1023,9687 \mathrm{MHz}$.

TEST MODE DATA SET UP METHOD

The data for the test mode uses 20 to 27bits. Data is latched when the 27th clock signal falls.
(1) When transferring 3-wire 27bit data

(2) Test mode bit set up

X	:Random, 0 or 1 . normal "0"
CP	:Set up the charge pump current value

T0, T1, and T2 :Set up test modes
RSa, RSb :Set up for the reference frequency division ratio
OS :Set up the tuning amplifier
SI :1 only (It is prohibit to "0")

Setting up the charge pump current of the phase comparator

CP	Charge pump current	Mode
0	$70 \mu \mathrm{~A}$	Test
1	$270 \mu \mathrm{~A}$	Normal

Setting up for the test mode

T2	T1	T0	Charge pump	12 pin output	Mode
0	0	X	Normal operation	LD	Normal operation
0	1	X	High impedance	LD	Test mode
1	1	0	Sink	LD	Test mode
1	1	1	Source	LD	Test mode
1	0	0	High impedance	fREF	Test mode
1	0	1	High impedance	f1/N	Test mode

* Built-in pull up resistor, and the resistor is unnecessary.

Set up for the reference frequency division ratio

RSa	RSb	Frequency ratio
1	1	$1 / 512$
0	1	$1 / 1024$
X	0	$1 / 640$

Set up the tuning amplifier

OS	Tuning voltage output	Mode
0	ON	Normal
1	OFF	Test

POWER ON RESET OPERATION

(Initial state the power is turned ON)	
BS4 to BS1	OFF
Charge pump	$:$ High impedance
Tuning amplifier	: OFF
Charge pump current	$: 270 \mu \mathrm{~A}$
Frequency division ratio	$: 1 / 1024$
Lock detect	$: \mathrm{H} "$

TIMING DIAGRAM

CRYSTAL OSCILLATOR CONNECTION DIAGRAM

APPLICATION EXAMPLE

