Advance Information # **Analog Switch** The MC74VHC1G66 is an advanced high speed CMOS bilateral analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining CMOS low power dissipation. This bilateral switch controls analog and digital voltages that may vary across the full power–supply range (from V_{CC} to GND). The MC74VHC1G66 is compatible in function to a single gate of the High Speed CMOS MC74VHC4066 and the metal–gate CMOS MC14066. The device has been designed so that the ON resistances (R_{ON}) are much lower and more linear over input voltage than R_{ON} of the metal–gate CMOS or High Speed CMOS analog switches. The ON/OFF control inputs are compatible with standard CMOS outputs; with pull-up resistors, it is compatible with LSTTL outputs. - High Speed: tpD = TBD (Typ) at VCC = 5 V - Low Power Dissipation: $I_{CC} = 2 \mu A \text{ (Max)}$ at $T_A = 25^{\circ}\text{C}$ - Diode Protection Provided on Inputs and Outputs - Improved Linearity and Lower ON Resistance over Input Voltage than the MC14066 or the HC4066 - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 300 mA - ESD Performance: HBM > 2000 V; MM > 200 V, CDM > 1500 V - Chip Complexity: 11 FETs or 3 Equivalent Gates 5-Lead SOT-353 Pinout (Top View) #### LOGIC SYMBOL #### ON Semiconductor Formerly a Division of Motorola http://onsemi.com SC-88A / SOT-353 DF SUFFIX CASE 419A #### **MARKING DIAGRAM** | PIN ASSIGNMENT | | | | | | | |-------------------------|-----------------------|--|--|--|--|--| | 1 | IN/OUT X _A | | | | | | | 2 OUT/IN Y _A | | | | | | | | 3 | GND | | | | | | | 4 | ON/OFF CONTROL | | | | | | | 5 | VCC | | | | | | #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. #### **FUNCTION TABLE** | State of Analog Switch | |------------------------| | Off | | On | | | This document contains information on a new product. Specifications and information herein are subject to change without notice. #### **ABSOLUTE MAXIMUM RATINGS** | Characteristics | Symbol | Value | Unit | |--|------------------|-------------------------------|------| | DC Supply Voltage | Vcc | -0.5 to +7.0 | V | | Digital Input Voltage | V _{IN} | -0.5 to V _{CC} +0.5 | V | | Analog Output Voltage | V _{IS} | -0.5 to V _{CC} + 0.5 | V | | Digital Input Diode Current | lικ | -20 | mA | | DC Supply Current, V _{CC} and GND | lcc | +25 | mA | | Power dissipation in still air, SC-88A † | PD | 200 | mW | | Lead temperature, 1 mm from case for 10 s | TL | 260 | °C | | Storage temperature | T _{stg} | -65 to +150 | °C | [†]Derating — SC–88A Package: –3 mW/°C from 65° to 125°C #### **RECOMMENDED OPERATING CONDITIONS** | Characteristics | Symbol | Min | Max | Unit | |---|---------------------------------|-----------------|-----------|------| | DC Supply Voltage | Vcc | 4.5 | 5.5 | V | | Digital Input Voltage | V _{IN} | GND | Vcc | V | | Analog Input Voltage | VIS | GND | Vcc | V | | Static or Dynamic Voltage Across Switch | V _{IO} * | | 1.2 | V | | Operating Temperature Range | TA | - 55 | +85 | °C | | Input Rise and Fall Time ON/OFF Control Input $V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 5.0V \pm 0.5V$ | t _r , t _f | 0
0 | 100
20 | ns/V | ^{*} For voltage drops across the switch greater than 1.2V (switch on), excessive V_{CC} current may be drawn; i.e. the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. #### DC ELECTRICAL CHARACTERISTICS | | | | VCC | Т | A = 25°0 | 2 | T _A ≤ | 85°C | T _A ≤ ' | 125°C | | |-----------------|---|--|--------------------------|----------------------------|----------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------| | Symbol | Parameter | Test Conditions | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | VIH | Minimum High–Level
Input Voltage
ON/OFF Control Input | R _{ON} = Per Spec | 2.0
3.0
4.5
5.5 | 1.5
2.1
3.15
3.85 | | | 1.5
2.1
3.15
3.85 | | 1.5
2.1
3.15
3.85 | | V | | V _{IL} | Maximum Low–Level
Input Voltage
ON/OFF Control Input | R _{ON} = Per Spec | 2.0
3.0
4.5
5.5 | | | 0.5
0.9
1.35
1.65 | | 0.5
0.9
1.35
1.65 | | 0.5
0.9
1.35
1.65 | V | | I _{IN} | Maximum Input
Leakage Current
ON/OFF Control Input | V _{IN} = V _{CC} or GND | 0 to
5.5 | | | ±0.1 | | ±1.0 | | ±1.0 | μΑ | | lcc | Maximum Quiescent
Supply Current | $V_{IN} = V_{CC}$ or GND $V_{IO} = 0V$ | 5.5 | | | 2.0 | | 20 | | 40 | μΑ | | RON | Maximum "ON"
Resistance | $V_{IN} = V_{IH}$
$V_{IS} = V_{CC}$ or GND
$ I_{IS} \le 10$ mA (Figure 1) | 3.0
4.5
5.5 | | 30
20
15 | 50
30
20 | | 70
40
35 | | 100
50
45 | Ω | | | | Endpoints
$V_{IN} = V_{IH}$
$V_{IS} = V_{CC}$ or GND
$ I_{IS} \le 10$ mA (Figure 1) | 3.0
4.5
5.5 | | 25
12
8 | 50
20
15 | | 65
26
23 | | 90
40
32 | Ω | | loff | Maximum Off–Channel
Leakage Current | V _{IN} = V _{IL}
V _{IS} = V _{CC} or GND
Switch Off (Figure 2) | 5.5 | | | 0.1 | | 0.5 | | 1.0 | μΑ | | ION | Maximum On–Channel
Leakage
Current | V _{IN} = V _{IH}
V _{IS} = V _{CC} or GND
Switch On (Figure 3) | 5.5 | | | 0.1 | | 0.5 | | 1.0 | μΑ | ### AC ELECTRICAL CHARACTERISTICS (C_{load} = 50 pF, Input t_r/t_f = 3.0ns) | | | | VCC | ī | T _A = 25°(| C | T _A ≤ | 85°C | T _A ≤ ' | 125°C | | |---|--|---|--------------------------|-----|-----------------------|---------------------|------------------|---------------------|---------------------------|----------------------|------| | Symbol | Parameter | Test Conditions | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | ^t PLH [,]
^t PHL | Maximum Propogation
Delay,
Input X to Y | Y _A = Open
Figure 4 | 2.0
3.0
4.5
5.5 | | 1
0
0
0 | 5
2
1
1 | | 6
3
1
1 | | 7
4
2
1 | ns | | t _{PLZ} ,
t _{PHZ} | Maximum Propogation Delay, ON/OFF Control to Analog Output | R_L = 1000 $Ω$
Figure 5 | 2.0
3.0
4.5
5.5 | | 15
8
6
4 | 35
15
10
7 | | 46
20
13
9 | | 57
25
17
11 | ns | | ^t PZL [,]
^t PZH | Maximum Propogation Delay, ON/OFF Control to Analog Output | R_L = 1000 $Ω$
Figure 5 | 2.0
3.0
4.5
5.5 | | 15
8
6
4 | 35
15
10
7 | | 46
20
13
9 | | 57
25
17
11 | ns | | C _{IN} | Maximum Input | ON/OFF Control Input | 0.0 | | 3 | 10 | | 10 | | 10 | pF | | | Capacitance | Contol Input = GND
Analog I/O
Feedthrough | 5.0 | | 4
4 | 10
10 | | 10
10 | | 10
10 | | | | | Typical @ 25°C, V _{CC} = 5.0V | | |-----------------|---|--|----| | C _{PD} | Power Dissipation Capacitance (Note NO TAG) | 18 | pF | ^{1.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \cdot V_{CC} \cdot f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_{D} = C_{PD} \cdot V_{CC}^2 \cdot f_{in} + I_{CC} \cdot V_{CC}$. #### ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted) | Symbol | Parameter | Test Conditions | vcc | Limit
25°C | Unit | |-----------------------|--|--|-------------------|----------------------|------| | BW | Maximum On–Channel
Bandwidth or Minimum
Frequency Response
Figure 7 | f_{in} = 1 MHz Sine Wave
Adjust f_{in} voltage to obtain 0 dBm at VOS
Increase f_{in} = frequency until dB meter reads –3dB
R _L = 50 Ω , C _L = 10 pF | 3.0
4.5
5.5 | 150
175
200 | MHz | | ISO _{off} | Off-Channel Feedthrough
Isolation
Figure 8 | f_{in} = Sine Wave
Adjust f_{in} voltage to obtain 0 dBm at V_{IS}
f_{in} = 10 kHz, R_L = 600 Ω , C_L = 50 pF | 3.0
4.5
5.5 | -50
-50
-50 | dB | | | | $f_{in} = 1.0 \text{ kHz}, R_L = 50\Omega, C_L = 10 \text{ pF}$ | 3.0
4.5
5.5 | -40
-40
-40 | | | NOISE _{feed} | Feedthrough Noise Control to
Switch
Figure 9 | $V_{in} \le 1$ MHz Square Wave ($t_{\Gamma} = t_{f} = 2ns$)
Adjust R _L at setup so that $I_{S} = 0$ A
R _L = 600Ω , C _L = 50 pF | 3.0
4.5
5.5 | 45
60
130 | mVpp | | | | $R_L = 50\Omega$, $C_L = 10 pF$ | 3.0
4.5
5.5 | 25
30
60 | | | THD | Total Harmonic Distortion
Figure 10 | f_{in} = 1 kHz, R _L = 10k Ω , C _L = 50 pF
THD = THD _{Measured} - THD _{Source}
V _{IS} = 3.0 Vpp sine wave
V _{IS} = 4.0 Vpp sine wave
V _{IS} = 5.0 Vpp sine wave | 3.3
4.5
5.5 | 0.20
0.10
0.06 | % | ^{1.} CpD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \cdot V_{CC} \cdot f_{in} + I_{CC} \cdot C_{PD}$ is used to determine the no–load dynamic power consumption; $P_{D} = C_{PD} \cdot V_{CC}^2 \cdot f_{in} + I_{CC} \cdot V_{CC}$. Figure 1. On Resistance Test Set-Up Figure 2. Maximum Off-Channel Leakage Current Test Set-Up Figure 3. Maximum On-Channel Leakage Current Test Set-Up Figure 4. Propagation Delay Test Set-Up Switch to Position 1 when testing tpLZ and tpZL Switch to Position 2 when testing tpHZ and tpZH Figure 5. Propagation Delay Output Enable/Disable Test Set-Up Figure 6. Power Dissipation Capacitance Test Set-Up $V_{\rm IS}$ $V_{\rm OS}$ $V_{\rm CC}$ Figure 7. Maximum On-Channel Bandwidth Test Set-Up Figure 8. Off-Channel Feedthrough Isolation Test Set-Up To Distortion Meter $\begin{array}{c} V_{CC} \\ V_{OS} \\ C_{L} \end{array}$ $\begin{array}{c} V_{IS} \\ \hline \\ \end{array}$ $\begin{array}{c} V_{IS} \\ \hline \\ \end{array}$ $\begin{array}{c} V_{CC} Figure 9. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set-Up Figure 10. Total Harmonic Distortion Test Set-Up Figure 11. Propagation Delay, Analog In to Analog Out Waveforms Figure 12. Propagation Delay, ON/OFF Control #### **DEVICE ORDERING INFORMATION** | | Device Nomenclature | | | | | | | | |---------------------|----------------------|-----------------------------|------------|--------------------|-------------------|--------------------------|---------------------|-----------------------| | Device Order Number | Circuit
Indicator | Temp
Range
Identifier | Technology | Device
Function | Package
Suffix | Tape &
Reel
Suffix | Package
Type | Tape and Reel
Size | | MC74VHC1G66DFT1 | MC | 74 | VHC1G | 66 | DF | T1 | SC-88A /
SOT-353 | 7–Inch/3000 Unit | #### **PACKAGE DIMENSIONS** SC-88A / SOT-353 **DF SUFFIX** 5-LEAD PACKAGE CASE 419A-01 ISSUE B - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MM. | | INC | HES | MILLIN | IETERS | |-----|-------|---------|--------|--------| | DIM | MIN | MIN MAX | | MAX | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | В | 0.045 | 0.053 | 1.15 | 1.35 | | С | 0.031 | 0.043 | 0.80 | 1.10 | | D | 0.004 | 0.012 | 0.10 | 0.30 | | G | 0.026 | BSC | 0.65 | BSC | | Н | | 0.004 | | 0.10 | | J | 0.004 | 0.010 | 0.10 | 0.25 | | K | 0.004 | 0.012 | 0.10 | 0.30 | | N | 0.008 | REF | 0.20 | REF | | S | 0.079 | 0.087 | 2.00 | 2.20 | | V | 0.012 | 0.016 | 0.30 | 0.40 | Figure 13. Carrier Tape Specifications #### EMBOSSED CARRIER DIMENSIONS (See Notes 1 and 2) | Tape
Size | B ₁
Max | D | D ₁ | E | F | К | Р | P ₀ | P ₂ | R | Т | w | |--------------|-----------------------|---|---------------------------|---------------------------------------|-------------------------------------|--------------------|---------------------------------------|--------------------------------------|--------------------------------------|------------------|---|--------------------------------------| | 8 mm | 4.35 mm
(0.171") | 1.5 +0.1/
-0.0 mm
(0.059
+0.004/
-0.0") | 1.0 mm
Min
(0.039") | 1.75
±0.1 mm
(0.069
±0.004") | 3.5
±0.5 mm
(1.38
±0.002") | 2.4 mm
(0.094") | 4.0
±0.10 mm
(0.157
±0.004") | 4.0
±0.1 mm
(0.156
±0.004") | 2.0
±0.1 mm
(0.079
±0.002") | 25 mm
(0.98") | 0.3
±0.05 mm
(0.01
+0.0038/
-0.0002") | 8.0
±0.3 mm
(0.315
±0.012") | Metric Dimensions Govern–English are in parentheses for reference only. A₀, B₀, and K₀ are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity Figure 14. Reel Dimensions #### **REEL DIMENSIONS** | Tape
Size | A Max | G | t Max | |--------------|--------|-------------------------|---------| | 8 mm | 330 mm | 8.400 mm, +1.5 mm, -0.0 | 14.4 mm | | | (13") | (0.33", +0.059", -0.00) | (0.56") | **Figure 15. Reel Winding Direction** Figure 16. Tape Ends for Finished Goods Figure 17. Reel Configuration # **Notes** ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** #### **USA/EUROPE Literature Fulfillment:** Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line*: 303-675-2167 800–344–3810 Toll Free USA/Canada *To receive a Fax of our publications N. America Technical Support: 800-282-9855 Toll Free USA/Canada ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support **Phone**: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Email: ONlit-asia@hibbertco.com **JAPAN**: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.