TOSHIBA MP4502 TOSHIBA POWER TRANSISTOR MODULE SILICON NPN EPITAXIAL TYPE (DARLINGTON POWER TRANSISTOR 4 IN 1) # MP4502 HIGH POWER SWITCHING APPLICATIONS. HAMMER DRIVE, PULSE MOTOR DRIVE AND INDUCTIVE LOAD SWITCHING. - Package with Heat Sink Isolated to Lead (SIP 12 Pin) - High Collector Power Dissipation (4 Devices Operation) $: P_T = 5W (Ta = 25^{\circ}C)$ High Collector Current : $I_{C(DC)}=3A(Max.)$ High DC Current Gain : $h_{FE} = 2000$ (Min.) ($V_{CE} = 2V$, $I_{C} = 1.5A$) #### MAXIMUM RATINGS (Ta = 25°C) | CHARACTERIST | SYMBOL | YMBOL RATING | | | | |--|--------------------|--------------------|----------------------|-----|--| | Collector-Base Voltage | | V _{CBO} | 120 | V | | | Collector-Emitter Voltage | | v_{CEO} | 100 | V | | | Emitter-Base Voltage | v_{EBO} | 6 | V | | | | Collector Current | DC | $I_{\mathbf{C}}$ | 3 | A | | | | Pulse | I_{CP} | 6 | | | | Continuous Base Current | $I_{\mathbf{B}}$ | 0.5 | A | | | | Collector Power Dissipation (1 Device Operation) | | PC | 3.0 | W | | | Collector Power | Ta=25°C | D- | 5.0 | 337 | | | Dissipation (4 Devices Operation) | Tc=25°C | $ ho_{ m T}$ | 25 | W | | | Isolation Voltage | $ m v_{Isol}$ | 1000 | V | | | | Junction Temperature | $\mathrm{T_{j}}$ | 150 | $^{\circ}\mathrm{C}$ | | | | Storage Temperature Range | | $\mathrm{T_{stg}}$ | -55~150 | °C | | #### INDUSTRIAL APPLICATIONS Unit in mm Weight: 6.0g TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment office equipment measuring equipment industrial robotics, domestic appliances, etc.). These - personal equipment, office equipment, measuring equipment, industrial robotics, domestic applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own rick - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice. ### ARRAY CONFIGURATION #### THERMAL CHARACTERISTICS | CHARACTERISTIC | SYMBOL | MAX. | UNIT | |---|---------------------------|------|------| | Thermal Resistance of Channel to Ambient (4 Devices Operation, Ta=25°C) | ΣR _{th (j-a)} | 25 | °C/W | | Thermal Resistance of Channel to Case (4 Devices Operation, Tc=25°C) | $\Sigma m R_{th (j-c)}$ | 5.0 | °C/W | | Maximum Lead Temperature for Soldering Purposes (3.2mm from Case for 10s) | $ ext{T}_{ ext{L}}$ | 260 | °C | # ELECTRICAL CHARACTERISTICS (Ta = 25°C) | CHAR | ACTERISTIC | SYMBOL | TEST CONDITION | MIN. | TYP. | MAX. | UNIT | |---------------------------|---------------------|--|---|------|-------|------|----------------| | Collector C | ut-off Current | I_{CBO} | $V_{CB} = 120V, I_E = 0$ | | _ | 10 | μ A | | Collector C | ut-off Current | I_{CEO} | $V_{CE} = 100V, I_B = 0$ | | | 10 | μ A | | Emitter Cu | t-off Current | $I_{ m EBO}$ | $V_{EB}=6V, I_C=0$ | 0.5 | _ | 2.5 | mA | | Collector-Ba
Breakdown | | V (BR) CBO | $I_C=1$ mA, $I_E=0$ | 120 | _ | _ | V | | Collector-Ei
Breakdown | | V (BR) CEO | $I_{C}=10mA, I_{B}=0$ | 100 | _ | _ | V | | DC Current Gain | h _{FE (1)} | $V_{\text{CE}} = 2V$, $I_{\text{C}} = 1.5A$ | 2000 | _ | 15000 | | | | DC Current Gain | | h _{FE} (2) | $V_{CE}=2V, I_{C}=3A$ | 1000 | _ | _ | | | Saturation
Voltage | Collector-Emitter | V _{CE} (sat) | $I_C=1.5A$, $I_B=3mA$ | _ | _ | 1.5 | v | | | Base-Emitter | V _{BE} (sat) | $I_C=1.5A$, $I_B=3mA$ | _ | _ | 2.0 | | | Transition Frequency | | $ m f_{T}$ | $V_{CE}=2V, I_{C}=0.5A$ | _ | 60 | _ | MHz | | Collector O | utput Capacitance | C_{ob} | $V_{CB} = 10V, I_E = 0, f = 1MHz$ | _ | 30 | _ | pF | | Switching
Time | Turn-on Time | ton | 20μs IB1 OUTPUT INPUT IB2 IB1 IB2VCC=30Vm | ı | 0.3 | _ | | | | Storage Time | $ m t_{stg}$ | | 1 | 2.0 | _ | μs | | | Fall Time | tf | $I_{B1} = -I_{B2} = 3mA$,
DUTY CYCLE $\leq 1\%$ | _ | 0.4 | _ | | ## EMITTER-COLLECTOR DIODE RATINGS AND CHARACTERISTICS (Ta = 25°C) | CHARACTERISTIC | SYMBOL | TEST CONDITION | MIN. | TYP. | MAX. | UNIT | |-------------------------|-------------------|---|------|------|------|---------| | Forward Current | $I_{ extbf{FM}}$ | | _ | _ | 3 | Α | | Surge Current | $I_{ extbf{FSM}}$ | t=1s, 1 shot | | _ | 6 | A | | Forward Voltage | $ m V_{ m F}$ | $I_{F}=1A, I_{B}=0$ | _ | 1.2 | 1.8 | V | | Reverse Recovery Time | ${ m t_{rr}}$ | $I_{F} = 3A, V_{BE} = -3V,$ | | 1.0 | _ | μ s | | Reverse Recovery Charge | Q_{rr} | $\mathrm{dI_F}/\mathrm{dt} = -50\mathrm{A}/\mu\mathrm{s}$ | _ | 5 | _ | μC | TOTAL POWER DISSIPATION PT (W)