

# Adjustment Free VIF/SIF Signal Processing IC for PAL TV/VCR

### Overview

The LA75503V is an adjustment free VIF/SIF signal processing IC for PAL TV/VCR.

It supports 38 MHz, 38.9 MHz, and 39.5 MHz as the IF frequencies, as well as PAL sound multi-system (M/N, B/G, I, D/K), and contains an on-chip sound carrier trap and sound carrier BPF. To adjust the VCO circuit, AFT circuit, and sound filter, 4-MHz external crystal or 4-MHz external signal is needed.

#### **Functions**

- VIF amplifier
- VCO adjustment free PLL detection circuit
- Digital AFT circuit
- RF AGC
- Buzz canceller
- Equalizer amplifier
- Internal sound carrier BPF
- Internal sound carrier trap
- PLL-FM detector
- Reference oscillation circuit

#### **Features**

- Internal VCO adjustment free circuit eliminating need for VCO coil adjustments.
- Internal sound carrier BPF and sound carrier trap enable easy configuration of PAL sound multi-system at low cost.
- Considerably reduces the number of required peripheral parts.
- Use of digital AFT eliminates problem of AFT tolerance.
- Package: SSOP30 (275 mil)

# **Package Dimensions**

unit: mm

#### 3191A-SSOP30 (275 mil)



- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

# **Specifications** Maximum Ratings at Ta = 25°C

| Parameter                   | Symbol              | Conditions                                      | Ratings         | Unit |
|-----------------------------|---------------------|-------------------------------------------------|-----------------|------|
| Maximum supply voltage      | V <sub>CC</sub> max |                                                 | 7               | V    |
| Olassida salda as           | V16                 |                                                 | V <sub>CC</sub> | V    |
| Circuit voltage             | V18                 |                                                 | V <sub>CC</sub> | V    |
| Circuit current             | 130                 |                                                 | -1              | mA   |
|                             | l17                 |                                                 | +0.5            | mA   |
|                             | 16                  |                                                 | -10             | mA   |
|                             | 14                  |                                                 | -3              | mA   |
| Allowable power dissipation | Pd max              | Ta ≤ 70°C (*Mounted on a printed circuit board) | 550             | mW   |
| Operating temperature       | Topr                |                                                 | -20 to +70      | °C   |
| Storage temperature         | Tstg                |                                                 | -55 to +150     | °C   |

Note: \* Circuit board dimensions:  $65 \times 72 \times 1.6 \text{ mm}^3$ , material: paper phenol.

# Operating Conditions at $Ta = 25^{\circ}C$

| Parameter                  | Symbol             | Conditions | Ratings    | Unit |
|----------------------------|--------------------|------------|------------|------|
| Recommended supply voltage | V <sub>CC</sub>    |            | 5          | V    |
| Operating voltage range    | V <sub>CC</sub> op |            | 4.5 to 5.5 | V    |

# Electrical Characteristics at $Ta=25^{\circ}C,\,V_{CC}=5.0~V,\,fp=38.9~MHz$

| Parameter                        | Symbol | Conditions                     |     | Ratings |      | Unit   |
|----------------------------------|--------|--------------------------------|-----|---------|------|--------|
| Falametei                        | Symbol | Conditions                     | min | typ     | max  | Onit   |
| [VIF Block ]                     |        |                                |     |         |      |        |
| Circuit current                  | l17    |                                |     | 64.0    | 73.6 | mA     |
| Maximum RF AGC voltage           | V14H   | Collector load 30 kΩ VC2 = 9 V | 8.5 | 9       | _    | V      |
| Minimum RF AGC voltage           | V14L   |                                |     | 0.3     | 0.7  | V      |
| Input sensitivity                | Vi     |                                | 33  | 39      | 45   | dBµV   |
| AGC range                        | GR     |                                | 58  |         |      | dB     |
| Maximum allowable input          | Vimax  |                                | 92  | 97      |      | dΒμV   |
| No-signal video output voltage   | V4     |                                | 3.3 | 3.6     | 3.9  | V      |
| Synchronizing signal tip voltage | V4tip  |                                | 1.0 | 1.3     | 1.6  | V      |
| Video output level               | Vo     |                                | 1.7 | 2.0     | 2.3  | Vpp    |
| Video signal-to-noise ratio      | S/N    | B/G                            | 48  | 52      |      | dB     |
| C-S beating                      | IC-S   | P/S = 10 dB                    | 26  | 32      | 38   | dB     |
| Differential gain                | DG     | Vin = 80 dBµ                   |     | 3       | 10   | %      |
| Differential phase               | DP     |                                |     | 2       | 10   | deg    |
| Black noise threshold voltage    | VBTH   |                                |     | 0.7     |      | V      |
| Black noise clamp voltage        | VBCL   |                                |     | 1.8     |      | V      |
| VIF input resistance             | Ri     |                                |     | 2.5     | 3.0  | kΩ     |
| VIF input capacitance            | Ci     |                                |     | 3       | 6    | PF     |
| Maximum AFT voltage              | V13H   |                                | 4.3 | 4.7     | 5.0  | V      |
| Minimum AFT voltage              | V13L   |                                | 0   | 0.2     | 0.7  | V      |
| AFT tolerance 1                  | dfa1   | f = 38.9 MHz                   |     | ±35     | ±70  | kHz    |
| AFT tolerance 2                  | dfa2   | f = 38.0 MHz                   |     | ±35     | ±70  | kHz    |
| AFT tolerance 3                  | dfa3   | f = 39.5 MHz                   |     | ±35     | ±70  | kHz    |
| AFT detection sensitivity        | Sf     | RL = 100 kΩ//100 kΩ            | 40  | 80      | 120  | mV/kHz |
| AFT dead zone                    | fda    |                                |     | 30      | 60   | kHz    |
| APC pull-in range (U)            | fpu    |                                | 1.5 | 2.0     |      | MHz    |
| APC pull-in range (L)            | fpl    |                                | 1.5 | 2.0     |      | MHz    |
| VCO maximum frequency range (U)  | dfu    |                                | 1.5 | 2.0     |      | MHz    |
| VCO maximum frequency range (L)  | dfl    |                                | 1.5 | 2.0     |      | MHz    |
| VCO control sensitivity          | β      |                                | 2.0 | 4.0     | 8.0  | kHz/mV |

# Continued from preceding page.

| Parameter                            | Cumbal   | Conditions                           |     | Ratings |     | Unit  |
|--------------------------------------|----------|--------------------------------------|-----|---------|-----|-------|
| Parameter                            | Symbol   | Conditions                           | min | typ     | max | Onit  |
| N trap1 (4.75 MHz)                   | NT1      | wrt 1 MHz                            | -30 | -35     |     | dB    |
| N trap2 (5.25 MHz)                   | NT2      | wrt 1 MHz                            | -19 | -24     |     | dB    |
| BG trap1 (5.75 MHz)                  | BT1      | wrt 1 MHz                            | -27 | -32     |     | dB    |
| BG trap2 (6.1 MHz)                   | BT2      | wrt 1 MHz                            | -20 | -25     |     | dB    |
| BG trap3 (5.85 MHz)                  | BT3      | wrt 1 MHz                            | -27 | -32     |     | dB    |
| I trap1 (6.25 MHz)                   | IT1      | wrt 1 MHz                            | -25 | -30     |     | dB    |
| I trap2 (6.8 MHz)                    | IT2      | wrt 1 MHz                            | -15 | -20     |     | dB    |
| DK trap1 (6.75 MHz)                  | DT1      | wrt 1 MHz                            | -25 | -30     |     | dB    |
| Group delay 1 NTSC (3.0 MHz)         | NGD1     | wrt 1 MHz                            | 10  | 40      | 70  | ns    |
| Group delay 1-1 NTSC (3.5 MHz)       | NGD1-1   | wrt 1 MHz                            | 70  | 120     | 170 | ns    |
| Group delay 2 BG (4 MHz)             | BGD2     | wrt 1 MHz                            | 30  | 60      | 90  | ns    |
| Group delay 2-1 BG (4.4 MHz)         | BGD2-1   | wrt 1 MHz                            | 100 | 150     | 200 | ns    |
| Group delay 3 I (4 MHz)              | IGD3     | wrt 1 MHz                            | 0   | 30      | 60  | ns    |
| Group delay 3-1 I (4.4 MHz)          | IGD3-1   | wrt 1 MHz                            | 30  | 60      | 90  | ns    |
| Group delay 4 DK (4 MHz)             | DGD4     | wrt 1 MHz                            | 0   | 15      | 30  | ns    |
| Group delay 4-1 DK (4.4 MHz)         | DGD4-1   | wrt 1 MHz                            | 0   | 30      | 60  | ns    |
| [1st SIF Block]                      |          |                                      |     |         |     |       |
| Conversion gain                      | Vg       | fp = 5.5 MHz, Vi = 500μV             | 26  | 32      | 38  | dB    |
| SIF carrier output level             | So       | Vi = 10 mV                           |     | 100     |     | mVrms |
| First SIF maximum input              | Simax    | So ±2 dB                             |     | 106     |     | dΒμV  |
| First SIF input resistance           | Ris      |                                      |     | 5.0     | 6.0 | kΩ    |
| First SIF input capacitance          | Cis      |                                      |     | 3       | 6   | pF    |
| [SIF Block]                          |          |                                      |     |         |     |       |
| Limiting sensitivity                 | Vi(lim)  | ( 55ML 45 00HL 4400H                 | 46  | 52      | 58  | dΒμV  |
| FM detector output voltage           | Vo(FM)   | fp = 5.5 MHz, ΔF = ±30 kHz at 400 Hz | 560 | 700     | 850 | mVrms |
| AM rejection ratio                   | AMR      | AM = 30% at 400 Hz                   | 50  | 60      |     | dB    |
| Total harmonic distortion            | THD      | f = 5.5 MHz, ΔF = ±30 kHz            |     | 0.3     | 1.0 | %     |
| FM detector output S/N               | S/N(FM)  |                                      | 55  | 60      |     | dB    |
| BPF 3-dB bandwidth                   | BW       |                                      |     | ±100    |     | kHz   |
| PAL de-emphasis                      | Pdeem    | fm = 3 kHz                           |     | -3      |     | dB    |
| NTSC de-emphasis                     | Ndeem    | fm = 2 kHz                           |     | -3      |     | dB    |
| PAL/NT audio voltage gain difference | GD       |                                      |     | 6       |     | dB    |
| [Others]                             |          |                                      |     |         |     |       |
| 4-MHz level (during external input)  | X4MIN    | Terminated                           | 86  |         |     | dΒμ   |
| SIF system SW threshold voltage      | V10, V11 |                                      |     | 1.4     |     | V     |
| IF system SW threshold resistance    | V12      |                                      |     |         | 270 | kΩ    |
| Split/inter SW                       | V16      |                                      |     | 0.5     |     | V     |

#### **System Switching**

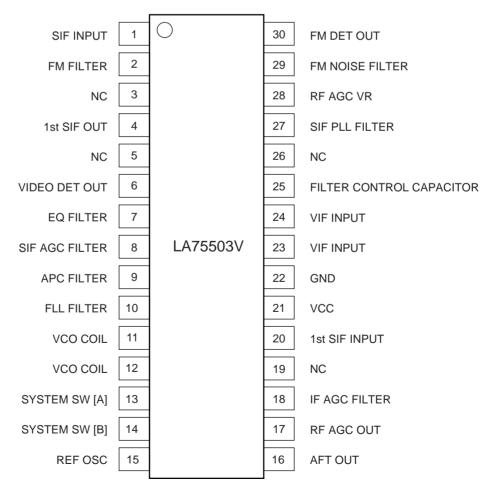
• SIF system switch

The SIF system is switched by setting pins A (pin 13) and B (pin 14) to GND or OPEN.

| А    | В    | B/G | 1 | D/K | M/N | FM DET LEVEL | De-emphasis |
|------|------|-----|---|-----|-----|--------------|-------------|
| GND  | GND  |     |   |     | 0   | 6 dB         | 75 µs       |
| GND  | OPEN |     |   | 0   |     | 0 dB         | 50 μs       |
| OPEN | GND  |     | 0 |     |     | 0 dB         | 50 μs       |
| OPEN | OPEN | 0   |   |     |     | 0 dB         | 50 μs       |

Note: "O" indicates that the system is selected.

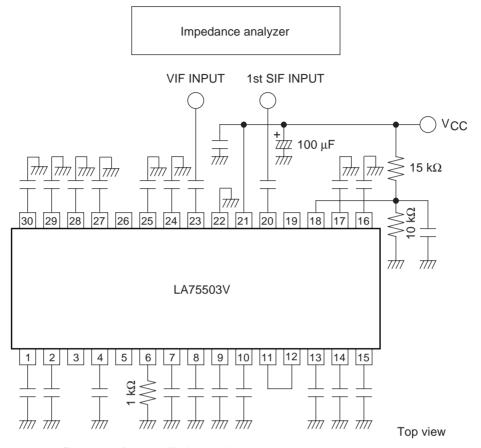
#### • IF system switch


38.9 MHz is selected as the IF frequency by leaving pin 15 (crystal oscillation) open. 38 MHz is selected by adding 220 k $\Omega$  between pin 15 and GND. This device can also select 39.5 MHz operation by adding a 220 k $\Omega$  resistor between pin 15 and  $V_{CC}$ .

• Split/inter carrier switch Inter carrier is selected by setting the first SIF input (pin 20) to GND.

#### **Sound Trap**

The trapping point of the sound trap is set approximately 250 kHz above the SIF center frequency of each mode to improve the video S/N. Therefore, design using split specifications is preferable.


#### **Pin Assignment**



Top view

# **Test Circuit**

Input Impedance Measuring Circuit (VIF, First SIF input impedance)

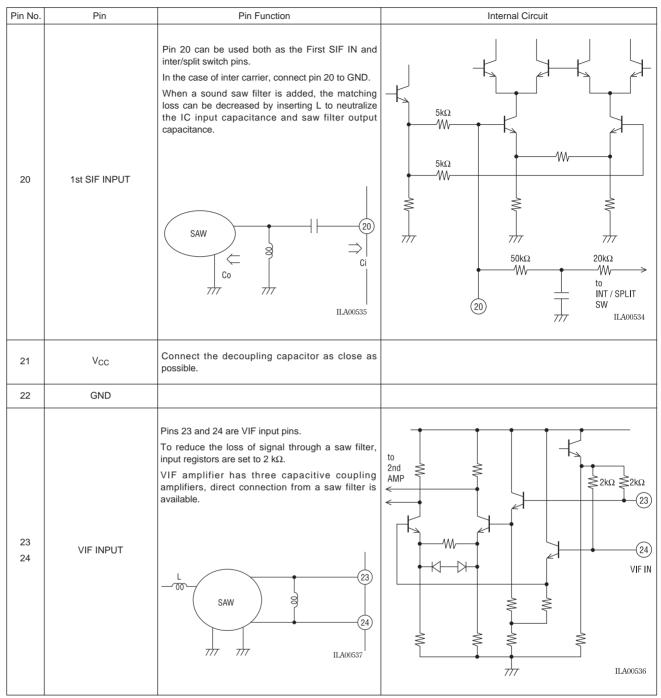


# **Pin Functions**

| Pin No. | Pin         | Pin Function                                                                                                                                                                                                                                                                                                                                                         | Internal Circuit                           |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 1       | SIF INPUT   | Inputs the SIF signal from the first SIF output.  Set the input level to 90 dBµV or lower because of the dynamic range of the internal filter.                                                                                                                                                                                                                       | BPF SIF INPUT                              |
| 2       | FM FILTER   | This is the FM feedback filter pin. It is composed of a C and R filters.<br>1 $\mu$ F is normally used as the capacitance. If the capacitance is a low value, the audio output level is small at low frequencies. Moreover, the audio output level can be made smaller by increasing the resistance connected in series. Use a resistance of 3 k $\Omega$ or higher. | 1kΩ    |
| 3       | NC          | Not connected                                                                                                                                                                                                                                                                                                                                                        |                                            |
| 4       | 1st SIF OUT | This is the first SIF output. In case of inter carrier, the chroma carrier is bigger than split carrier applications, so that it is recommended to connect a filter externally. Filter example $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                 | 200Ω<br>W-4<br>1st SIF OUT<br>SW II.A00521 |

# Continued from preceding page.

| Pin No. | Pin                      | Pin Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Internal Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5       | NC                       | Not connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6 7     | VIDEO-OUT<br>EQ-OUT      | Pin 6 is the video output pin. The EQ amplifier can be thought of as shown below.   R  W  ILA00524  Therefore, the peak gain of the EQ amplifier is determined by $Av = 1 + R/Z$ . However, note that the LA75503V being an IC with $V_{CC} = 5$ V, setting too large an amplitude causes distortion in the $V_{CC}$ side. Use so that the white level is 4 V or less.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 2 \log \Omega \\ 2 \log \Omega \\ 2 \log \Omega \\ 2 \log \Omega \\ 3 \log \Omega \\ 4 \log \Omega \\ 4 \log \Omega \\ 4 \log \Omega \\ 3 \log \Omega \\ 4 \log \Omega \\ 4 \log \Omega \\ 3 \log \Omega \\ 4 \log \Omega \\$ |
| 8       | SIF AGC FILTER           | Pin 8 is the SIF AGC filter pin. Use this pin with a capacitance between 0.01 $\mu F$ and 0.1 $\mu F$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGC DET  78KΩ  777  11A00525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9 10    | APC FILTER<br>FLL FILTER | Pin 9 is the PLL detector APC filter pin. Normally the following are used: $R = 330~\Omega$ $C1 = 0.47~\mu~to~1~\mu F$ $C2 = 100~pF$ $C1 = 1~\mu F~is~effective~for~the~overmodulation~characteristics.$ When the PLL is locked, the signal passes via the path marked A in the figure, and when PLL is unlocked and in weak signal, the signal passes via the path marked B in the figure. The PLL loop gain can thus be switched in this manner. Pin 10 is a VCO automatic control FLL filter pin. Since it operates always on a small current, using a larger capacitance results in a slower response. Normally, a capacitance between 0.47 $\mu F$ and 1 $\mu F$ is used. Moreover, the control range for this pin is between about 3 V to 4.7 V. Since this range is determined when adjusting the VCO tank circuit, set the design center of L and C of VCO so that the voltage of pin 10 is 3.6 V. | APC DET R C2 C1 TIME constant switch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |


# Continued from preceding page.

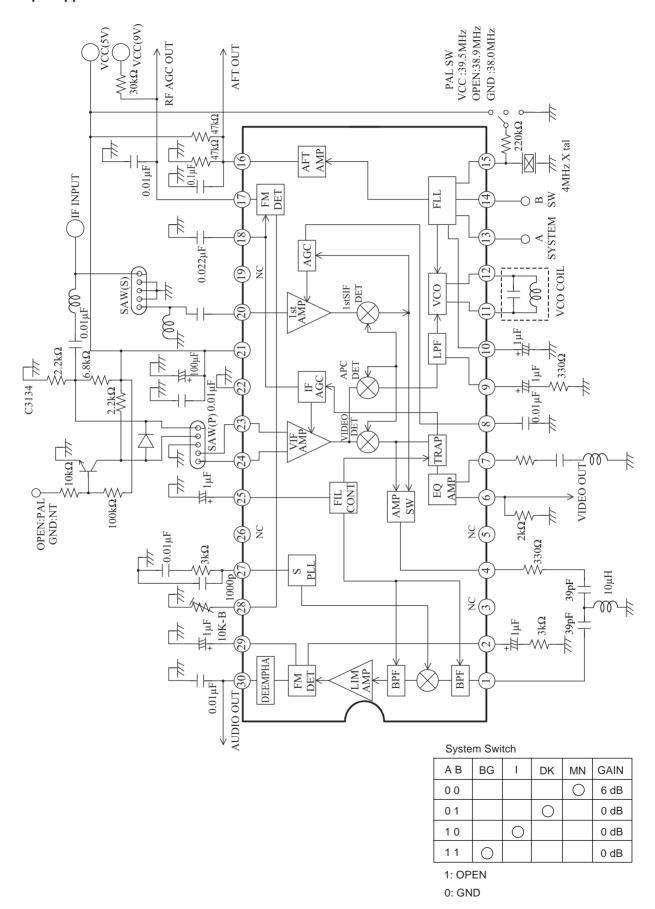
| Pin No.  | Pin       | Pin Function                                                                                                                                                                                                                                                                                                                                                                             | Internal Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11<br>12 | VCO COIL  | This is the VCO tank circuit for the PLL detector. Use a tuning capacitance of 24 pF. Use L and C specifications that are accurate to ±2%. Also, design the L and C values so that the voltage of pin 10 is 3.6 V when PLL is locked while using the IF center frequency.                                                                                                                | 11) 12 12 IIA00527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13<br>14 | SYSTEM SW | This is the system switch pin.  The transistor turns ON when the pin voltage from the circuit becomes approx. 1.4 V.                                                                                                                                                                                                                                                                     | 40kΩ $30$ kΩ |
| 15       | REF OSC   | This pin can be used both as the crystal resonator pin and IF switch. The 38-MHz mode is selected by inserting 220 k $\Omega$ between pin 15 and GND, the 38.9 MHz mode by leaving the pin open, and the 39.5-MHz mode by inserting 220 k $\Omega$ between pin 15 and V $_{CC}$ . 4-MHz input is possible from this pin. In the case of 4-MHz external input, input 86 dB $\mu$ or more. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# Continued from preceding page.

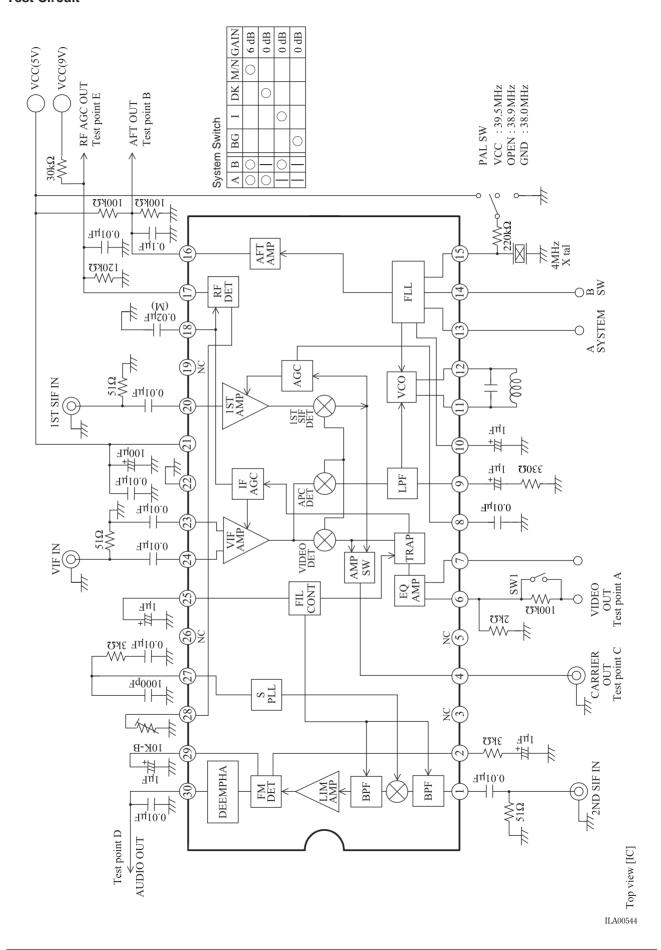
| Pin No. | Pin           | Pin Function                                                                                                                                                                                                                                                                                                                                       | Internal Circuit                                      |
|---------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|         |               | Pin 16 is the AFT output pin.                                                                                                                                                                                                                                                                                                                      |                                                       |
| 16      | AFT OUT       | Use external resistors of 47 k $\Omega$ and a filter capacitance 0.1 µF.  The AFT circuit generates the AFT voltage by comparing the signal obtained by dividing the 4-MHz reference frequency with the signal obtained by dividing VCO.  Since it uses a digital phase comparator, a dead zone exists in the AFT center.   AFT waveform  ILA00531 | P/C $1k\Omega$ $47k\Omega$ $0.1\mu F$ $1LA00530$      |
| 17      | RF AGC OUT    | Pin 17 is the RF AGC output. RF AGC max is determined by R1 and R2. RF AGC min is determined by R3 and R4. Capacitor C1 prevents oscillation and capacitor C2 is the RF AGC filter. Normally 30 k $\Omega$ is used for R1, but if the tuner's F/E transistor is GaAS, the gate's impedance is lower, so use approx. 10 k $\Omega$ .                | FROM RF AGC Comparator  100Ω  R3  to TUNER  TILA00532 |
| 18      | IF AGC FILTER | Pin 18 is the IF AGC filter pin.  Normally, 0.01 μF to 0.02 μF polyester film capacitor is used.  Determine the impedance based on H-SAG and AGC speed.                                                                                                                                                                                            | 1kΩ W 2nd AGC FILTER  18  777 ILA00533                |
| 19      | NC            | Not connected                                                                                                                                                                                                                                                                                                                                      |                                                       |
|         | 110           |                                                                                                                                                                                                                                                                                                                                                    |                                                       |

#### Continued from preceding page.




Continued from preceding page.

| Pin No. | Pin                         | Pin Function                                                                                                                                                                                                                            | Internal Circuit                                      |
|---------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 25      | FILTER CONTROL<br>CAPACITOR | Internal filters (i.e. sound carrier BPF and sound carrier trap) are tuned using the capacitor connected to pin 25.  A value between 0.47 µF and 1 µF is considered desirable taking video S/N, and AM and PM noise into consideration. | to FILTER CONTROL  Vref  Vref  FIL CONT  TILA00538    |
| 26      | NC                          | Not connected                                                                                                                                                                                                                           |                                                       |
| 27      | SIF PLL FILTER              | Pin 27 is the SIF PLL filter pin. Normally use the following values. R: $3 \text{ k}\Omega$ C1: $0.01 \mu\text{F}$ C2: $1000 \text{ pF}$                                                                                                | 27<br>R C2<br>C1 777777777777777777777777777777777777 |


Continued from preceding page.

| Pin No. | Pin        | Pin Function                                                                                                                                                                        | Internal Circuit                                                                |
|---------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 28      | RF AGC VR  | Pin 28 is the RF AGC VR pin.  When this pin is connected to GND, no signal is appeared on pin 6 and pin 30.                                                                         | to RF AGC output  FROM 2nd AGC FILTER  1kΩ  1kΩ  1kΩ  IIA00541                  |
| 29      | FM FILTER  | Pin 29 is the FM filter pin. Use a capacitance between 0.01 μF and 1 μF.                                                                                                            | FM FILTER 3.6V 777 \$5k\Omega\$  1\(\mu\)FM DET  SW  II.A00542                  |
| 30      | FM DET OUT | Pin 30 is the FM output pin. The built-in differential amplifier determines and switches the de-emphasis resistance value. PAL: $5\ k\times0.01\mu F$ NT: $7.5\ k\times0.01\ \mu F$ | $\begin{array}{c} 2.0k\Omega \\ \hline \\ 11.4k\Omega \\ \hline \\ \end{array}$ |

# **Sample Application Circuit**



# **Test Circuit**



- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 2001. Specifications and information herein are subject to change without notice.