STV9325
Vertical Deflection Booster

for 2.5-AppTV/Monitor Applications with 70-V Flyback Generator

Main Features

■ Power Amplifier
■ Flyback Generator
■ Stand-by Control
■ Output Current up to 2.5 App

- Thermal Protection

Description

The STV9325 is a vertical deflection booster designed for TV and monitor applications.

This device, supplied with up to 35 V , provides up to 2.5 App output current to drive the vertical deflection yoke.
The internal flyback generator delivers flyback voltages up to 75 V .
In double-supply applications, a stand-by state will be reached by stopping the (+) supply alone.

1 Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Voltage			
V_{S}	Supply Voltage (pin 2) - Note 1 and Note 2	40	V
$\mathrm{V}_{5}, \mathrm{~V}_{6}$	Flyback Peak Voltage - Note 2	75	V
V_{3}	Voltage at Pin 3 - Note 2, Note 3 and Note 6	-0.4 to ($\mathrm{V}_{S}+3$)	V
$\mathrm{V}_{1}, \mathrm{~V}_{7}$	Amplifier Input Voltage - Note 2, Note 6 and Note 7	- 0.4 to ($\mathrm{V}_{S}+2$) or +40	V
Current			
$\mathrm{I}_{0}(1)$	Output Peak Current at $\mathrm{f}=50$ to $200 \mathrm{~Hz}, \mathrm{t} \leq 10 \mu \mathrm{~s}$ - Note 4	± 5	A
I_{0} (2)	Output Peak Current non-repetitive - Note 5	± 2	A
I_{3} Sink	Sink Current, t<1ms - Note 3	2	A
I_{3} Source	Source Current, $\mathrm{t}<1 \mathrm{~ms}$	2	A
I_{3}	Flyback pulse current at $\mathrm{f}=50$ to $200 \mathrm{~Hz}, \mathrm{t} \leq 10 \mu \mathrm{~s}$ - Note 4	± 5	A
ESD Susceptibility			
ESD1	Human body model (100 pF discharged through $1.5 \mathrm{k} \Omega$)	2	kV
ESD2	EIAJ Standard (200 pF discharged through 0Ω)	300	V
Temperature			
T_{s}	Storage Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Junction Temperature	+150	${ }^{\circ} \mathrm{C}$

Note:1. Usually the flyback voltage is slightly more than $2 \times V_{S}$. This must be taken into consideration when setting V_{S}.
2. Versus pin 4
3. V3 is higher than V_{S} during the first half of the flyback pulse.
4. Such repetitive output peak currents are usually observed just before and after the flyback pulse.
5. This non-repetitive output peak current can be observed, for example, during the Switch-On/SwitchOff phases. This peak current is acceptable providing the SOA is respected (Figure 8 and Figure 9).
6. All pins have a reverse diode towards pin 4, these diodes should never be forward-biased.
7. Input voltages must not exceed the lower value of either $V_{S}+2$ or 40 volts.

2 Thermal Data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {thJc }}$	Junction-to-Case Thermal Resistance	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{T}	Temperature for Thermal Shutdown	150	${ }^{\circ} \mathrm{C}$
T_{J}	Recommended Max. Junction Temperature	120	${ }^{\circ} \mathrm{C}$

3 Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{S}}=34 \mathrm{~V}, \mathrm{~T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit	Fig.
Supply							
V_{S}	Operating Supply Voltage Range ($\mathrm{V}_{2}-\mathrm{V}_{4}$)	Note 8	10		35	V	
I_{2}	Pin 2 Quiescent Current	$\mathrm{I}_{3}=0, \mathrm{I}_{5}=0$		5	20	mA	1
I_{6}	Pin 6 Quiescent Current	$\mathrm{I}_{3}=0, \mathrm{I}_{5}=0, \mathrm{~V}_{6}=35 \mathrm{v}$	8	19	50	mA	1
Input							
I_{1}	Input Bias Current	$\mathrm{V}_{1}=1 \mathrm{~V}, \mathrm{~V}_{7}=2.2 \mathrm{~V}$		-0.6	-1.5	$\mu \mathrm{A}$	1
I_{7}	Input Bias Current	$\mathrm{V}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{7}=1 \mathrm{~V}$		-0.6	-1.5	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {IR }}$	Operating Input Voltage Range		0		$\mathrm{V}_{\mathrm{S}}-2$	V	
V_{10}	Offset Voltage			2		mV	
$\Delta \mathrm{V}_{10} / \mathrm{dt}$	Offset Drift versus Temperature			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Output							
I_{0}	Operating Peak Output Current	$0^{\circ}<$ Tcase $<125^{\circ} \mathrm{C}$			± 1.25	A	
$\mathrm{V}_{5 \mathrm{~L}}$	Output Saturation Voltage to pin 4	$\mathrm{I}_{5}=1.25 \mathrm{~A}$		0.9	1.6	V	3
$\mathrm{V}_{5 \mathrm{H}}$	Output Saturation Voltage to pin 6	$\mathrm{I}_{5}=-1.25 \mathrm{~A}$		1.5	2.2	V	2
Stand-by							
$\mathrm{V}_{5 \text { STBY }}$	Output Voltage in Stand-by	$V_{1}=V_{7}=V_{S}=0$ See Note 9	$\mathrm{V}_{S}-2$			V	
Miscellaneous							
G	Voltage Gain		80			dB	
$\mathrm{V}_{\text {D5-6 }}$	Diode Forward Voltage Between pins 5-6	$\mathrm{I}_{5}=1.25 \mathrm{~A}$		1.5	2.1	V	
$\mathrm{V}_{\text {D3-2 }}$	Diode Forward Voltage between pins 3-2	$\mathrm{I}_{3}=1.25 \mathrm{~A}$		1.5	2.1	V	
$\mathrm{V}_{3 S L}$	Saturation Voltage on pin 3	$\mathrm{I}_{3}=20 \mathrm{~mA}$		0.4	1	V	3
$\mathrm{V}_{3 \mathrm{SH}}$	Saturation Voltage to pin 2 (2nd part of flyback)	$\mathrm{I}_{3}=-1.25 \mathrm{~A}$		1.8	2.6	V	

8. In normal applications, the peak flyback voltage is slightly greater than $2 \times\left(V_{S}-V_{4}\right)$. Therefore, (V_{S} $\left.-V_{4}\right)=35 V$ is not allowed without special circuitry.
9. Refer to Figure 4, Stand-by condition.

Figure 1: Measurement of I_{1}, I_{2} and I_{6}

Figure 2: Measurement of $\mathrm{V}_{5 \mathrm{H}}$

Figure 3: Measurement of $\mathrm{V}_{3 \mathrm{~L}}$ and $\mathrm{V}_{5 \mathrm{~L}}$

(a): $V_{5 L}$ measurement
(b): $\mathrm{V}_{3 \mathrm{~L}}$ measurement

4 Application Hints

The yoke can be coupled either in AC or DC.

4.1 DC-coupled Application

When DC coupled (see Figure 4), the display vertical position can be adjusted with input bias. On the other hand, 2 supply sources $\left(\mathrm{V}_{\mathrm{S}}\right.$ and $\left.-\mathrm{V}_{\mathrm{EE}}\right)$ are required.

A Stand-by state will be reached by switching OFF the positive supply alone. In this state, where both inputs are the same voltage as pin 2 or higher, the output will sink negligible current from the deviation coil.

Figure 4: DC-coupled Application

4.1.1 Application Hints

For calculations, treat the IC as an op-amp, where the feedback loop maintains $\mathrm{V}_{1}=\mathrm{V}_{7}$.

4.1.1.1 Centering

Display will be centered (null mean current in yoke) when voltage on pin 7 is (R_{1} is negligible):

$$
v_{7}=\frac{v_{M}+v_{m}}{2} \times\left(\frac{R_{2}}{R_{2}+R_{3}}\right)
$$

4.1.1.2 Peak Current

$$
I_{P}=\frac{\left(V_{M}-V_{m}\right)}{2} \times \frac{R_{2}}{R_{1} \times R_{3}}
$$

Example: for $\mathrm{V}_{\mathrm{m}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{P}}=1 \mathrm{~A}$
Choose R_{1} in the 1Ω range, for instance $\mathrm{R}_{1}=1 \Omega$
From equation of peak current:

$$
\frac{R_{2}}{R_{3}}=\frac{2 \times I_{P} \times R_{1}}{V_{M}-V_{m}}=\frac{2}{3}
$$

Then choose R_{2} or R_{3}. For instance, if $R_{2}=10 \mathrm{k} \Omega$, then $R_{3}=15 \mathrm{k} \Omega$
Finally, the bias voltage on pin 7 should be:

$$
\mathrm{V}_{7}=\frac{\mathrm{V}_{\mathrm{M}}+\mathrm{V}_{\mathrm{m}}}{2} \times \frac{1}{1+\frac{R_{3}}{\mathrm{R}_{2}}}=\frac{7}{2} \times \frac{1}{2.5}=1.4 \mathrm{~V}
$$

4.1.2 Ripple Rejection

When both ramp signal and bias are provided by the same driver IC, you can gain natural rejection of any ripple caused by a voltage drop in the ground (see Figure 5), if you manage to apply the same fraction of ripple voltage to both booster inputs. For that purpose, arrange an intermediate point in the bias resistor bridge, such that $\left(R_{8} / R_{7}\right)=\left(R_{3} / R_{2}\right)$, and connect the bias filtering capacitor between the intermediate point and the local driver ground. Of course, R_{7} should be connected to the booster reference point, which is the ground side of R_{1}.

Figure 5: Ripple Rejection

4.2 AC-Coupled Applications

In AC-coupled applications (See Figure 6), only one supply $\left(\mathrm{V}_{\mathrm{S}}\right)$ is needed. The vertical position of the scanning cannot be adjusted with input bias (for that purpose, usually some current is injected or sunk with a resistor in the low side of the yoke).

Figure 6: AC-coupled Application

4.2.1 Application Hints

Gain is defined as in the previous case:

$$
I_{p}=\frac{V_{M}-V_{m}}{2} \times \frac{R_{2}}{R_{1} \times R_{3}}
$$

Choose R_{1} then either R_{2} or R_{3}. For good output centering, V_{7} must fulfill the following equation:

$$
\frac{\frac{\mathrm{v}_{S}}{2}-\mathrm{v}_{7}}{\mathrm{R}_{4}+\mathrm{R}_{5}}=\frac{\mathrm{v}_{7}-\frac{\mathrm{v}_{\mathrm{M}}+\mathrm{V}_{\mathrm{m}}}{2}}{R_{3}}+\frac{v_{7}}{R_{2}}
$$

or

$$
v_{7} \times\left(\frac{1}{R_{3}}+\frac{1}{R_{2}}+\frac{1}{R_{4}+R_{5}}\right)=\left(\frac{v_{S}}{2\left(R_{4}+R_{5}\right)}+\frac{v_{M}+V_{m}}{2 \times R_{3}}\right)
$$

C_{S} performs an integration of the parabolic signal on C_{L}, therefore the amount of S correction is set by the combination of C_{L} and C_{S}.

4.3 Application with Differential-output Drivers

Certain driver ICs provide the ramp signal in differential form, as two current sources i_{+}and i_{-}with opposite variations.

Figure 7: Using a Differential-output Driver

Let us set some definitions:

- i_{cm} is the common-mode current: $\mathrm{i}_{\mathrm{cm}}=\frac{1}{2}\left(\mathrm{i}_{+}+\mathrm{i}_{-}\right)$
- at peak of signal, $i_{+}=i_{c m}+i_{p}$ and $i_{-}=i_{c m}-i_{p}$, therefore the peak differential signal is $i_{p}-(-$ $\left.i_{p}\right)=2 i_{p}$, and the peak-peak differential signal, $4 i_{p}$.

The application is described in Figure 7 with DC yoke coupling. The calculations still rely on the fact that V_{1} remains equal to V_{7}.

4.3.1 Centring

When idle, both driver outputs provide i_{cm} and the yoke current should be null (R_{1} is negligible), hence:

$$
\mathrm{i}_{\mathrm{cm}} \cdot \mathrm{R}_{7}=\mathrm{i}_{\mathrm{cm}} \cdot \mathrm{R}_{2} \text { therefore } \mathrm{R}_{7}=\mathrm{R}_{2}
$$

4.3.2 Peak Current

Scanning current should be I_{P} when positive and negative driver outputs provide respectively
$i_{\mathrm{cm}}-i_{\mathrm{p}}$ and $\mathrm{i}_{\mathrm{cm}}+\mathrm{i}_{\mathrm{p}}$, therefore

$$
\left(i_{c m}-i\right) \cdot R_{7}=I_{p} \cdot R_{1}+\left(i_{c m}+i\right) \cdot R_{2} \quad \text { and since } R_{7}=R_{2}: \quad \frac{I_{p}}{i}=-\frac{2 R_{7}}{R_{1}}
$$

Choose R_{1} in the 1Ω range, the value of $R_{2}=R_{7}$ follows. Remember that i is one-quarter of driver peak-peak differential signal! Also check that the voltages on the driver outputs remain inside allowed range.

- Example: for $\mathrm{i}_{\mathrm{cm}}=0.4 \mathrm{~mA}, \mathrm{i}=0.2 \mathrm{~mA}$ (corresponding to 0.8 mA of peak-peak differential current), $I_{p}=1 A$
Choose $R_{1}=0.75 \Omega$, it follows $R_{2}=R_{7}=1.875 \mathrm{k} \Omega$.

4.3.3 Ripple Rejection

Make sure to connect R_{7} directly to the ground side of R_{1}.

4.3.4 Secondary Breakdown Diagrams

Figure 8: Output Transistor Safe Operating Area (SOA) for Secondary Breakdown

The diagram has been arbitrarily limited to max 10 (2 A).

Figure 9: Secondary Breakdown Temperature Derating Curve (ISB = Secondary Breakdown Current)

5 Mounting Instructions

The power dissipated in the circuit is removed by adding an external heatsink. With the HEPTAWATT ${ }^{\text {T }}$ package, the heatsink is simply attached with a screw or a compression spring (clip).

A layer of silicon grease inserted between heatsink and package optimizes thermal contact. In DCcoupled applications we recommend to use a silicone tape between the device tab and the heatsink to electrically isolate the tab.

Figure 10: Mounting Examples

6 Pin Configuration

Figure 11: Pins 1 and 7

Figure 12: Pin 3 \& Pins 5 and 6

7 Package Mechanical Data

Figure 13: 7-pin Heptawatt Package

Table 1: Heptawatt Package

Dim.	mm			inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			4.8			0.189
C			1.37			0.054
D	2.40		2.80	0.094		0.110
D1	1.20		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
E1	0.70		0.97	0.028		0.038
F	0.60		0.80	0.024		0.031
G	2.34	2.54	2.74	0.095	0.100	0.105
G1	4.88	5.08	5.28	0.193	0.200	0.205
G2	7.42	7.62	7.82	0.295	0.300	0.307
H2			10.40			0.409
H3	10.05		10.40	0.396		0.409
L	16.70	16.90	17.10	0.657	0.668	0.673

Table 1: Heptawatt Package (Continued)

Dim.	mm			inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
L1		14.92			0.587	
L2	21.24	21.54	21.84	0.386	0.848	0.860
L3	22.27	22.52	22.77	0.877	0.891	0.896
L4			1.29			0.051
L5	2.60	2.80	3.00	0.102	0.110	0.118
L6	15.10	15.50	15.80	0.594	0.610	0.622
L7	6.00	6.35	6.60	0.0236	0.250	0.260
L9		0.20			0.008	
L10	2.10		2.70	0.082		0.106
L11	4.30		4.80	0.169		0.190
M	2.55	2.80	3.05	0.100	0.110	0.120
M1	4.83	5.08	5.33	0.190	0.200	0.210
V4	40 (Typ.)					
Dia.	3.65		3.85	0.144		0.152

8 Revision History

Table 2: Summary of Modifications

Version	Date	
1.0	April 2003	Description
1.1	First Issue. 2003	Correction to Section 4.1.1.2: Peak Current. Creation of new title, Section 4.3.4: Secondary Breakdown Diagrams.
1.2	November 2003	Datasheet status changed to preliminary data.
1.3	December 2003	Modification to Figure 11.
1.4	April 2004	Flyback voltage value changed on page 1.
1.5	June 2004	Datasheet status changed to datasheet.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com

