y 4 Y I7J JZ J J M
' 4 A Wy /|
' 44)y 4 a8/l 4

AN131

Application Note

Interfacing the CS5521/22/23/24/28 to the 68HCO05

TABLE OF CONTENTS
1. INTRODUCTION ..ooiciiiiiieeeiie e ceie e 1
2. ADC DIGITAL INTERFACEcccceeviviveiiireceee e 1
3. SOFTWARE DESCRIPTIONccccoociviiieeeviieeeeen 2
3.1 INILIANZE e 2
3.2 Write Channel Setup Registersccccccoviunns 2
3.3 Self-Offset Calibrationcccccovvvieieiiiinennnnns 3
3.4 Read/Write Gain Registercccccccveeeeeviiiiiinnnns 3
3.5 Acquiring CONVErSIONSccccvvvvveieeeeeeeeiisiiinnns 4
4, MAXIMUM SCLK RATE ...ooiieeciee e 4
5. CONCLUSION ...ooiiiiieiiie et see e 5
6. APPENDIX: 68HC05 MICROCODE TO INTERFACE
TO THE CS5521/22/23/24/28cccvvvveeeeairaenen 6

1. INTRODUCTION

This application note details the interface of Cirrus
Logic’s Crysta(F) CSb521/22/23/24/28 Anaog-to-
Digital Converter (ADC) to a Motorola 68HC05
microcontroller. This note takes the reader through
a smple example describing how to communicate
withthe ADC. All algorithms discussed areinclud-

2. ADC DIGITAL INTERFACE

The CS5521/22/23/24/28 interfaces to the 68HC05
through either a three-wire or a four-wire interface.
Figure 1 depicts the interface between the two de-
vices. Though this software was written to inter-
face to the three-wir&1™ on the 68HCO05, the
algorithms can be easily modified to work in the
four-wire format.

The ADC'’s serial port consists of four control
lines: CS SCLK, SDI,and SDO.

CS Chip Select, is the control line which enables
access to the serial port.

SCLK, Serial Clock, is the bit-clock which controls
the shifting of data to or from the ADC’s serial
port.

SDI, Serial Data In, is the data signal used to trans-
fer data from the 68HCOS5 to the ADC.

ed in Section 6. “APPENDIX: 68HCO5 Microcode SDO., Serial Data Out, is the data signal used to
to Interface to the CS5521/22/23/24/28” on page 6transfer output data from the ADC to the 68HCOS.

3-Wire Interface

4-Wire Interface

CSb521/22/23/24/28 68HCO05 CS5521/22/23/24/28 68HCO05
cs ?7 ————— No Connect CS ¢——PAO
SD| [&— MOSI (PD3) SDI| <« MOSI (PD3)
SDO ——®| MISO (PD2) SDO ——® MISO (PD2)
SCLK — SCK (PD4) SCLK — SCK (PD4)
Figurel. 3-Wireand 4-WireInterfaces
== ®
?‘35’5’3&‘? /lq'OtGlg 78760 Copyright O Cirrus Logic, Inc. 1999 NOV ‘99
-O. Box , Austin, lexas (All Rights Reserved) AN131REV2

(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com

1

r 4 Y I17 J J | &

' 4 A wWr /)
- |
3. SOFTWARE DESCRIPTION purposes only). This is implemented by sending the

This note presents agorithms to initidize the gonverter fift_een bytes of Iogic_ 1's follqwed by one

68HCO5 and the CS5521/22/23/24/28, modify the final byte, Wlth its LSB at logic 0 This sequence

CS5521/22/23/24/28's internal registers, perforniPlaces the serial port of the ADC into the command
calibrations, and acquire conversions. Figure 2 d&tate, where it waits for a valid command.

picts a block diagram of the program structurez 2 \Write Channel Setup Registers

While reading this application note, please refer t
Section 6. “APPENDIX: 68HCO05 Microcode to In-
terface to the CS5521/22/23/24/28” on page 6 f
the code listing.

cf’he subroutinevrite csrsis an example of how to
OWrite to the CS5521/22/23/24/28’s Channel Setup
Igeegisters (CSRs). For this example, two CSRs
(four Setups) are written. The number of CSRs to
3.1 Initialize be accessed is determined by the Depth Pointer bits
Initialize is a subroutine that configures @@ on (PP3-DP0) in the configuration register. The

the 68HCO5 and places the CS5521/22/23/24/288Pth Pointer bits are set to "0011" to access the
into the command state. TIS®! is configured as WO CSRs. The value “0011" is calculated by tak-

depicted in Figure 1 by selecting the 68HCO05 as the @
master. To function properly with the ,

CS5521/22/23/24/28, tH&#Pl must be set up to use

a clock which idles low, and begins clocking data 'N'T':,bgis"";gz'?l‘fz‘;g’;gg;LER
with a rising edge in the center of the first bit (for ¥

more information on configuring th®&PI refer to

Motorola’s 68HCO5 Application Guide). After SELF-OFFSET CAL.
configuring theSPI, the controller enters a delay Y

state to allow time for the CS5521/22/23/24/28's MODIFY GAIN
power-on-reset and oscillator to start-up (oscillator]

start-up time for a 32.768 KHz crystal is typically
500 ms). The last step is to reinitialize the serial

port on the ADC (reinitializing the serial portis un- rigyre 2 CcS5521/22/23/24/28 Softwar e Flowchart
necessary here, and the code is for demonstration

ACQUIRE CONVERSION

Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/

SPI™ is a trademark of Motorola.
Microwire™ is a trademark of National Semiconductor.

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product infor-
mation describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of
any kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights
of third parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of
this publication may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or
otherwise) without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic website or disk may be printed for use by the user. However, no
part of the printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical,
photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore, no part of this publication maybe used as a basis for manufacture
or sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing
in this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trade-
marks and service marks can be found at http://www.cirrus.com.

2 AN131REV2

FRUSTEr

ing the number of Setups to be accessed and sub- Setup, the offset or gain register that is modified
tracting 1. Because each CSR holds two Setups, belongs to the physical channel referenced by that
this number must always be an odd value, that is, Setup.

DPO must aways belogic 1 when reading and writ- . . .

ing the CSRs. To modify the Depth Pointer bits, the 3.4 Read/Write Gain Register
configuration register is read to prevent corruption ~ The routinerwgain provides an example of how to
of other bits. After theread register routineisrun ~ modify the ADC'’s internal gain registers. To mod-
with the command 0x0OB (HEX), the DP3-DP0O bits ify the gain register the command byte and data
are masked to “0011”. Then, the updated informaPdyte variables are written with the appropriate in-
tion is written back into the ADC with the com- formation. rwgain then calls the subroutine

mand 0x03 (HEX) using therite register routine. ~ Write_register, which uses these variables to set the
After the depth pointer bits are set correctly, th(%: onttegtssgt)l;gé/SﬁaElf h_?_r;]ne_ltl (PQ;Lt) S galtr_l regis-
CSR information is written to the ADC. The Com_cjllsoth):esend |(al o)r'ithni‘:/r;oeu_rr??rlneesr rgl:\clgeto
mand 0x05 (HEX) is sent to the ADC to begin the —shag '

write sequence (to read the CSRs, the commar?gnd the command byte, and three more times to

. : . _send the three data byt&end_spi is a subroutine
woulld be OxOD). At this point, the ADC Is expect: .o cters data to the CS5521/22123/24128
ing to receive information for two 24-bit CSRs, or

48 bits, based on the Depth Pointer bits. The firsl\t/|SB'fIrSt through theSPl. Figure 3 depicts the

.) : timing diagram for the write-cycle in the
CS.R s written with a value of 0x000000 (HEX.)' CS5521/22/23/24/28's serial port. It is important to
This sets Setup 1 and Setup 2 both to convert bipo- . .
note here that this section of the code demonstrates

lar, 100mV signals on physical channel 1 (PC1) tow to write to the gain register of PC1. It does not

an output word rate (OWR) of 15 Hz, and latch pins . o . :
A1-AO equal to “00”. The second CSR is Writtenperform a gain calibration. To write to the other in-

. . ernal registers of the ADC, follow the procedures
with the value 0x4C0105 (HEX). This sets Setup 318 0SS 200 o e data
to convert a bipolar, 100mV signal on PC2 at ah A
101.1 Hz OWR, with latch pins A1-A0 at “01”. €& | o
This also sets Setup 4 to convert a unipolar, 25mVo read the value in the gain register of PC1, the

input signal at 15 Hz on PC3, with output latch pingommand byte is loaded with the value Ox0A

A1-AO set to “00”. (HEX), and theread register routine is called. It
]) duplicates the read-cycle timing diagram depicted
3.3 Sdlf-Offset Calibration in Figure 4.Read register callssend spi once to

Calibrate is a subroutine that performs a self-offsetransfer the command-byte to the
calibration using Setup Talibrate does this by CS5521/22/23/24/28. This places the converter
sending the command 0x81 (HEX) to the ADCinto the data state where it waits until data is read
through theSPI. This tells the ADC to perform a from its serial port.Read register then calls
self-offset calibration using Setup 1 (see theeceive spi three times and transfers three bytes of
CS5522/24/28 and CS5521/23 Data Sheets for imformation from the CS5521/22/23/24/28 to the
formation on performing offset or gain calibrations68HCO05. Similar tesend_spi, receive_spi acquires
using other Setups). Once the command has bearbyte one bit at a time, MSB-first from t&elI.
sent, the controller polls MISO (SDO) until it falls, When the transfer is complete, the variables
indicating that the calibration is complete. Notehigh byte, mid_byte, and low_byte contain the val-
that although calibrations are done using a specifige present in PC1’s 24-bit gain register.

AN131REV2 3

FRUSTEr

3.5 Acquiring Conversions vert callssend _spi to send one byte of all 0's to the
converter to clear the SDO flag. The 68HCO5 then
reads the conversion data word by calling
receive_spi three times. Figure 6 depicts how the
16 and 24-bit data words are stored in the memory
ic 0. To prevent corruption of the configuration locations HIGHBYTE, MIDBYTE, and LOW-

register, convert instructs the 68HCO5 to read and BYTE.

save the contents. Thisinformationisstoredinthe 4. MAXIMUM SCLK RATE
variables HIGHBYTE, MIDBYTE and LOW-
BYTE. Then the MC, LP, and RC (read convert)

To acquire a conversion the subroutine convert is
called. For single conversions on one physical
channel, the MC (multiple conversion) and the LP
(loop) bitsin the configuration register must belog-

A machine cycle in the 68HCO5 consists of 2 oscil-
bits are masked to logic 0, and the new information Ia_ltor periods or 500 ns if the mlcroconj[roller S 0s-
cillator frequency is 4MHz. Since the

is written back to the ADC'’s configuration reg|ster.(285521/22/23/24/28,S maximum SCLK rate is

A conversion is initiated using Setup 1 by sendin ")
the command 0x80 to the converter. At this time% MHz, additional no operation (NOP) delays may

the controller polls MOSI (SDO) until it falls to a ggnr:?(flleesrssr)sltfrr:eriui?r(tahsehtirarrl]s:er;tr:tssn;:lrl]aetcr)rr“scro-
logic O level (see Figure 5). After SDO falt®n- y 9 9 '

Command Time Data Time 24 SCLKs
8 SCLKs

Write Cycle

Figure3. Write-Cycle Timing

Cs

SDI

Command Time
8 SCLKs

500 e X OO OO0

Data Time 24 SCLKs

Read Cycle

Figure4. Read-Cycle Timing

4 AN131REV2

FRUSTEr

RN AR RN e A a AR R RS u AR R u AR —

Command Time tg* XIN/OWR
8 SCLKs .« ¥, Clock Cycles
i rErr—— w

* td = XIN/JOWR clock cycles for each conversion except the Data Time
first conversion which will take XIN/OWR + 7 clock cycles 24 SCLKs

Data SDO Continuous Conversion Read

Figure5. Conversion/Acquisition Cycle Timing

5. CONCLUSION

MSB High-Byte This application note presents an example of how
[D23 [D22 [D21 [D20 [D19 [D18 [D17 [D16 | to interface the CS5521/22/23/24/28 to the
Mid-Byte 68HCO5. It isdivided into two main sections. hard-

[D15 D14 [D13 [D12 [D11 [D10] D9 [D8 | \ygre and software. The hardware interface illus-

5756 [5] '[‘)ZW'|B3[/;§ 57 T BT [50| trates both three-wire and a four-wire interface.

A) 24-Bit Conversion Data Word (CSb522/24/28) The thr.ee-WI re interface is S!Dl Z_and Microwire™
MSB High-Byte pqmpgtl ble. The software secti on illustrates how_to
[D15 | D14 [D13 [D12 [D11 | DI0 | D9 | D8 | initialize the converter and microcontroller, write

Mid-Byte to the CSRs, write and read the ADC'’s internal reg-
| D7 [D6 | D5 | |[_)4 |BD3 | D2 | D1 [DO | sters, perform calibrations, and acquire conver-
ow-Byte

[1] 1] 1] 0 [cCi1|[CIO]OD]| OF |
B) 16-Bit Conversion Data Word (CS5521/23)
0- always zero, 1- always one,
Cl1, CIO- Channel Indicator Bits

important subroutines such asrite register,
read register, write_csrs andconvert, which were
all written in 68HCO05 assembly language.

sions. The software is modularized and provides

OD - Oscillation Detect, OF - Overflow The software described in the note is included in

Section 6. “APPENDIX: 68HCO05 Microcode to In-
Figure6. Bit Representation/Storagein 68HC05 terface to the CS5521/22/23/24/28” on page 6.

AN131REV2 5

FRUSTEr

.
6. APPENDIX: 68HC05 MICROCODE TO INTERFACE TO THE CS5521/22/23/24/28

chhkkkhkkkkkkhhhhhhhhhhkhhhhhhhhhhrhhhhhhhhhhhhhhhhhkhhhhhhhhhhrddhkhkhkdddhhrrrrrrik

* File: 55226805.ASM

;* Date: September 23, 1998
* Revision:0

;* Processor:68HC05

-k
’

;* Program entry point at routine’'main’. Entry point addressis $100
-k

;* This program is an example on how to interface a 6BHCO5 Microcontroller

;¥ to aCSbh521/22/23/24/28 ADC. The program interfaces viathe SPI port (Port D)
;* on the microcontroller, which controls the serial communications,

;* calibration, and conversion cycles.

hkkkkkkkhhhhhkkhhhhhhhhhhhhhhhhdhhhhhdhhhhhhhhhhhhhhhhdhhhhdhhdhhdhhdhhhddrddhrdrddrisx
3

7¥** Memory Map Equates ***

PORTA EQU $00 ;Genera Purpose I/0 Port

DDRA EQU $04 ;Data Direction Control for Port A
PORTD EQU $03 ;Port D Direct Pin Access (Input)
SPCR EQU $OA ;Serial Peripheral Control Register
SPSR EQU $0B ;Serial Peripheral Status Register
SPDR EQU $0C ;Seria Peripheral Datal/O Register
SPIF EQU 7 ;Serial Peripheral Data Transfer Flag

7% RAM Values***

ORG $50
HIGHBYTE RMB 1 ;Upper 8 bits of Conversion Register
MIDBYTE RMB 1 ;Middle 8 bits of Conversion Register
LOWBYTE RMB 1 ;Lower 8 bits of Conversion Register
COMMAND RMB 1 ;Command Byte storage location
RS S E S LSS LS EEEETELE LSS LS EE R RS
;* Program Code
hkkkkkhkhkhkhkhkhkhhkhkhhhkh bk hhkh bk hhhhkhkhkhhkhkhkhkhkhkhhkhhhkdhkhhhdhhhhkdhhhhdhhdhhhdhdkdhhdkdhhdhxd

ORG $100

RS SRR S S S E S S EEEE LSS ST EE S S LSS EEEEEEEE TSR EEEEEEEEEEEEEEEEEEE S
)

;* Routine - main
¥ Input - none
¥ Output - none
;* Thisisthe entry point and the main loop of the program.

chkkkkkkkkhkkhkkhhkkhkkhhkkhhkkhhkkhhhhhkhhkkhhhhhkhhhkhhhhhkkhhhhhkkhhkkhhkkhhkkhhhkhhkhhkkhhhkhkdkkkx*x
1

6 AN131REV2

FRUSTEr

MAIN EQU * ;Start from reset vector

;*** |nitialize and Calibrate the system ***

JSR initialize ;Initialize the System

JSR write_csrs ;Modify the Channel Setup Registers
JSR calibrate ;Calibrate ADC Offset

JSR rwgain ;Write and read gain register

;¥** Continuously perform single conversions ***
mloop: JSR convert ;Obtain a conversion from the ADC
JMP mloop ;Keep Looping

¥** End MAIN ***

RS SRR S S S S SRS ST EE LSS SRR E RS S LS ST EEEEEE LSRR EEEEEEEEEEEEEEEEEEEE S
)

;* Subroutines

RS EE SRS S S S EE S ST EEE LSRR EE S S LSS EEEEEEE SRS EEEEEEEEEEEEEEEEEEEE S
)

;***
;* Routine - initialize

;* Input - none

;* Output - none

;* This subroutine initializes Port D as a SPI port to interface to the

;¥ CSb521/22/23/24/28 ADC.

;* A time delay for the ADC oscillator start-up period is provided, as well

;* asadelay for the ADC's power-on reset.

;* Typicaly, a32.768 KHz crystal has a start-up time of about 500ms. After
;* this delay, an additional 1003 XIN cycles are delayed for the ADC reset.
;* The ADC’s serid port is also reset at thistime

chhkkkhkkhkkkkhhhhhhhhhkdhhhhhhhhhhdhhhhhhhhhhhhhhhhhkhhhhhhhhhkhdddhhhdddhhrrrrrrid
)

initialize LDA #%001010000 ;Load ACCA with valuesfor SPCR

STA SPCR ;Setup SPI Port

LDA #$40 ;Load ACCA with delay count value
JSR delay ;Delay 1003 XIN for power-on reset
LDA #220 ;Load ACCA with delay count value
JSR delay ;Delay for oscillator start-up 170ms
JSR delay ;Delay for oscillator start-up 170ms
JSR delay ;Delay for oscillator start-up 170ms

*¥** Initialize ADC seria port ***

LDX #$OF ;Value of 15 for first 15 Bytes

LDA H#SFF ;Load ACCA with al 1's
sloop: JSR send_spi ;Sendinfoto ADC

DECX ;Decrement Counter

AN131REV2 7

r 4 Y I17 J J | &

' 44y 4 a8/ /] 4
|
BNE sloop ;Repeat loop if counter isn't zero
LDA #%11111110 ;Load ACCA with last byte
JSR send_spi ;Send final byteto ADC
RTS ;EXit routine

hkkkkkkkhhkkhhkkhhhhhhhhhhkhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhdhhdhhhhhdhhhhrdhrdrdhxdxx

;* Routine - write_csrs

;* Input - none

;* Output - none

;* This subroutine is used to write to the Channel Setup Registers. It first
;* changes the depth pointer bits in the configuration register to reflect

;* the number of CSRsto be written, and then writes information to the
;* appropriate number of CSRs.

RS EEEE LSS E S LRSS SRS LSS R RS LS SRR RS EEEE LR EEEEEEEEEEEEEEEEEE S
)

write_csrs LDA #$0B ;Command to read config. register
STA COMMAND ;Prepare command byte
JSR read_register;Read the configuration register

;¥** Mask DP3-DPO to access two CSRS (four Setups) ***

LDA MIDBYTE ;Get Middle Bytein ACCA

AND #$3F ;Mask DP3-DP2 low

ORA #$30 ;Mask DP1-DPO high

STA MIDBYTE ;Put info back into Middle Byte location
LDA #$03 ;Command to write back to config Register
STA COMMAND ;Prepare Command Byte

JSR write_register;Write Configuration Register

;¥** Write to CSRs - note, the ADC expects information for the number of
CSRsindicated in the Depth Bits (DP3-DPO in the configuration
register) so all of the CSRs must be written at this time.

LDA #$05 :Command to write CSRs
JSR send_spi ;send command to ADC

;*** Setup CSR #1 - Setups 1 and 2

Sets both Setups to a default value of '000’

(A1-A0 =00, Physical Channel =1, OWR = 15Hz,
Input V-range = 100mV, Bipolar Measurement Mode)

LDA #$00 ;Load ACCA with zeros
JSR send_spi ;One byte of zero...

JSR send_spi ;Two bytes of zero...
JSR send_spi ; Three bytes of zero.

;¥** Setup CSR #2 - Setups 3 and 4

Sets Setup 3 to '4C0O’ and Setup 4 to "105’

Setup 3 Settings - (A1-A0 = 01, Physical Channel =2, OWR = 101.1Hz,
input V-range = 100mV, Bipolar)

8 AN131REV2

FRUSTEr

; Setup 4 Settings - (A1-A0 = 00, Physical Channel = 3, OWR = 15Hz,
; input V-range = 25mV, Unipolar)

LDA #$4C ;Load ACCA with first byte of CSR #2
JSR send_spi ;Send byte number one

LDA #301 ;Load ACCA with second byte of CSR #2
JSR send_spi ;Send byte number two

LDA #3$05 ;Load ACCA with third byte of CSR #2
JSR send_spi ;Send byte number three

RTS ;Exit subroutine

ckkkkhkkkkkhkkhkkhkkhkkkhkkhkhkhkkhkhhkhkkhkhkhhkhkhkhkhhkhhkhkkhkhkkhhkhhkkkhkhkhkhkhkkhkhkhkkhkkhkhkkhkhkhkhkhkkkkhkkkkkhkkkk,k%x
;* Routine - calibrate

;¥ Input - none

;* Output - none

;* This subroutine instructs the CS5521/22/23/24/28 to perform a self-calibration on

* Setup 1.
;***
calibrate LDA #$81 ;Command for Self-Offset Cal, Setup 1
JSR send_spi ;Send Self-Cal command to ADC
poll_sdol BRSET 2,PORTD, poll_sdol ;Wait for SDO to fall
RTS ;Exit Routine

RS TR RS S S S EEE S ST EE LSS EE S S LSS EEEEE LRSS EEEEEEEEEEEEEEEEEEEE S
)

;* Routine - rwgain

;* Input - none

;* Output - contents of gain register on PC1in HIGH, MID and LOW bytes
;* This subroutine first writes, and then reads back the value of the gain

;* register on Physical Channel 1

RS SRS S S S E S EEE S ST EE LSS ST EEEE LSS ST EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
)

;¥** Write to Gain Register of Physical Channel 1 ***

rwgan LDA #$02 ;Command to Write Gain Register of PC 1
STA COMMAND ;Prepeare COMMAND byte
LDA #$80 ;Value for High Byte
STA HIGHBYTE ;Prepare HIGHBYTE
CLR MIDBYTE ;Prepare MIDBYTE
CLR LOWBYTE ;Prepare LOWBYTE
JSR write_register;Write to Gain Register

;*** Read From Gain Register of Physical Channel 1 ***

LDA #$0A ;Command to Read Gain Register of PC 1
STA COMMAND ;Prepare COMMAND byte

JSR read register;Read from Gain Register

RTS ;Return

AN131REV2 9

FRUSTEr

chkkkkkkkkhhkkhkkhhhhhkkhhhhhhhhhhhhhkhhhhhhhhdhhhhhhhhkhhhhhhhhhhhdhhhhhdhhhhkdhhhhdhxixkx
1

:* Routine - convert

;* Input - none

;* Output - conversion results in memory locations HIGHBY TE, MIDBY TE and

* LOWBYTE. Thisalgorithm performs single conversions on
* Setup 1. Seethe CS5521/22/23/24/28 data sheet for multiple
* conversions or conversions on other channels.

;* This subroutine performs a Single conversion using Setup 1

chkkhkhkkkkkkhhhhhhhhkhhkhkhkhkhkhhhhhhrhrhhhkhhhhhhhhhkhkhkhkhkhhhhhhhhhrkdkhkhkhkdhhhhrrrrrxik
)

convert LDA #$0B ;Command to read Configuration Register
STA COMMAND ;Prepare COMMAND byte
JSR read register;Read Config. Register
LDA HIGHBYTE ;Get High Bytein ACCA
AND #$F8 ;Mask MC, LP and RC hitsto 0
STA HIGHBYTE ;Put info back into High Byte location
LDA #$03 ;Command to write back to config Register
STA COMMAND ;Prepare Command Byte
JSR write_register;Write Configuration Register

;*** Receive Conversion Data***

LDA #$80 ;Command to convert on Setup 1

JSR send_spi ;Send Command to ADC
poll_sdo2: BRSET 2,PORTD,poll_sdo2 ;Wait for SDO to fall

LDA #$00 ;Load A with all O's

JSR send_spi ;Send all O'sto ADC

JSR receive_spi ;Get high conversion byte

STA HIGHBYTE ;Moveinfo to High Byte location

JSR receive_spi ;Get middle conversion byte

STA MIDBYTE ;Moveinfo to Middle Byte location

JSR receive_spi ;Get low conversion byte

STA LOWBYTE ;Move info to Low Byte location

RTS ;Return

chhkkhkhkhkkkkkhhhhhhhkhkhkddhhhhhhhhhddhhhhkhhhhhhkhhhhhhkdhdhdhhhhhhhdddhkhkhkddhhhrrrrrrid
1

;* Routine - write_register

;* Input - COMMAND, HIGHBYTE, MIDBYTE, LOWBYTE

;¥ Output - none

;* This subroutine is used to write information to the internal registers of
;* the CSb521/22/23/24/28

chhkkkhkkkkkkhhhhhhhhkhhdhhhhhhhhhrdhhdhhhhhhhhhhhhkhhkhdkhhhhhhhkhkddhhhkdddhhrrrrrxid
1

write_register LDA COMMAND ;Load ACCA with COMMAND
JSR send_spi ;Transfer command byte
LDA HIGHBYTE ;Load ACCA with HIGHBYTE
JSR send_spi ;Transfer high byte
LDA MIDBYTE ;Load ACCA with MIDBYTE
JSR send_spi ;Transfer middle byte

LDA LOWBYTE ;Load ACCA with LOWBYTE

10 AN131REV2

r 4 Y I17 J J | &

' 44y 4 a8/ /] 4

. ___|
JSR send_spi ;Transfer low byte
RTS ;Return

;***
;* Routine - read_register

;* Input - COMMAND

;* Output - HIGHBYTE, MIDBYTE, LOWBYTE

;* This subroutine is used to read from the internal registers of the

;¥ CSb521/22/23/24/28

chhkkhkhkkkkkkhhhhhhhhhhkhhkhkhkhhhhhhrhhhhhkhhhhhhhhhkhkhkhkhkhhhhdhhhhrkdkdxhkhkhkddhhhrrxrrxik
)

read_register LDA COMMAND ;Load ACCA with COMMAND
JSR send_spi ;Send command byte
JSR receive_spi ;Receive a byte
STA HIGHBYTE ;Storevaluein HIGHBYTE
JSR receive_spi ;Receive abyte
STA MIDBYTE ;Storevaluein MIDBYTE
JSR receive_spi ;Receive abyte
STA LOWBYTE ;Storevaluein LOWBYTE
RTS ;Return

R R R R R R R R R R R R R R R R Rk R R R R o R R
;* Routine - send_spi

;* Input - Byte to be send is placed in ACCA

;* Output - none

;* This subroutine sends a byte to the ADC using the SPI port.

RS E SR LSS S SRR EEEE LSS TS ETEEEE LSS ST EEEEEEE SRS EEEEEEEEEEEEEEEEEEEE S
)

send_spi STA SPDR ;Move ACCA to the SPI Data Register
wait0: BRCLR SPIF,SPSR,wait0 ;Loop until byte has been transmitted
RTS ;Return

rhkkkkkhkkhkhkkhhhkhhkhhhhhkhhhhhkhhhkhhhhhhhhhhhhhkhhhdhhkhdhhhhhdhhdhhhhdhhdhhkhhhkdhhhhkdhkdxxkx
;* Routine - receive_spi

;* Input - none

;* Output - Received byteis placed in ACCA

;* This subroutine receives a byte from the ADC using the SPI port

RS TR R TS S E S EEEE LSS ST SRS S LSS ST EEEEEEEE SRS EEEEEEEEEEEEEEEEEEEE S
)

receive_spi CLRA ;Load ACCA Register with all Zeros
STA SPDR ;Transfer 8 0's to clock next byte
waitl: BRCLR SPIF,SPSR,waitl ;Reset SPIF bit
LDA SPDR ;Get received information
RTS ;Return

chkkkkkkkkhkkhkkhhkhhkkhhkhhkkhhkkhhkhhhhhhhhhkhhhhhkhhhhhkkhhhhhkkhhkkhhkkhhkkhhhkdhhkhhkkhhhkhkkhkkkxkx
3

AN131REV2 11

r 4 Y I17 J J | &
N 4 A Wy /|
' 447y 4 a8/ / 4

AN131

;* Routine - delay
;* Input - count in ACCA
;* Output - none

;* Thisroutine delays by using the count specified in ACCA. The 68HCO05

;* Development Board uses a4.0MHz clock (E = 2.0MHZz), thus each cycleis

;* 500ns. Thisdelay is equivalent to (500ns)* (1545)(count value)
;* A count of 720 provides a 556ms delay.

chkkkkkkkkhkhkhhhhhhhkhkhkhhhhhrhhhhhhhhhhhhkhkhkhhhhdhhhhhhhkhhhhhhhrhhdkhkhhddhhhkdkkkhkdkx

delay NOP

outlp: CLRX

innlp: DECX
NOP
NOP
BNE
DECA
BNE
RTS

innlp

outlp

;X used asinner loop count
;256 loops on inner

;2 cycles

;2 cycles

;10 cycles* 256* 500ns=1.28ms
;countdown accumul ator

;2569 cycles* 500ns* ACCA
;Return

RS SR E RS S S S S SR EE ST EE LSS TSR TR RS S LSRR EEEEEEE SRS EEEEEEEEEEEEEEEEEEEE S

¥ Interrupt Vectors

chkkkkkkkhhkhhhkhhhhhhhhhhhdhhhhhdhhhhhhhhdhhhhhdhhhhhhhdhhhhdhhdhhhhdhhdrdhhdrddhrdsx

NOT_USEDRTI
ORG
FDB
FDB
FDB
FDB
FDB
FDB

$1FF4

NOT_USED
NOT_USED
NOT_USED
NOT_USED
NOT_USED
MAIN

;Return from interrupt

:Int Vector location

;SPI interrupt

;SPI interrupt

;SPI interrupt

;SPI interrupt

;SPI interrupt

;Reset interrupt - power on reset

12

AN131REV2

* Notes

