FEATURES
Fixed Gain of 20 dB
Operational Frequency of 100 MHz to 2.7 GHz
Linear Output Power Up to 4 dBm
Input/Output Internally Matched to 50Ω
Temperature and Power Supply Stable
Noise Figure 4.2 dB
Power Supply 3 V or 5 V
APPLICATIONS
VCO Buffers
General Tx/Rx Amplification
Power Amplifier Predriver
Low Power Antenna Driver

PRODUCT DESCRIPTION

The AD8354 is a broadband, fixed-gain linear amplifier that operates at frequencies from 100 MHz up to 2.7 GHz . It is intended for use in a wide variety of wireless devices including cellular, broadband, CATV, and LMDS/MMDS applications.
By taking advantage of Analog Devices' high performance complementary Si bipolar process, these gain blocks provide excellent stability over process, temperature, and power supply. This amplifier is single-ended and internally matched to 50Ω with a return loss of greater than 10 dB over the full operating frequency range.
The AD8354 provides linear output power of nearly 4.3 dBm with 20 dB of gain at 900 MHz when biased at 3 V and an external RF choke is connected between the power supply and the output pin. The dc supply current is 24 mA . At 900 MHz , the output third order intercept (OIP3) is greater than 18 dBm , and is 14 dBm at 2.7 GHz .

FUNCTIONAL BLOCK DIAGRAM

The noise figure is 4.2 dB at 900 MHz . The reverse isolation $\left(\mathrm{S}_{12}\right)$ is -33 dB at 900 MHz .
The AD8354 can also operate with a 5 V power supply, in which case no external inductor is required. Under these conditions, the AD8354 delivers 4.8 dBm with 20 dB of gain at 900 MHz . The dc supply current is 26 mA . At 900 MHz , the OIP3 is greater than 19 dBm and is 15 dBm at 2.7 GHz . The noise figure is 4.4 dB at 900 MHz . The reverse isolation $\left(\mathrm{S}_{12}\right)$ is -33 dB .
The AD8354 is fabricated on Analog Devices' proprietary, highperformance 25 GHz Si complementary bipolar IC process. The AD8354 is available in a chip scale package that utilizes an exposed paddle for excellent thermal impedance and low impedance electrical connection to ground. It operates over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
An evaluation board is available.

unless otherwise noted.)

Parameters	Conditions	Min	Typ	Max	Unit
OVERALL FUNCTION Frequency Range Gain Delta Gain Gain Supply Sensitivity Reverse Isolation (S_{12})	$\begin{aligned} & \mathrm{f}=900 \mathrm{MHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.7 \mathrm{GHz} \\ & \mathrm{f}=900 \mathrm{MHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{f}=1.9 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{f}=2.7 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{VPOS} \pm 10 \%, \mathrm{f}=900 \mathrm{MHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.7 \mathrm{GHz} \\ & \mathrm{f}=900 \mathrm{MHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.7 \mathrm{GHz} \end{aligned}$	0.1	$\begin{aligned} & 19.5 \\ & 18.6 \\ & 17.1 \\ & -0.97 \\ & -1.05 \\ & -1.33 \\ & 0.54 \\ & 0.37 \\ & 0.2 \\ & -33.5 \\ & -38 \\ & -32.9 \end{aligned}$	2.7	$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{~dB} / \mathrm{V} \\ & \mathrm{~dB} / \mathrm{V} \\ & \mathrm{~dB} / \mathrm{V} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
RF INPUT INTERFACE Input Return Loss	$\begin{aligned} & \text { Pin RFIN } \\ & \mathrm{f}=900 \mathrm{MHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.7 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 24.4 \\ & 23 \\ & 12.7 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
RF OUTPUT INTERFACE Output Compression Point Delta Compression Point Output Return Loss	Pin VOUT $\mathrm{f}=900 \mathrm{MHz}, 1 \mathrm{~dB}$ compression $\mathrm{f}=1.9 \mathrm{GHz}$ $\mathrm{f}=2.7 \mathrm{GHz}$ $\mathrm{f}=900 \mathrm{MHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ $\mathrm{f}=1.9 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ $\mathrm{f}=2.7 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ $\mathrm{f}=900 \mathrm{MHz}$ $\mathrm{f}=1.9 \mathrm{GHz}$ $\mathrm{f}=2.7 \mathrm{GHz}$		$\begin{aligned} & 4.6 \\ & 3.7 \\ & 2.7 \\ & 0.7 \\ & 0.7 \\ & 0.8 \\ & 23.6 \\ & 16.5 \\ & 14.6 \\ & \hline \end{aligned}$		dBm dBm dBm dB dB dB dB dB dB
DISTORTION/ NOISE Output Third Order Intercept Output Second Order Intercept Noise Figure	$\begin{aligned} & \mathrm{f}=900 \mathrm{MHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-28 \mathrm{dBm} \\ & \mathrm{f}=1.9 \mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-28 \mathrm{dBm} \\ & \mathrm{f}=2.7 \mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-28 \mathrm{dBm} \\ & \mathrm{f}=900 \mathrm{MHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-28 \mathrm{dBm} \\ & \mathrm{f}=900 \mathrm{MHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.7 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 19 \\ & 16 \\ & 14.2 \\ & 29.7 \\ & 4.2 \\ & 4.8 \\ & 5.4 \end{aligned}$		dBm dBm dBm dBm dB dB dB
POWER INTERFACE Supply Voltage Total Supply Current Supply Voltage Sensitivity Temperature Sensitivity	Pin VPOS $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	$\begin{aligned} & 2.7 \\ & 16 \end{aligned}$	$\begin{aligned} & 3 \\ & 23 \\ & 6.2 \\ & 33 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 31 \end{aligned}$	V mA mA / V $\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$

[^0]
SPECIFICATIONS
 $\left(V_{S}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, no external inductor between VOUT and VPOS, $\mathrm{Z}_{0}=50 \Omega$, unless otherwise noted.)

Parameters	Conditions	Min	Typ	Max	Unit
OVERALL FUNCTION					
Frequency Range		0.1		2.7	GHz
Gain	$\mathrm{f}=900 \mathrm{MHz}$		19.5		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		18.7		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		17.3		dB
Delta Gain	$\mathrm{f}=900 \mathrm{MHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-0.93		dB
	$\mathrm{f}=1.9 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-0.99		dB
	$\mathrm{f}=2.7 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-1.21		dB
Gain Supply Sensitivity	VPOS $\pm 10 \%$, $\mathrm{f}=900 \mathrm{MHz}$		0.32		dB/V
	$\mathrm{f}=1.9 \mathrm{GHz}$		0.21		dB/V
	$\mathrm{f}=2.7 \mathrm{GHz}$		0.08		dB/V
Reverse Isolation (S_{12})	$\mathrm{f}=900 \mathrm{MHz}$		-33.5		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		-37.6		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		-32.9		dB
RF INPUT INTERFACE Input Return Loss	Pin RFIN				
	$\mathrm{f}=900 \mathrm{MHz}$		24.4		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		23.9		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		13.5		dB
RF OUTPUT INTERFACE Output 1 dB Compression	Pin VOUT				
	$\mathrm{f}=900 \mathrm{MHz}$		4.8		dBm
	$\mathrm{f}=1.9 \mathrm{GHz}$		4.6		dBm
	$\mathrm{f}=2.7 \mathrm{GHz}$		3.6		dBm
Delta Compression Point	$\mathrm{f}=900 \mathrm{MHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		0.37		dB
	$\mathrm{f}=1.9 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-0.14		dB
	$\mathrm{f}=2.7 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-0.05		dB
Output Return Loss	$\mathrm{f}=900 \mathrm{MHz}$		23.7		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		22.5		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		17.6		dB
DISTORTION/ NOISE					
Output Third Order Intercept	$\mathrm{f}=900 \mathrm{MHz}, \Delta \mathrm{f}=50 \mathrm{MHz}, \mathrm{P}_{\text {IN }}=-30 \mathrm{dBm}$		19.3		dBm
	$\mathrm{f}=1.9 \mathrm{GHz}, \Delta \mathrm{f}=50 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-30 \mathrm{dBm}$		17.3		dBm
	$\mathrm{f}=2.7 \mathrm{GHz}, \Delta \mathrm{f}=50 \mathrm{MHz}, \mathrm{P}_{\text {IN }}=-30 \mathrm{dBm}$		15.3		dBm
Output Second Order InterceptNoise Figure	$\mathrm{f}=900 \mathrm{MHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {IN }}=-28 \mathrm{dBm}$		28.7		dBm
	$\mathrm{f}=900 \mathrm{MHz}$		4.4		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		5		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		5.6		dB
POWER INTERFACE Supply Voltage	Pin VPOS				
		4.5	5	5.5	V
Total Supply Current	$\mathrm{T}_{\mathrm{A}}=27^{\circ} \mathrm{C}$	17	25	34	mA
Supply Voltage Sensitivity			4		mA / V
Temperature Sensitivity	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		28		$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$

Specifications subject to change without notice.

AD8354

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage VPOS . 5.5 V
Input Power (re: 50Ω) . 10 dBm
Equivalent Voltage . 700 mV rms
Internal Power Dissipation
Paddle Not Soldered . 325 mW
Paddle Soldered . 812 mW
θ_{JA} (Paddle Not Soldered) . $200^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA} (Paddle Soldered) . $80^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature $150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering 60 sec) $240^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

Mode1	Temperature Range	Package Description	Package Option
AD8354ACP-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$7^{\prime \prime}$ Tape and Reel Evaluation Board	CP-8
AD8354-EVAL			

PIN CONFIGURATION

PIN FUNCTION DESCRIPTIONS

Pin	Mnemonic	Description		
1,8	COM1	Device Common. Connect to low impedance ground. RF Input Connection. Must be ac-coupled.		
4,5	INPT	COM2		Device Common.
:---				
Connect to low				
impedance ground.				
6	VPOS \quad	Positive Supply Voltage		
:---				
2	NC	No Connection		
:---				
7	VOUT	RF Output Connection.		
:---				
Must be ac-coupled.	.			

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8354 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics-AD8354

TPC 1. S_{11} vs. Frequency, $V_{S}=3 V, T_{A}=25^{\circ} \mathrm{C}$, $100 \mathrm{MHz} \leq f \leq 3.0 \mathrm{GHz}$

TPC 2. Gain vs. Frequency, $V_{S}=2.7 V, 3.0 V$, and $3.3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

TPC 3. Reverse Isolation vs. Frequency, $V_{S}=2.7 \mathrm{~V}, 3 \mathrm{~V}$, and $3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

TPC 4. S_{22} vs. Frequency, $V_{S}=3 V, T_{A}=25^{\circ} \mathrm{C}$, $100 \mathrm{MHz} \leq f \leq 3.0 \mathrm{GHz}$

TPC 5. Gain vs. Frequency, $V_{S}=3 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 6. Reverse Isolation vs. Frequency, $V_{S}=3 \mathrm{~V}$, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 7. $P_{1 d B}$ vs. Frequency, $V_{S}=2.7 \mathrm{~V}, 3 \mathrm{~V}$, and $3.3 \mathrm{~V}, T_{A}=27^{\circ} \mathrm{C}$

TPC 8. Distribution of $P_{1 d B}, V_{S}=3 V, T_{A}=25^{\circ} \mathrm{C}$, $f=2.2 \mathrm{GHz}$

TPC 9. OIP3 vs. Frequency, $V_{S}=2.7 \mathrm{~V}, 3 \mathrm{~V}$, and $3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

TPC 10. $P_{1 d B}$ vs. Frequency, $V_{S}=3 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C}$, $+27^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 11. Distribution of OIP3, $V_{S}=3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, $f=2.2 \mathrm{GHz}$

TPC 12. OIP3 vs. Frequency, $V_{S}=3 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 13. Noise Figure vs. Frequency, $V_{S}=2.7 \mathrm{~V}, 3 \mathrm{~V}$, and $3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

TPC 14. Distribution of Noise Figure, $V_{S}=3 V$, $T_{A}=25^{\circ} \mathrm{C}, f=2.2 \mathrm{GHz}$

TPC 15. S_{11} vs. Frequency, $V_{S}=5 V, T_{A}=25^{\circ} \mathrm{C}$, $100 \mathrm{MHz} \leq f \leq 3 \mathrm{GHz}$

TPC 16. Noise Figure vs. Frequency, $V_{S}=3$ V, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 17. Supply Current vs. Temperature, $V_{S}=2.7 \mathrm{~V}$, $3 V$, and $3.3 V$

TPC 18. S_{22} vs. Frequency, $V_{S}=5 V, T_{A}=25^{\circ} \mathrm{C}$, $100 \mathrm{MHz} \leq f \leq 3 \mathrm{GHz}$

TPC 19. Gain vs. Frequency, $V_{S}=4.5 \mathrm{~V}, 5.0 \mathrm{~V}$, and $5.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

TPC 20. Reverse Isolation vs. Frequency, $V_{S}=4.5 \mathrm{~V}$, 5 V , and $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

TPC 21. $P_{1 d B}$ vs. Frequency, $V_{S}=4.5 \mathrm{~V}, 5 \mathrm{~V}$, and $5.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

TPC 22. Gain vs. Frequency, $V_{S}=5 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 23. Reverse Isolation vs. Frequency, $V_{S}=5 \mathrm{~V}$, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 24. $P_{1 d B}$ vs. Frequency, $V_{S}=5 V, T_{A}=-40^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 25. Distribution of $P_{1 d B}, V_{S}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, $f=2.2 \mathrm{GHz}$

TPC 26. OIP3 vs. Frequency, $V_{S}=4.5 \mathrm{~V}, 5 \mathrm{~V}$, and $5.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

TPC 27. Noise Figure vs. Frequency, $V_{S}=4.5 \mathrm{~V}, 5 \mathrm{~V}$, and $5.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

TPC 28. Distribution of OIP3, $V_{S}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, $f=2.2 \mathrm{GHz}$

TPC 29. OIP3 vs. Frequency, $V_{S}=5 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 30. Noise Figure vs. Frequency, $V_{S}=5 \mathrm{~V}$, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 31. Distribution of Noise Figure, $V_{S}=5 \mathrm{~V}$, $T_{A}=25^{\circ} \mathrm{C}, f=2.2 \mathrm{GHz}$

TPC 32. Supply Current vs. Temperature, $V_{S}=4.5 \mathrm{~V}$, 5 V , and 5.5 V

TPC 33. Output Power and Gain vs. Input Power, $V_{S}=3 V, T_{A}=25^{\circ} \mathrm{C}, f=900 \mathrm{MHz}$

TPC 34. Output Power and Gain vs. Input Power, $V_{S}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, f=900 \mathrm{MHz}$

THEORY OF OPERATION

The AD8354 is a two-stage feedback amplifier employing both shunt-series and shunt-shunt feedback. The first stage is degenerated and resistively loaded, and provides approximately 10 dB of gain. The second stage is a PNP-NPN Darlington output stage, which provides another 10 dB of gain. Series-shunt feedback from the emitter of the output transistor sets the input impedance to 50Ω over a broad frequency range. Shunt-shunt feedback from the amplifier output to the input of the Darlington stage helps to set the output impedance to 50Ω. The amplifier can be operated from a 3 V supply by adding a choke inductor from the amplifier output to VPOS. Without this choke inductor, operation from a 5 V supply is also possible.

BASIC CONNECTIONS

The AD8354 RF Gain Block is a fixed-gain amplifier with single-ended input and output ports whose impedances are nominally equal to 50Ω over the frequency range 100 MHz to 2.7 GHz. Consequently, it can be directly inserted into a 50Ω system with no impedance matching circuitry required. The input and output impedances are sufficiently stable versus variations in temperature and supply voltage that no impedance matching compensation is required. A complete set of scattering parameters is available at the Analog Devices website (www.analog.com).
The input pin (INPT) is connected directly to the base of the first amplifier stage, which is internally biased to approximately 1 V , so a dc-blocking capacitor should be connected between the source that drives the AD8354 and the input pin, INPT.
It is critical to supply very low inductance ground connections to the ground pins (pins $1,4,5$, and 8) as well as to the backside exposed paddle. This will ensure stable operation.
The AD8354 is designed to operate over a wide supply voltage range, from 2.7 V to 5.5 V . The output of the part, VOUT, is taken directly from the collector of the output amplifier stage. This node is internally biased to approximately 3.2 V when the supply voltage is 5 V . Consequently, a dc-blocking capacitor should be connected between the output pin, VOUT, and the load that it drives. The value of this capacitor is not critical, but it should be 100 pF or larger.
When the supply voltage is 3 V , it is recommended that an external RF choke be connected between the supply voltage and the output pin, VOUT. This will increase the dc voltage applied to the collector of the output amplifier stage, which will improve performance of the AD8354 to be very similar to the performance produced when 5 V is used for the supply voltage. The inductance of the RF choke should be approximately 100 nH , and care should be taken to ensure that the lowest series self-resonant frequency of this choke is well above the maximum frequency of operation for the AD8354.
The supply voltage input, VPOS, should be bypassed using a large value capacitance (approximately $0.47 \mu \mathrm{~F}$ or larger) and a smaller, high-frequency bypass capacitor (approximately 100 $\mathrm{pF})$ physically located close to the VPOS pin.
The recommended connections and components are shown in the schematic of the AD8354 evaluation board.

APPLICATIONS

The AD8354 RF Gain Block may be used as a general purpose fixed-gain amplifier in a wide variety of applications, such as a driver for a transmitter power amplifier (Figure 1). Its excellent reverse isolation also makes this amplifier suitable for use as a local oscillator buffer amplifier that would drive the local oscillator port of an up or down converter mixer (Figure 2).

Figure 1. AD8354 as a Driver Amplifier

Figure 2. AD8354 as a LO Driver Amplifier

NC = NO CONNECT
Figure 3. Evaluation Board Schematic

EVALUATION BOARD

Figure 3 shows the schematic of the AD8354 evaluation board. Note that L 1 is shown as an optional component, which is used to obtain maximum gain only when $\mathrm{V}_{\mathrm{P}}=3 \mathrm{~V}$. The board is powered by a single supply in the range, 2.7 V to 5.5 V . The power supply is decoupled by a $0.47 \mu \mathrm{~F}$ and a 100 pF capacitor.

Table I. Evaluation Board Configuration Options

Component	Function	Default Value
C1, C2 C3	AC-Coupling Capacitors High-Frequency Bypass Capacitor	$1000 \mathrm{pF}, 0603$
C4	Low-Frequency Bypass Capacitor Optional RF Choke, used to increase current through output stage when $V_{P}=3 \mathrm{~V}$.	$0.47 \mu \mathrm{pF}, 0603$
Not recommended for use when $\mathrm{V}_{\mathrm{P}}=5 \mathrm{~V}$.	$100 \mathrm{nH}, 0603$	

Figure 5. Component Side

Figure 4. Silkscreen Top

OUTLINE DIMENSIONS

Dimensions shown in millimeters.
8-Lead LFCSP
(CP-8)

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS 2. PADDLE IS COPPER PLATED WITH LEAD FINISH.

[^0]: Specifications subject to change without notice.

