FA5310BP(S), FA5314P(S), FA5316P(S) FA5311BP(S), FA5315P(S), FA5317P(S)

Description

The FA531X series are bipolar ICs for switching power supply control that can drive a power MOSFET.
These ICs contain many functions in a small 8-pin package. With these ICs, a high-performance and compact power supply can be created because not many external discrete components are needed.

Features

- Drive circuit for connecting a power MOSFET
- Wide operating frequency range (5 to 600 kHz)
- Pulse-by-pulse overcurrent limiting function
- Overload cutoff function (Latch or non-protection mode selectable)
- Output ON/OFF control function by external signal
- Overvoltage cutoff function in latch mode
- Undervoltage malfunction prevention function
- Low standby current ($90 \mu \mathrm{~A}$ typical)
- Exclusive choices by circuits (See selection guide on page 25)
- 8-pin package (DIP/SOP)

Applications

- Switching power supply for general equipment

- Block diagram

- FA5310BP(S)/FA5311BP(S)/FA5316P(S)/FA5317P(S)

- FA5314P(S)/FA5315P(S)

Dimensions, mm

- SOP-8

- DIP-8

Pin No.	Pin symbol	Description
1	RT	Oscillator timing resistor
2	FB	Feedback
3	IS $(+)$	Overcurrent (+) detection
4	GND	Ground
5	OUT	Output
6	VCC	Power supply
7	CT	Oscillator timing capacitor
8	CS	Soft-start and ON/OFF control

Pin No.	Pin symbol	Description
1	RT	Oscillator timing resistor
2	FB	Feedback
3	IS (-)	Overcurrent (-) detection
4	GND	Ground
5	OUT	Output
6	VCC	Power supply
7	CT	Oscillator timing capacitor
8	CS	Soft-start and ON/OFF control

\square Selection guide

Type	Max. duty cycle (typ.)	Polarity of overcurrent detection	UVLO (typ.)		Max. output current	Application
			ON threshold	OFF threshold		
FA5310BP(S)	46\%	+	16.0 V	8.70 V	1.5A	Forward type
FA5311BP(S)	70\%	+	16.0 V	8.70 V	1.5A	Flyback type
FA5314P(S)	46\%	-	15.5 V	8.40 V	1.5A	Forward type
FA5315P(S)	70\%	-	15.5 V	8.40 V	1.5A	Flyback type
FA5316P(S)	46\%	+	15.5 V	8.40 V	1.0A	Forward type
FA5317P(S)	70\%	+	15.5V	8.40 V	1.0A	Flyback type

■ Absolute maximum ratings

Item	Symbol	Rating	Unit
Supply voltage	Vcc	31	V
Output current FA5310/11/14/15 FA5316/17	lo	$\begin{aligned} & \pm 1.5 \\ & \pm 1.0 \end{aligned}$	A
Feedback terminal input voltage	VFB	4	V
Overcurrent detection terminal input voltage	VIs	-0.3 to +4	V
CS terminal input current	Ics	2	mA
Total power dissipation$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	Pd	800 (DIP-8) *1	mW
		550 (SOP-8) *2	
Operating temperature	Topr	-30 to +85	${ }^{\circ} \mathrm{C}$
Junction temperature	Tj	125	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-40 to +150	${ }^{\circ} \mathrm{C}$

Notes:
*1 Derating factor $\mathrm{Ta}>25^{\circ} \mathrm{C}: 8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (on PC board)
*2 Derating factor $\mathrm{Ta}>25^{\circ} \mathrm{C}: 5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (on PC board)

Recommended operating conditions

Item	Symbol		Min.	
Max.	Unit			
Supply voltage	Vcc	10	30	V
Oscillator timing resistance	RT	3.3	10	$\mathrm{k} \Omega$
FA5310/11		1	10	
FA5314/15/16/17	Cs	0.1	1	$\mu \mathrm{~F}$
Soft-start capacitor	fosc	5	600	kHz
Oscillation frequency				

■ Electrical characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=18 \mathrm{~V}\right.$, fosc $=135 \mathrm{kHz}$)

Oscillator section

Item	Symbol	Test condition	Min.	Typ.	Max.
Unit					
Oscillation frequency	fosc	$\mathrm{RT}=5.1 \mathrm{k} \Omega, \mathrm{C} T=360 \mathrm{pF}$	125	135	145
Frequency variation 1 (due to supply voltage change)	fdv	$\mathrm{Vcc}=10$ to 30 V	kHz		
Frequency variation 1 (due to temperature change)	fdr	$\mathrm{Ta}=-30$ to $+85^{\circ} \mathrm{C}$	± 1		$\%$

Pulse width modulation circuit section

Item	Symbol	Test condition	FA5310/14/16			FA5311/15/17			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Feedback terminal source current	IfB	VFB=0	-660	-800	-960	-660	-800	-960	$\mu \mathrm{A}$
Input threshold voltage (Pin 2)	Vth fbo	Duty cycle =0\%		0.75			0.75		V
	VTH FBM	Duty cycle = Dmax		1.80			2.30		V
Maximum duty cycle	Dmax		43	46	49	66	70	74	\%

Soft-start circuit section

Item	Symbol	Test condition	FA5310/14/16			FA5311/15/17			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Charge current (Pin 8)	ICHG	Pin 8=0V	-15	-10	-5	-15	-10	-5	$\mu \mathrm{A}$
Input threshold voltage (Pin 8)	Vth cso	Duty cycle $=0 \%$		0.90			0.90		V
	VTh csm	Duty cycle = Dmax		1.90			2.30		V

Overcurrent limiting circuit section

Item	Symbol	Test condition	FA5310/11/16/17			FA5314/15			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Input threshold voltage (Pin 3)	VTH IS		0.21	0.24	0.27	-0.21	-0.17	-0.14	V
Overcurrent detection terminal source current	IIS	Pin 3=0V	-300	-200	-100	-240	-160	-80	$\mu \mathrm{A}$
Delay time	TPD IS			150			200		ns

Latch-mode cutoff circuit section

Item	Symbol	Test condition	Min.	Typ.	Max.
Unit					
CS terminal sink current	ISINK CS	Pin 8=6V, Pin 2=1V	25	45	65
Cutoff threshold voltage (Pin 8)	VTH CS		$\mu \mathrm{A}$		

Overload cutoff circuit section

Item	Symbol	Test condition	Min.	Typ.	Max.
Unit					
Cutoff-start voltage (Pin 2)	VTH FB		2.6	2.8	3.1

Undervoltage lockout circuit section

Item	Symbol	Test condition	FA5310/11			FA5314/15/16/17			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
OFF-to-ON threshold voltage	Vcc On		15.5	16.0	16.5	14.8	15.5	16.2	V
ON-to-OFF threshold voltage	Vcc off		8.20	8.70	9.20	7.70	8.40	9.10	V

Output section

Item	Symbol	Test condition		Min.	Typ.	Max.	Unit
		FA5310/11/14/15	FA5316/17				
L-level output Voltage	Vol	$\mathrm{lo}=100 \mathrm{~mA}$	$1 \mathrm{O}=50 \mathrm{~mA}$		1.30	1.80	V
H-level output Voltage	VOH	$\begin{aligned} & \mathrm{lo}=-100 \mathrm{~mA} \\ & \mathrm{Vcc}=18 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{lo}=-50 \mathrm{~mA} \\ & \mathrm{Vcc}=18 \mathrm{~V} \end{aligned}$	16.0	16.5		V
Rise time	tr	No load	No load		50		ns
Fall time	tf	No load	No load		50		ns

Output ON/OFF circuit section

Item	Symbol	Test condition	Min.	Typ.	Max.
Unit					
CS terminal source current	Isource cs	Pin 8=0V	-15	-10	-5
OFF-to-ON threshold Voltage (Pin 8)	VTH ON	CS terminal voltage OFF \rightarrow ON		0.56	
ON-to-OFF threshold Voltage (Pin 8)	VTH OFF	CS terminal voltage ON \rightarrow OFF		V	

Overall device

Item	Symbol	Test condition	Min.	Typ.	Max.
Unit					
Standby current	Icc sT	Vcc=14V		90	150
Operating-state supply current	Icc OP		$\mu \mathrm{A}$		
OFF-state supply current	ICc OFF		9	15	mA
Cutoff-state supply current	ICCL		1.1	1.8	mA

■ Description of each circuit

1. Oscillator (See block diagram)

The oscillator generates a triangular waveform by charging and discharging a capacitor. CT pin voltage oscillates between an upper limit of approx. 3.0V and a lower limit of approx. 1.0V. The oscillation frequency is determined by a external resistance and capacitance shown in figure 1, and approximately given by the following equation:
$\mathrm{f}(\mathrm{kHz})=\frac{10^{6}}{4 \mathrm{Rt}_{\mathrm{T}}(\mathrm{k} \Omega) \cdot \mathrm{CT}(\mathrm{pF})}$
The recommended oscillation range is between $5 k$ and 600 kHz .
The oscillator output is connected to a PWM comparator.

2. Feedback pin circuit

Figure 2 gives an example of connection in which an optocoupler is used to couple the feedback signal to the FB pin. It is designed to be strong against noise and will not create parasitic oscillation so much, because the output impedance at the FB pin is as low as 4 k to 5 k . If this circuit causes power supply instability, the frequency gain can be decreased by connecting R_{4} and C_{4} as shown in figure 2 . R_{4} should be between several tens of ohms to several kiloohms and C_{4} should be between several thousand picofarads to one microfarads.

3. PWM comparator

The PWM comparator has four inputs as shown in Figure 3. Oscillator output (1) is compared with CS pin voltage (2, FB pin voltage (3), and DT voltage (4). The lowest of three inputs (2), (3), and (4) is compared with output (1). If it is lower than the oscillator output, the PWM comparator output is high, and if it is higher than the oscillator output, the PWM comparator output is low (see Fig. 4).
The IC output voltage is high during when the comparator output is low, and the IC output voltage is low during when the comparator output is high.
When the IC is powered up, CS pin voltage (2) controls soft start operation. The output pulse then begins to widen gradually. During normal operation, the output pulse width is determined within the maximum duty cycle set by DT voltage (4) under the condition set by feedback signal (3), to stabilize the output voltage.

Fig. 1 Oscillator

Fig. 2 Configuration with optocoupler (FB pin input)

Fig. 3 PWM comparator

Fig. 4 PWM comparator timing chart

4. $C S$ pin circuit

As shown in Figure 5 capacitor Cs is connected to the CS pin. When power is turned on, the constant current source $(10 \mu \mathrm{~A})$ begins to charge capacitor Cs. Accordingly, the CS pin voltage rises as shown in Figure 6. The CS pin is connected to an input of the PWM comparator. The device is in soft-start mode while the CS pin voltage is between 0.9 V and 1.9 V (FA5310/14/16) and between 0.9 V and 2.3 V (FA5311/15/17). During normal operation, the CS pin is clamped at 3.6 V by internal zener diode Zn . If the output voltage drops due to an overload, etc., the clamp voltage shifts from 3.6 V to 8.0 V . As a result, the CS pin voltage rises to 8.0 V . The CS pin is also connected to latch comparator C2. If the pin voltage rises above 7.0 V , the output of comparator C 2 goes high to turn off the bias circuit, thereby shutting the output down. Comparator C2 can be used not only for shutdown in response to an overload, but also for shutdown in response to an overvoltage. Comparator C1 is also connected to the CS pin, and the bias circuit is turned off and the output is shut down if the CS pin voltage drops below 0.42 V . In this way, comparator C 1 can also be used for output on/off control.
As explained above, the CS pin can be used for soft-start operation, overload and overvoltage output shutdown and output on/off control.
Further details on the four functions of the CS pin are given below.

4.1 Soft start function

Figure 7 shows the soft start circuit. Figure 8 is the soft-start operation timing chart. The CS pin is connected to capacitor Cs. When power is turned on, a $10 \mu \mathrm{~A}$ constant-current source begins to charge the capacitor. As shown in the timing chart, the CS pin voltage rises slowly in response to the charging current. The CS pin is connected internally to the PWM comparator. The comparator output pulse slowly widens as shown in the timing chart.
The soft start period can be approximately evaluated by the period ts from the time the IC is activated to the time the output pulse width widens to 30%. Period ts is given by the following equation:
$\mathrm{ts}(\mathrm{ms})=160 \mathrm{Cs}(\mu \mathrm{F})$.

Fig. 5 CS pin circuit

Fig. 6 CS pin waveform

Fig. 6 CS pin waveform

Fig. 7 Soft-start circuit

Fig. 8 Soft-start timing chart

4.2 Overload shutdown

Figure 9 shows the overload shutdown circuit, and Figure 10 is a timing chart which illustrates overload shutdown operation. If the output voltage drops due to an overload or short-circuit, the output voltage of the FB pin rises. If FB pin voltage exceeds the reference voltage (2.8 V) of comparator C 3 , the output of comparator C3 switches low to turn transistor Q off. In normal operation, transistor Q is on and the CS pin is clamped at 3.6 V by zener diode Zn . With Q off, the clamp is released and the $10 \mu \mathrm{~A}$ constant-current source begins to charge capacitor Cs again and the CS pin voltage rises. When the CS pin voltage exceeds the reference voltage (7.0V) of comparator C 2 , the output of comparator C 2 switches high to turn the bias circuit off. The IC then enters the latched mode and shuts the output down. Shutdown current consumption is $400 \mu \mathrm{~A}(\mathrm{Vcc}=9 \mathrm{~V})$. This current must be supplied through the startup resistor. The IC then discharges the MOSFET gates. Shutdown operation initiated by an overload can be reset by lowering supply voltage Vcc below Vcc off or forcing the CS pin voltage below 7.0 V .
The period tol from the time that the output is short-circuited to the time that the bias circuit turns off is given by the following equation:
toL(ms) $=340 \mathrm{Cs}(\mu \mathrm{F})$.

4.3 Overvoltage shutdown

Figure 11 shows the overvoltage shutdown circuit, and Figure 12 is a timing chart which illustrates overvoltage shutdown operation.
The optocoupler PC1 is connected between the CS and Vcc pins. If the output voltage rises too high, the PC1 turns on to raise the voltage at the CS pin via resistor R6. When the CS pin voltage exceeds the reference voltage (7.0 V) of comparator C2, comparator C2 switches high to turn the bias circuit off. The IC then enters the latched mode and shuts the output down. The shutdown current consumption of the IC is $400 \mu \mathrm{~A}(\mathrm{Vcc}=9 \mathrm{~V})$. This current must be applied via startup resistor R5.
The IC then discharges the MOSFET gates.
The shutdown operation initiated by an overvoltage condition can be reset by lowering supply voltage Vcc below Vcc off or forcing the CS pin voltage below 7.0 V .
During normal operation, the CS pin is clamped by a 3.6 V zener diode with a sink current of $65 \mu \mathrm{~A}$ max. Therefore, a current of $65 \mu \mathrm{~A}$ or more must be supplied by the optocoupler in order to raise the CS pin voltage above 7.0 V .

Fig. 9 Overload shutdown circuit

Comparator C2
reference voltage (7.0V)

Fig. 10 Overload shutdown timing chart

Fig. 11 Overvoltage shutdown circuit

Fig. 12 Overvoltage shutdown timing chart

4.4 Output ON/OFF control

The IC can be turned on and off by an external signal applied to the CS pin.
Figure 13 shows the external output on/off control circuit, and Figure 14 is the timing chart.
The IC is turned off if the CS pin voltage falls below 0.42 V . The output of comparator C 1 switches high to turn the bias circuit off. This shuts the output down. The IC then discharges the MOSFET gates.
The IC turns on if the CS pin is opened for automatic soft start. The power supply then restarts operation.

5. Overcurrent limiting circuit

The overcurrent limiting circuit detects the peak value of every drain current pulse of the main switching MOSFET to limit the overcurrent.
The detection threshold is +0.24 V for $\mathrm{FA} 5310 \mathrm{~B} / 11 \mathrm{~B} / 16 / 17$ with respect to ground as shown in Figure 15.
The drain current of the MOSFET is converted to voltage by resistor R_{7} and fed to the IS pin of the IC. If the voltage exceeds the reference voltage (0.24 V) of comparator C 4 , the output of comparator C4 goes high to set flip-flop output Q high. The output is immediately turned off to shut off the current. Flip-flop output Q is reset on the next cycle by the output of the oscillator to turn the output on again. This operation is repeated to limit the overcurrent.
If the overcurrent limiting circuit malfunctions due to noise, place an RC filter between the IS pin and the MOSFET. Figure 16 is a timing chart which illustrates current-limiting operations.

Fig. 13 External output on/off control circuit

Fig. 14 Timing chart for external output on/off control

Fig. 16 Overcurrent timing chart for FA5310/11/16/17

The detection threshold is -0.17 V for FA5314/15 with respect to ground as shown in Figure 17.
The operation is similar to that of $\mathrm{FA} 5310 \mathrm{~B} / 11 \mathrm{~B} / 16 / 17$ except the threshold is minus voltage compared to that which is plus voltage for $\mathrm{FA} 5310 \mathrm{~B} / 11 \mathrm{~B} / 16 / 17$.
Figure 18 is a timing chart which illustrates current limiting operations.

6. Undervoltage lockout circuit

The IC incorporates a circuit which prevents the IC from malfunctioning when the supply voltage drops. When the supply voltage is raised from 0 V , the IC starts operation with Vcc=Vcc on.
If the supply voltage drops, the IC shuts its output down when $\mathrm{Vcc}=\mathrm{Vcc}$ OFF. When the undervoltage lockout circuit operates, the CS pin goes low to reset the IC.

7. Output circuit

As shown in Figure 19, the IC's totem-pole output can directly drive the MOSFET. The OUT pin can source and sink currents of up to 1.5 A or 1.0 A .
If IC operation stops when the undervoltage lockout circuit operates, the gate voltage of the MOSFET goes low and the MOSFET is shut down.

Fig. 17 Overcurrent limiting circuit for FA5314/15

Fig. 18 Overcurrent timing chart for FA5314/15

Fig. 19 Output circuit

■ Design advice

1. Startup circuit

It is necessary to start-up IC that the voltage inclination of VCC terminal "dVcc/dt" satisfies the following equation(4).
$\mathrm{dVcc} / \mathrm{dt}(\mathrm{V} / \mathrm{s})>1.8 / \mathrm{Cs}(\mu \mathrm{F})$.
Cs : Capacitor connected between CS terminal and GND
Note that equation (4) must be satisfied in any condition. Also, it is necessary to keep "latch mode" for overload protection or overvoltage protection that the current supplied to VCC terminal through startup resistor satisfies the following equation(5).

Icc(Lat)> 0.4 mA for $\mathrm{Vcc} \leqq 9.2 \mathrm{~V}$ \qquad
Icc(Lat) : Cutoff-state(= Latch mode) supply current
The detail is explained as follows.

Fig. 20 Startup circuit example(1)
(1) Startup circuit connected to AC line directly

Fig. 20 shows a typical startup circuit that a startup resistor Rc is connected to AC line directly. The period from power-on to startup is determined by Rc, Rd and CA . Rc, Rd and CA must be designed to satisfy the following equations.
$\mathrm{dVcc} / \mathrm{dt}(\mathrm{V} / \mathrm{s})=$
(1/CA) • \{(VaVE-Vccon)/Rc-Vccon/Rd-Iccst\} >
$1.8 /(\mathrm{Cs}(\mu \mathrm{F}))$
$\operatorname{Rc}(\mathrm{k} \Omega)<(\operatorname{VAVE}-9.2(\mathrm{~V})) /\{0.4(\mathrm{~mA})+(9.2(\mathrm{~V}) / \operatorname{Rd}(\mathrm{k} \Omega)\}$
VAVE $=$ Vac $\cdot \sqrt{2} / \pi$: Average voltage applied to $A C$ line side of $R c$ Vac: AC input effective voltage
Vccon: ON threshold of UVLO, 16.5 V (max.) or 16.2 V (max.)
Iccst: Standby current, 0.15 mA (max.)
In this method, Vcc voltage includes ripple voltage influenced by AC voltage. Therefore, enough $\mathrm{dVcc} / \mathrm{dt}$ required by equation (6) tend to be achieved easily when Vcc reaches to Vccon even if Vcc goes up very slowly. After power-off, Vcc does not rise up because a voltage applied from bias winding to VCC terminal decreases and the current flowing Rc becomes zero, therefore, re-startup does not occur after Vcc falls down below OFF threshold of UVLO until next power-on.

(2) Startup circuit connected to rectified line

This method is not suitable for FA531X, especially concerned with re-startup operation just after power-off or startup which AC input voltage goes up slowly. Fig. 21 shows a startup circuit that a startup resistor RA is connected to rectified line directly.
The period from power-on to startup is determined by RA, RB and CA. RA, Rb and CA must be designed to satisfy the following equations.
$\mathrm{dVcc} / \mathrm{dt}(\mathrm{V} / \mathrm{s})=$
(1/CA) $\{(\mathrm{VIN}-$ Vccon $) /$ RA - Vccon/Rb-Iccst $\}>$
$1.8 /(\operatorname{Cs}(\mu \mathrm{F}))$
$\operatorname{RA}(\mathrm{k} \Omega)<(\mathrm{VIN}-9.2(\mathrm{~V})) /\{0.4(\mathrm{~mA})+(9.2(\mathrm{~V}) / \operatorname{Rb}(\mathrm{k} \Omega))\} \ldots . .(9)$
VIN : $\sqrt{2} \cdot(A C$ input effective voltage)
After power-off, once Vcc falls down below OFF threshold voltage, Vcc rises up again and re-startup occurs while the capacitor C_{1} is discharged until approximately zero because Vcc voltage rises up by the current flowing RA.
This operation is repeated several times.
After the repeated operation, IC stops in the condition that Vcc voltage is equal to Vccon (=ON threshold) because capacitor C_{1} is discharged gradually and the decreased Vcc inclination is out of the condition required by equation (4). After that, restartup by power-on can not be guaranteed even when equation (8) is satisfied.
The image of that the startup is impossible is shown in Fig. 22. It is necessary to startup IC that supply current Icc(startup) to VCC is over 4 mA in the condition of $\mathrm{Tj}<100^{\circ} \mathrm{C}$ during Vcc is kept at $\operatorname{Vccon}(\fallingdotseq 16 \mathrm{~V}$, balance state at Vccon after the repeated operation.

Icc(start-up) $>4 \mathrm{~mA}$
at $\mathrm{Vcc}=\mathrm{Vccon}, \mathrm{Tj}<100^{\circ} \mathrm{C}$, after power-off
This balance state that startup is impossible tends to occur at higher temperature. If power-on is done when Vcc is not kept at Vccon (for example:power-off is done and after enough time that C 1 is discharged until Vcc can not be pulled up to Vccon), the IC can startup in the condition given by equation(8).

In some cases, such as when the load current of power supply is changed rapidly, you may want to prolong the hold time of the power supply output by means of maintaining Vcc over the off threshold.
For this purpose, connect diode D4 and electrolytic capacitor C 4 as shown in Fig. 23. This prolongs the hold time of the power supply voltage Vcc regardless of the period from poweron to startup.

Fig. 21 Startup circuit example(2)

Fig. 22 A image of waveform when re-startup is impossible

Fig. 23 Startup circuit example(3)

2. Disabling overload shutdown function

As shown in Figure 24, connect a $11 \mathrm{k} \Omega$ resistor between the FB pin and ground. Then, the CS pin voltage does not rise high enough to reach the reference voltage (7.0 V) of the latch comparator, and the IC does not enter the OFF latch mode. With this connection, the overvoltage shutdown function is available.

3. Setting soft start period and OFF latch delay independently

Figure 25 shows a circuit for setting the soft start period and OFF latch delay independently. In this circuit, capacitance Cs determines the soft start period, and capacitance CL determines the OFF latch delay. If the overload shutdown and overvoltage shutdown functions raise the CS pin voltage to around 5 V , zener diode Zn becomes conductive to charge CL . The OFF latch delay can be thus prolonged by CL.

4. Laying out Vcc and ground lines

Figure 26 and 27 show the recommended layouts of Vcc and ground lines. The bold lines represent paths carrying large currents. The lines must have an adequate thickness.

5.Sink current setting for CS terminal

A sink current to CS terminal must be satisfied the following condition to prevent from the malfunction which uncontrolled pulse output generates at OUT terminal when latch-mode protection should be operated for overvoltage.
$65 \mu \mathrm{~A}<\mathrm{Ics}($ sink $)<500 \mu \mathrm{~A}$ at $\mathrm{Vcs}=6.5(\mathrm{~V})$
Ics(sink) : Sink current to CS terminal
Example (for the circuit shown in Fig. 28)
Ics(sink) $=(28(\mathrm{~V})-18(\mathrm{~V})-6.5(\mathrm{~V})) / 7.5(\mathrm{k} \Omega)$

$$
\fallingdotseq 467(\mu \mathrm{~A})<500(\mu \mathrm{~A})
$$

Fig. 24 Disabling overload shutdown function

Fig. 25 Independent setting of soft-start period and OFF latch delay

Fig. 26 Vcc line and ground line (1) for FA5310B/11B/16/17

Fig. 27 Vcc line and ground line (2) for FA5314/15

Fig. 28 Setting sink current for CS terminal

6. Notice for high frequency operation

(1) The final pulse

These ICs have the original characteristics about the pulse width at OUT terminal when the IC is stopped by undervoltage lockout, ON/OFF function, or latched mode for overload or overvoltage.

When the IC is stopped, the final pulse width is $2 \mu \mathrm{~s}$ (max.) longer than normal pulse width as shown in Figure. 29. Here, normal pulse width "A $\mu \mathrm{s}$ " is determined by measured condition of the power supply unit, and whole width of final pulse is " $\mathrm{A}+2 \mu \mathrm{~s}$ (max.)".

Take care of a longer pulse mentioned above for designing or testing the circuit of power supply units.

Fig. 29 OUT terminal voltage wavefrom

(2) Power dissipation and heating

The power dissipation of IC increases and the temperature becomes higher in proportion to the operating frequency, because the driving power of a switching device and the through current of output stage of IC increase.
Determine the oscillation frequency so that the junction temperature (Tj) does not rise to $125^{\circ} \mathrm{C}$.

Tj is calculated as following equation roughly.
$\mathrm{Tj}=\mathrm{Tc}+\theta \mathrm{j}-\mathrm{c} \cdot \mathrm{Vcc} \cdot \mathrm{Icc}$
Tc: Case temperature $\theta \mathrm{j}$-c: Thermal resistance between the junction
Vcc: Vcc voltage and the case $\left(=50^{\circ} \mathrm{C} / \mathrm{W}\right)$
Icc: Supply current at the VCC terminal

■ Characteristic curves $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Oscillation frequency (fosc) vs.
timing capacitor capacitance (Ст)

Output duty cycle vs. FB terminal voltage (VFB)

Output duty cycle vs. CS terminal voltage (Vcs)

Oscillation frequency (fosc) vs. ambient temperature (Ta)

Output duty cycle vs. FB terminal source current (ISOURCE)

CS terminal sink current (ISINK Cs) vs. CS terminal voltage (Vcs)

H-level output voltage (VOH) vs. output source current (ISOURCE)
FA5310/11/14/15
FA5316/17

L-level output voltage(VoL) vs. output sink current (Isink)
FA5310/11/14/15

IS (+) terminal threshold voltage (VTH IS(+)) vs. ambient temperature (Ta)
FA5310/11/16/17

FA5316/17

IS (-) terminal threshold voltage (VTH IS(-)) vs. ambient temperature (Ta)
FA5314/15

IS (+) terminal current (lis(+)) vs.
IS (+) terminal voltage (VIS(+))
FA5310/11/16/17

Supply current (Icc) vs. supply voltage (Vcc)

Ordinary operation
FA5310/11

Supply current (Icc) vs. supply voltage (Vcc)
OFF or OFF latch mode
FA5310/11

IS (-) terminal current (IIS(-)) vs.
IS (-) terminal voltage (IIS(-))
FA5314/15

FA5314/15/16/17

FA5314/15/16/17

Application circuit

- Example of FA5310B application circuit

- Example of FA5311B application circuit

- Example of FA5314 application circuit

- Example of FA5315 application circuit

- Example of FA5316 application circuit

- Example of FA5317 application circuit

Parts tolerances characteristics are not defined in the circuit design
sample shown above. When designing an actual circuit for a product, you must determine parts tolerances and characteristics for safe and economical operation.

WARNING

1. This Data Book contains the product specifications, characteristics, data, materials, and structures as of September 1999.

The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Data Book, be sure to obtain the latest specifications.
2. All applications described in this Data Book exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.
3. Although Fuji Electric is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.
4. The products introduced in this Data Book are intended for use in the following electronic and electrical equipment which has normal reliability requirements.

- Computers	- OA equipment	- Communications equipment (terminal devices)
- Machine tools	• Audiovisual equipment	- Electrical home appliances

5. If you need to use a product in this Data Book for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.

- Transportation equipment (mounted on cars and ships) • Trunk communications equipment
- Traffic-signal control equipment
- Gas leakage detectors with an auto-shut-off feature
- Emergency equipment for responding to disasters and anti-burglary devices • Safety devices

6. Do not use products in this Data Book for the equipment requiring strict reliability such as (without limitation)

- Space equipment - Aeronautic equipment • Atomic control equipment
- Submarine repeater equipment - Medical equipment

7. Copyright ©(1995 by Fuji Electric Co., Ltd. All rights reserved.

No part of this Data Book may be reproduced in any form or by any means without the express permission of Fuji Electric.
8. If you have any question about any portion in this Data Book, ask Fuji Electric or its sales agents before using the product. Neither Fuji nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.

