NJM022

DUAL LOW POWER OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

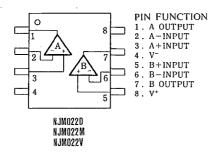
The NJM022 is a dual low-power operational amplifier which was designed to replace higher-power devices in many applications without sacrificing system performance. High input impedance, low supply currents, and low equivalent input noise voltage over a wide range of operating supply voltages result in an extremely versatile operational amplifier for use in a variety of analog applications including battery-operated circuit. Internal frequency compensation, absence of latch-up, high slew rate, and short-circuit protection assure ease of use.

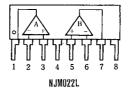
- FEATURES
- Operating Voltage
- Low Operating Current
- Slew Rate

4-20

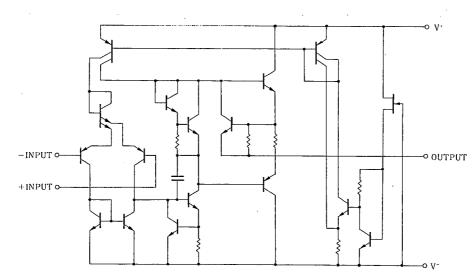
JRC

- Short-Circuit Protection
- Package Outline
- Bipolar Technology


DIP8, DMP8, SSOP8, SIP8


 $(\pm 2V \sim \pm 18V)$

(130 µAtyp.)


(0.5V/ µs typ.)

PIN CONFIGURATION

■ EQUIVALENT CIRCUIT (1/2 Shown)

PACKAGE OUTLINE

NJM022D

NJM022V

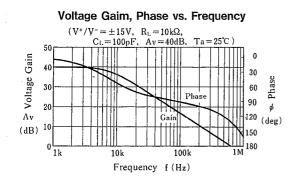
NJM022M

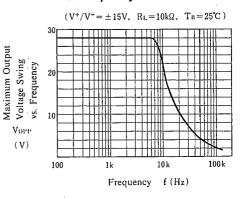
ABSOLUTE MAXIMUM RATINGS			(Ta=25℃)	
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*/V⁻	±18	v	
Input Voltage	Vic	±15	v	
Differential Input Voltage	Vid	±30	v	
Power Dissipation	Po	(DIP8) 500	mW	
		(DMP8) 300	mW	
		(SSOP8) 300	mW	
		(SIP8) 800	mW	
Operating Temperature Range	Topr	-40~+85	C	
Storage Temperature Range	Tstg	-40~+125	ື	

(note) For supply voltage less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

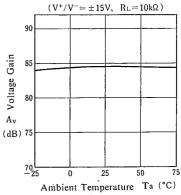
ELECTRICAL CHARACTERISTICS

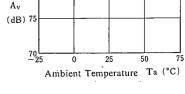
 $(Ta = +25^{\circ}C, V^{+}/V^{-} = \pm 15V)$

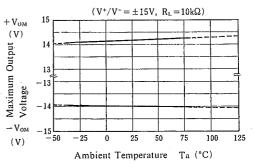

4-21


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	Vio	R _s ≦10kΩ	_	1	5	mV
Input Offset Current	I _{IO}		_	1	80	nA
Input Bias Current	I _{IB}			15	250	nA
Large Signal Voltage Gain	Av	$R_{L} \ge 10 k\Omega, V_{O} = \pm 10 V$	60	88	_	dB
Common Mode Rejection Ratio	CMR	R _s ≦10kΩ	60	90	-	dB
Response Time (Rise Time)	t _R	$V_{IN}=20mV, R_L=10k\Omega, C_L=100pF$		0.3	1 —	μs
Slew Rate	SR	$V_{IN} = 10V, R_L = 10k\Omega, C_L = 100pF$	- I	0.5	_	V/µs
Input Common Mode Voltage Range	VICM		±12	±13	-	v
Supply Voltage Rejection Ratio	SVR	R _s ≦10kΩ	74	110	_	dB
Equivalent Input Noise Voltage	V _{NI}	$A_{v}=20$ dB, $f=1$ kHz	_	50	-	nV/√H
Short-circuit Output Current	los			±6		mA
Operating Current	I _{cc}		-	130	250	μA
Maximum Peak-to-peak Output Voltage Swing	Vом	$R_L = 10k\Omega$	±10	±14		v

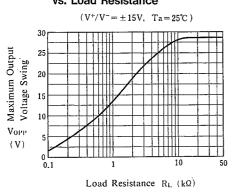
-New Japan Radio Co.,Ltd.-

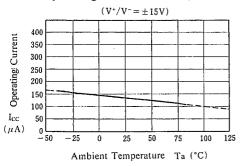

TYPICAL CHARACTERISTICS


Maximum Output Voltage Swing vs. Frequency



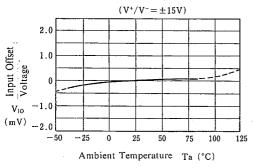
Voltage Gain vs. Temperature





Maximum Output Voltage Swing vs. Load Resistance

Operating Current vs. Temperature



4-22

NJM022

TYPICAL CHARACTERISTICS

Maximum Output Voltage Swing

 $(R_L = 10k\Omega, T_a = 25^{\circ}C)$

vs. Operating Voltage

 $\pm 6 \pm 8$

Operating Voltage V⁺/V⁻ (V)

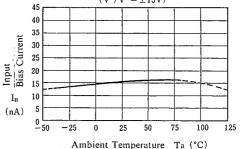
30

25

20

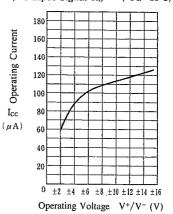
15

 $\pm 2 \pm 4$


0

Maximum Output Voltage Swing

> VOPP 10 (V)


Input Offset Voltage vs. Temperatare

Input Bias Current vs. Temperature $(V^*/V^* = \pm 15V)$

Operating Current vs. Operating Voltage

(No Input Signal R_L =∞, Ta=25°C)

-New Japan Radio Co., Ltd.

 ±10 ±12 ±14 ±16

4-23

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.