l 482L1?5 00b4LLE sl

i INTEL CORP {UP/PRPHLS?} 12E D
I Itel 80286 T-49 4716

High Performance Microprocessor
with Memory Management and Protection
(80286-12, 80286-10, 80286-8)

m High Performance Processor (Up to six m Two 8086 Upward Compatible
times 8086) Operating Modes:
5 — 8086 Real Address Mode
m Large Address Space: - h
— 16 Megabytes Physical — Protected Virtual Address Mode

— 1 Gigabyte Virtual per Task » m Range of Clock Rates

— 12.5 MHz for 80286-12
® Integrated Memory Management, Four- .
Level Memory Protection and Support — 10 MHz for 80286-10

— 8 MHz for 80826-8
fsvs¥;|:11a| Memory and Operating — 6 MHz for 80286-6
= High Bandwidth Bus Interface u ‘s"’mp'ft‘e System Development
' upport: ,
(12.5 Megabyte/Sec) . =— Development Software: Assembler,
m Industry Standard O.S. Support: PL/M, Pascal, FORTRAN, and System
— IRMX® Utilities ~
- ﬁﬂx — In-Circuit-Emulator (ICET-286)
— Ms-DOS* m Available in 68 Pin Ceramic LCC
: (Leadless Chip Carrier), PGA (Pin Grid
. m Optional Processor Extension: Array), and PLCC (Plastic Leaded Chip
— 80287 High Performance 80-bit ICarrler) Packages
Numeric Data Processor (Seo Packaging Spac., Order #231369)

The 80286 is an advanced, high-performance microprocessor with specially optimized capabilities for multiple
user and multi-tasking systems. The 80286 has built-in memory protection that supports operating system and
task isolation as well as program and data privacy within tasks. A 12 MHz 80286 provides six times or more
throughput than the standard 5 MHz 8086. The 80286 includes memory management capabilities that map 230
(one gigabyte) of virtual address space per task into 224 pytes (16 megabytes) of physical memory.

The 80286 is upward compatible with 8086 and 88 software. Using 8086 real address mode, the 80286 is
object code compatible with existing 8086, 88 software. In protected virtual address mode, the 80286 is source
code compatible with 8086, 88 software and may require upgrading to use virtual addresses supported by the
80286's integrated memory management and protection mechanism. Both modes operate at full 80286 per-
formance and execute a superset of the 8086 and 88 instructions.

The 80286 provides special operations to support the. efficient implementation and execution of operating
systems. For example, one instruction can end exscution of one task, save its state, switch to a new task, load
its state, and start execution of the new task. The 80286 also supports virtual memory systems by providing a
segment-not-present exception and restartable instructions.

*XENIX and MS-DOS are trademarks of Microsoft Corp.

- sUNIX is a trademark of Beli Labs or AT&T

¥ ADORERS U (i T T H
I| |l : LATCHES o T ;?l._-‘u‘o
1 ossiss [Toeaasni
) secuent v _J | pmeerace [+ rusea
! s -.:'t.- - ! I - W8 CONTROL - p— mc‘gbm
i Soon [Pl e
! CERER s J—l—_‘——_’> L}
1 OATA TRARSCEIVEAS Dy - Oy
1 T v v
[l ll =ttt [=ttty —z--===1F:] 3 1
t au 1 ! '""n'of" !
' [L= s LT 0 |
]] - -
] - { P .) neseY
! 111 o Temere] R SN
1 EXECUTION UNIT (1) v i Veo
loacyroH TN - H . ﬁ _________ T e oo &
] vl leata’ . : 210263-1
Figure 1. 80266 Internal Block Diagram :
September 1988
3-1 Order Number: 210253-013

intel

*INTEL CORP {UP/PRPHLSZ}

Plastic Leaded Chip Carrier

Component Pad Views—As viewed from underside of
component when mounted on the board.

| CLESELI AT d |

80286

et DT T-49-17-16

P.C. Board VIgwsj—As viewed from the component
side of the P.C. board.

Ay

1
Ed il
>z x

210253-50
§5d388éads6d858caaf

T T I T I 1T,
Lot JLJLIL ISl JLat sttt LI R

i

™ car car Iy
A O] o own |3 5
4 5 C .13 L :f -
= e ne. |3 £ o
2 vee () O we e [3 T vee
5 resea) O mia wn [£ meser
o s] uc. ne [2 [Y
! & T waa |3 £
5 |]] vss vis L3 <]
Iy -]] rerea PEREQ | v d
8 (1 0 vee vee [2 o
F] [] REanv LLeT T]
2)] woro nowo |] i
- [}] mos HLOA =3 B
L] coomm cooRYX [L
ol wid 3 :-.:J
fs (Lol toew 3 5d Jan
pﬂﬂnrﬂﬂj‘}nﬂnﬂﬂnr;rﬂﬂ X, [IO IO 0N warar
L 1ZsPERBIvyY /“ G Py)
2 5>“E .ﬂ"E Pl NO. 1 MARK g:’ggﬁB“>§ 2
NOTE: 210253-~-2
N.C. signals must not be connected
v O =~ N M v I ¢ N N - O w
S88a3a53a8a5 zacoaaaddy
B8 3
2582328858 |§szsazsae
ICEEELLEEER ICEEEEEEER
0 D|ORGBEOGOONEH] WRR A cip FRAOR [ODPBCROIBB| 0 A
. 2 e @ &) ne. USY sy Ne. |G S S@fla a2
Svee K@D @@ e ne NC. W {66 D] ok vee
2 nresol OB @GN K ne. MO O 6 @ | RestT a3
T MO © @] pereo vy V55 PEREC |@ @ @@ a5
Ea |6 © @ REABY v Ve FADY |© 6 @B e a7
A |8 @ 6@} noa o HolD HA |@ & B@|r as
At a0 |l®o® @ &) u/% cov/iNTA COD/WNTA M/ |® @ @@ a0 an
a3 A2 PR @P@)Ne 6K oK we. (BQOOEORRBRAA| M2 a3
([PBBOIOEG - J@@@@@@@@)
Texsaggel ST EEEEEE
b [
13388548 £ 423 Bg223 210250-3

Figure 2. 80286 Pin Contfiguration

3-2

intel

—INTEL CORP {UP/PRPHLS}

J vs2u125 oowucao el |

80286

Table 1. Pin Description

The following pin function descriptions are for the 80286 microprocessor .

Symbol

Type

Name and Function

CLK

SYSTEM CLOCK provides the fundamental timing for 80286 systems. Itis divided by two
inside the 80286 to generate the processor clock. The internal divide-by-two circuitry can
be synchronized to an external clock generator by a LOW to HIGH transition on the RESET

input.

D15-Do

170

DATA BUS inputs data during memory, 1/0, and interrupt acknowledge read cycles;
outputs data during memory and 1/0 write cycles. The data bus is active HIGH and floats to
3-state OFF during bus hold acknowledge.

Az3-Ag

ADDRESS BUS outputs physical memory and 1/0 port addresses. AQ is LOW when datais
to be transferred on pins D7_o. A23—A1g are LOW during /0 transfers. The address bus is
active HIGH and floats to 3-state OFF during bus hold acknowledge.

BHE

BUS HIGH ENABLE indicates transfer or data on the upper byte of the data bus. Dys_g-
Eight-bit oriented devices assigned to the upper byte of the data bus would normally use
BHE to condition chip select functions. BHE is active LOW and floats to 3-state OFF during
bus hold acknowledge.

BHE and A0 Encodings

alue A0 Value Function

1 Byte transfer on upper half of data bus (Dy5-Dg)
0 Byte transfer on lower half of data bus (D7-0}
1 1 Will never oceur

V

0 0 Word transfer
0

1

BUS CYCLE STATUS indicates initiation of a bus cycle and, along with M/ 10 and COD/
INTA, defines the type of bus cycle. The busisin a T, state whenever one or both are LOW,
S7 and S0 are active LOW and float to 3-state OFF during bus hold acknowledge.

80286 Bus Cycle Status Definition

[z}

COD/INTA M/10 E3) 0 Bus Cycle Initiated

0 (LOW) interrupt acknowledge
Will not occur

Will not occur

None; not a status cycle
IF A1 = 1 then halt; else shutdown
Memory data read
Memory data write

« | None; not a status cycle
Will not occur

1/O read

170 write

None; not a status cycle
Will not occur

Memary instruction read
Will not occur

Nons; not a status cycle

(HIGH)

A A b a2 0000000

- D OOO - m Q0O C
B OO Dt DO+ = OQ==0O0
O OO O OO0 =0

MEMORY 170 SELECT distinguishes memory access from 170 access. if HIGH during Ts, @
memory cycle or a halt/shutdown cycle is in progress. If LOW, an i/0 cycle or an interrupt
acknowledge cycle is in progress. M/10 floats to 3-state OFF during bus hold acknowledge.

CODE/INTERRUPT ACKNOWLEDGE distinguishes instruction fetch cycles from memory
data read cycles. Also distinguishes interrupt acknowledge cycles from I/0 cycles. CoD/
INTA floats to 3-state OFF during bus hold acknowledge. Its timing is the same as M/IO.

BUS LOCK indicates that other system bus masters are not to gain control of the system
bus for the current and the following bus cycle. The LOCK signal may be activated explicitly
by the “LOCK" instruction prefix or automatically by 80286 hardware during memory XCHG
instructions, interrupt acknowledge, or descriptor table access. LOCK is active LOW and
floats to 3-state OFF during bus hold acknowledge.

BUS READY terminates a bus cycle. Bus cycles are extended without limit until terminated
by READY LOW. READY is an aclive LOW synchronous input requiring setup and hold
times relative 1o the system clock be met for correct operation. READY is ignored during
bus hold acknowledge.

126 D~T-49-17-16

s

l 4826175 00b4L2L sl

Inte[80286

INTEL CORP {UP/PRPHLS} 12E D _T-49-17-16
k)
Table 1. PIn Description (Continued)
Symbol Type Name and Function
HOLD | BUS HOLD REQUEST AND HOLD ACKNOWLEDGE control ownership of
HLDA o the 80286 local bus. The HOLD input allows another local bus master to

request control of the local bus. When control is granted, the 80286 will float
its bus drivers to 3-state OFF and then activate HLDA, thus entering the bus
hold acknowledge condition. The local bus will remain granted to the
requesting master until HOLD becomes Inactive which results in the 80286
deactivating HLDA and regaining control of the local bus. This terminates the
bus hold acknowledge condition. HOLD may be asynchronous to the system
clock. These signals are active HIGH.

INTR I INTERRUPT REQUEST requests the 80286 to suspend its current program
execution and service a pending external request. Interrupt requests are
masked whenever the interrupt enable bit in the flag word is cleared. When
the 80286 responds to an interrupt request, it performs two interrupt
acknowledge bus cycles to read an 8-bit interrupt vector that identifies the
source of the interrupt. To assure program interruption, INTR must remain
active until the first interrupt acknowledge cycle is completed. INTR is
sampled at the beginning of each processor cycle and must be active HIGH
at least two processor cycles before the current instruction ends in order to
interrupt before the next instruction. INTR is level sensitive, active HIGH, and
may be asynchronous to the system clock.

NMI 1 NON-MASKABLE INTERRUPT REQUEST interrupts the 80286 with an
internally supplied vector value of 2. No interrupt acknowledge cycles are
pertormed. The interrupt enable bit in the 80286 flag word does not affect this
input. The NMI input is active HIGH, may be asynchronous to the system
clock, and is edge triggered after internal synchronization. For proper
recognition, the input must have been previously LOW for at least four system
clock cycles and remain HIGH for at least four system clock cycles.

PEREQ PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE
PEACK o extend the memory management and protection capabilities of the 80286 to
processor extensions. The PEREQ input requests the 80286 to perform a
data operand {ransfer for a processor extension. The PEACK output signals
the processor extension when the requested operand is being transferred.
PEREQ is active HIGH and floats to 3-state OFF during bus hold
acknowledge. PEACK may be asynchronous to the system clock. PEACK is

active LOW,
BUSY { PROCESSOR EXTENSION BUSY AND ERROR indicate the operating
ERROR | condition of a processor extension to the 80286. An active BUSY input stops

80286 program execution on WAIT and some ESC instructions until BUSY
becomes inactive (HIGH). The 80286 may be interrupted while waiting for
BUSY to become inactive. An active ERROR input causes the 80286 to
perform a processor extension interrupt when executing WAIT or some ESC
instructions. These inputs are active LOW and may be asynchronous to the
system clock. These inputs have internal pull-up resistors.

I_ 4826175 00b4L22 ?l

nte[80286

INTEL CoRP {UP/PRPHLS} 12E D—1T1-49-17-16
Table 1. Pin Description (Continued)
Symbol Type Name and Function
RESET 1 SYSTEM RESET clears the internal logic of the 80286 and is active HIGH.

The 80286 may be reinitialized at any time with a LOW to HIGH transition on
RESET which remains active for more than 16 system clock cycles. During
RESET active, the output pins of the 80286 enter the state shown below:

80286 Pin State During Reset
Pln Value Pin Names
1 (HIGH) 80, 51, PEACK, A23-A0, BHE, LOCK
0 (LOW) M/I0, COD/INTA, HLDA (Note 1)
3-state OFF Dy5-Dg

Operation of the 80286 begins after a HIGH to LOW transition on RESET.
The HIGH to LOW transition of RESET must be synchronous to the system
clock. Approximately 38 CLK cycles from the trailing edge of RESET are
required by the 80286 for internal initialization before the first bus cycle, to
fetch code from the power-on execution address, occurs.

A LOW to HIGH transition of RESET synchronous to the system clock will
end a processor cycle at the second HIGH to LOW transition of the system
clock. The LOW to HIGH transition of RESET may be asynchronous to the
system clock; however, in this case it cannot be predetermined which phase
of the processor clock will occur during the next system clock period.
Synchronous LOW to HIGH transitions of RESET are required only for
systemns where the processor clock must be phase synchronous to another

clock.
Vgs I SYSTEM GROUND: 0 Volts.
Vee | SYSTEM POWER: + 5 Volt Power Supply.
CAP) SUBSTRATE FILTER CAPACITOR: a 0.047 pF + 20% 12V capacitor must

be connected between this pin and ground. This capacitor filters the output of
the internal substrate bias generator. A maximum DC leakage current of 1 pA
is allowed through the capacitor.

For correct operation of the 80286, the substrate bias generator must charge
this capacitor to its operating voltage. The capacitor chargeup time is 5
milliseconds (max.) after Vo and CLK reach their specified AC and DC
parameters. RESET may be applied to prevent spurious activity by the CPU
during this time. After this time, the 80286 processor clock can be
synchronized to another clock by pulsing RESET LOW synchronous to the
system clock.

NOTE:
1. HLDA is only Low it HOLD is inactive {Low).

3-5

INTEL CORP {UP/PRPHLS?
FUNCTIONAL DESCRIPTION

introduction

The 80286 is an advanced, high-performance micro-
processor with specially -optimized capabilities for
multiple user and multi-tasking systems, Depending
on the application, a 12 MHz 80286's performance
is up to six times faster than the standard 5 MHz
8086's, while providing complete upward software
compatibility with Intel's 8086, 88, and 186 family of
CPU’s.

The 80286 operates in two modes: 8086 real ad-
dress mode and protected virtual address mode.
Both modes execute a superset of the 8086 and 88
instruction set.

In 8086 real address mode programs use real ad-
dresses with up to one megabyte of address space,
Programs use virtual addresses in protected virtual
address mode, also called protected mode. In pro-
tected mode, the 80286 CPU automatically maps 1
gigabyte of virtual addresses per task into a 16
megabyle real address space. This mode also pro-
vides memory protection to isolate the operating
system and ensure privacy of each tasks’ programs
and data. Both modes provide the same base in-
struction set, registers, and addressing modes.

The following Functional Description describes first,
the base 80286 architecture common to both
modes, second, 8086 real address mode, and third,
protected mode.

80286 BASE ARCHITECTURE

The 8086, 88, 186, and 286 CPU family all contain
the same basic set of registers, instructions, and

I_qaeb].?s 00bYL23 ‘II_
intal 80286

L2E D—T-49-17-16

addressing modes. The 80286 processor is upward
compatible with the 8086, 8088, and 80186 CPU’s.

Register Set

The 80286 base architecture has fifteen registers as
shown in Figure 3. These registers are grouped into
the following four categories:

General Registers: Eight 16-bit general purpose
registers used to contain arithmetic and logical oper-
ands. Four of these (AX, BX, CX, and DX) can be
used either in their entirety as 16-bit words or split

. into pairs of separate 8-bit registers.

Segment Registers: Four 16-bit special purpose
registers select, at any given time, the segments of
memory that are immediately addressable for code,
stack, and data. (For usage, refer to Memory Organi-
zation.)

Base and Index Registers: Four of the general pur-
pose registers may also be used to determine offset
addresses of operands in memory. These registers
may contain base addresses or indexes to particular
locations within a segment. The addressing mode
determines the specific registers used for operand
address calculations.

Status and Control Registers: The 3 16-bit special
purpose registers in figure 3A record or controt cer-
tain aspects of the 80286 processor state including
the Instruction Pointer, which contains the offset ad-
dress of the next sequential instruction to be execut-
ed.

16-8IT SPECGIAL 15 0
REGISTER REGISTER
NAME FUNCTIONS
cs CODE SEGMENT SELECTOR
7 07 0
DS OATA SEGMENT SELECTOR
:D'I;E et AL MULTIPLY/DIVIDE
SSABLE 170 INSTRUCTIONS
(@BIT oxl on o ss STACK SEGMENT SELECTOR
REGISTER
NAMES ES RA SEGM| LECT
SHOWN) x| o c] LOOP/SHIFT/REPEAT/COUNT EXTRA SEGMENT SELEGTOR
SEGMENT REGISTERS
BX BH BL
BASE REGISTERS
P 15 0
St F STATUS WORD
INDEX REGISTERS
D P INSTRUCTION POINTER
sP] STACK POINTER STATUS AND CONTROL
15 ° REGISTERS
GENERAL
REGISTERS
Figure 3. Register Set

3-6

-INT-+ CORP {UP/PRPHLSZ

mte[80286

ya2bL?5 00b4bCH Gl

ek D —71.49-17-16

m—“—l“ H * l

B\ I S A 3 A

W I AW BN\

[T e mesemveo

210253-4

Figure 3a. Status and Control Register Bit Functions
Table 2. Flags Word Bit Functions

Flags Word Description

The Flags word (Flags) records specific characteris-
tics of the resuit of logical and arithmetic instructions
(bits 0, 2, 4, 6, 7, and 11) and controls the operation
of the 80286 within a given operating mode (bits 8
and 9). Flags is a 16-bit register. The function of the
flag bits is given in Table 2.

Instruction Set

The instruction set is divided into seven categories:
data transfer, arithmetic, shift/rotate/iogical, string
manipulation, control transfer, high level instruc-
tions, and processor control. These categories are
.summarized in Figure 4.

An 80286 instruction can reference zero, one, or two
operands; where an operand resides in a register, in
the instruction itself, or in memory. Zero-operand in-
structions (e.g. NOP and HLT) are usually one byte
long. One-operand instructions {e.g. INC and DEC)
are usually two bytes long but some are encoded in
only one byte, One-operand instructions may refer-
ence a register or memory location. Two-operand
instructions permit the following six types of instruc-
tion operations:

—Register to Register -
—Memory to Register
—Immediate to Register
—Memory to Memory
—Register to Memory
—Immediate to Memory

Bit
Position

Name

Function

0

CF

Carry Flag—Set on high-order bit
carry or borrow; cleared otherwise

2

PF

Parity Flag—Set if low-order 8 bits
of result contain an éven number of
1-bits; cleared otherwise

AF

Set on carry from or borrow to the
low order four bits of AL; cleared
otherwise

ZF

Zero Flag—Set if result is zero;
cleared otherwise

SF

Sign Flag—Set equal to high-order
bit of result (0 if positive, 1 if negative)

1"

OF

Overflow Flag—Set if result is a too-
farge positive number or a too-small
negative number (excluding sign-bit)
to fit in destination operand; cleared
otherwise

T

Single Step Flag—Once set, a sin-

' gle step interrupt occurs after the

next instruction executes. TF is
cleared by the single step interrupt.

interrupt-enable Flag—When set,
maskable interrupts will cause the
CPU to transfer contro! to an inter-
rupt vector specified location.

10

DF

Direction Flag—Causes string

instructions to auto decrement
the appropriate index registers
when set. Clearing DF causes

auto increment.

I 80286

INT CORP {UP/PRPHLS?}

Two-operand instructions (e.g. MOV and ADD) are
usually three to six bytes long. Memory to memory
operations are provided by a special class of string
instructions requiring one to three bytes. For de-
tailed instruction formats and encodings refer to the
instruction set summary at the.end of this document.

For detailed operation and usage of each instruc-
tion, see Appendix of 80286 Programmer's Refer-
ence Manual (Order No. 210498)

B sse17s oonynas el

L2E D-T-49-17-16

ADDITION
ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCII adjust for addition
DAA Decimal adjust for addition
SUBTRACTION
SuUB Subtract byte or word
SBB Subtract byte or word with borrow
DEGC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte orword
AAS ASCII adjust for subtraction
DAS Decimal adjust for subtraction
MULTIPLICATION
MUL Multiple byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCII adjust for multiply
DIVISION
DivV Divide byte or word unsigned
IDIV Integer divide byte or word
AAD ASCI| adjust for division
CBW Convert byte to word
CWD Convert word to doubleword

Figure 4b. Arithmetic Instructions

GENERAL PURPOSE

MOV Move byte or word

PUSH Push word onto stack

POP Pop word off stack

PUSHA Push all registers on stack

POPA Pop all registers from stack

XCHG Exchange byte or word

XLAT Translate byte

INPUT/OUTPUT
IN " Inputbyte or word
ouT Output byte or word
ADDRESS OBJECT

LEA Load effective address

LDS Load pointer using DS

LES Load pointer using ES

FLAG TRANSFER

LAHF Load AH register from flags

SAHF Store AH register in flags

PUSHF Push flags onto stack

POPF Pop fiags off stack

Figure 4a. Data Transfer Instructions

MOVS Move byte or word string
INS Input bytes or word string
ouTS Output bytes or word string
CMPS Compare byte or word string
SCAS Scan byte or word string
LODS Load byte or word string
STOS - Store byte or word string
REP Repeat
REPE/REPZ Repeat while equal/zero
REPNE/REPNZ Repeat while not equal/not zero

Figure 4c. String Instructions

LOGICALS
NOT “Not" byte or word
AND “And" byte or word
OR “Inclusive or'" byte or word
XOR *Exclusive or" byte or word
TEST “Test" byte or word
SHIFTS

SHL/SAL Shift logical/ arithmetic left byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or word

) ROTATES
ROL Rotate left byte or word
ROR Rotate right byte or word
RGL Rotate through carry left byte or word
RACR Rotate through carry right byte or word

3-8

Figure 4d. Shift/Rotate Logical Instructions

] 4826175 00L4L2L ul

Inter 80286
.INTEL CORP {UP/PRPHLS} L2E D - T-49-17-16
CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS
JA/IJNBE Jump if above/not below nor equal CALL Call procedure
JAE/JNB Jump i above or equal/not below RET Return from procedure
JB/JNAE Jump if below/not above nor equal JMP Jump
JBE/JNA - -Jump if below or equal/not above)
JC - Jump if carry ITERATION CONTROLS
JELIZ Jump if equal/zero) ’
JG/JNLE Jump if greater/not less nor equal LooP Loop
JGE/JNL Jump if greater or equal/not loss LOOPE/LOOPZ Loop if equal/zero
JL/INGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop it not equal/not zero
JLE/ING Jump if less or equal/not greater JCXZ Jump if register CX = 0
JNC Jump if not carry
JNE/JUNZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overfiow
JNP/JPO Jump if not parity/parity odd INT Interrupt
JNS Jump if not sign INTO interrupt if overflow
JO Jump if overflow IRET Interrupt return
JP/JPE Jump if parity/parity even
JS Jump if sign
Figure 4e. Program Transfer Instructions
FLAG OPERATIONS Memory Organization
i{g 22;3‘3;&;?39 Memory is organized as ‘sets qf variable [ength seg-
ments. Each segment is a linear contiguous se-
CMC Complement carry flag quence of up to 64K (216) 8-bit bytes. Memory is
STD Set direction flag addressed using a two component address (a point-
CLD Clear direction flag er) tljat consists of a 16-bit segment selector, and a
STI Setinterrupt enable flag 1§-blt offset. Ti)e segment selector indicates the dp-
- sired segment in memory. The offset component in-
cu Clear interrupt enable flag * dicates the desired byte address within the segment.
EXTERNAL SYNCHRONIZATION
HLT Halt until interrup! or reset
WAIT Wait for BUSY not active o~ ¥
ESC Escape to extension processor 32-BIT POINTER
LOCK Lock bus during next instruction -
NO OPERATION [seowewr | _oerser |
NOP No operation — OPERAND
EXECUTION ENVIRONMENT CONTROL seLected |) Seawent
LMSW L oad machine status word
| SMSW Store machine status word
Figure 4f. Processor Control Instructions -
ENTER Format stack for procedure entry J, 4
LEAVE Restore stack for procedure exit i MENOAY ”
BOUND Detects values outside prescribed range 210253-5
Figure 4g. High Level Instructions Figure 5. Two Component Address

3-9

|
INTEL CORP {UP/PRPHLS?

3}

4826175 00b4YL2? L.I

80286
12E D .T-49-17-16

“. Table 3. Segment Register Selection Rules.

Memory Segment Register Implicit Segment
Reference Needed Used Selection Rule

Instructions Code (CS) _Automatic with instruction prefetch

Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP
as a base register.

t ocal Data Data (DS) All data references except when relative to stack or
string destination

External (Global) Data Extra (ES}) Alernate data segment and destination of string operation

All instructions that address operands in memory
must specify the segment and the offset. For speed
and compact instruction encoding, segment selec-
tors are usually stored in the high speed segment
registers. An instruction need specify only the de-
sired segment register and an offset in order to ad-
dress a memory operand.

Most instructions need not explicitly specify which
segment register is used. The correct segment reg-
ister is automatically chosen according to the rules
of Table 3. These rules follow the way programs are
written (see Figure 6) as independent modules that
require areas for code and data, a stack, and access
to external data areas.

Special segment override instruction prefixes allow
the implicit segment register selection rules to be
overridden for special cases. The stack, data, and
extra segments may coincide for simple programs.
To access operands not residing in one of the four
immediately available segments, a full 32-bit pointer
or a new segment selector must be loaded.

Addressing Modes

The 80286 provides a total of eight addressing
modes for instructions to specify operands. Two ad-
dressing modes are provided for instructions that
operate on register or immediate operands:

Register Operand Mode: The operand is locat-
ed in one of the 8 or 16-bit general registers.

Immedlate Operand Mode: The operand is in-
cluded in the instruction.

Six modes are provided to specify the location of an
operand in & memory segment. A memory operand
address consists of two 16-bit components: seg-
ment selector and offset. The segment selector is
supplied by a segment register either implicitly cho-
sen by the addressing mode or explicitly chosen by
a segment override prefix. The offset is calculated
by summing any combination of the foliowing three
address elements:

the displacement (an 8 or 16-bit immediate val- -

ue contained in the instruction)

the base (contents of either the BX or BP base
registers)

3-10

r——-1
|
cooe
MODULE A
DATA
[}]
']
“coot cry
HODILE B
o | LH o
1] 1 OATA
[} |
sTACK
rROCESS
STACK H o
SEGMENT
REGISTERS
| [}
1 t
39
OATA
8LOCK t
[t
! !
PROCESS
DATA
nocK 2
[} '
| AU |
WEMORY 210253-6

Figure 6. Segmented Memory Helps
Structure Software

the Index (contents of either the Si or DI index
registers)

Any carry out from the 16-bit addition is ignored.
Eight-bit displacements are sign exfended to 16-bit
values.

Combinations of these three address elements de-
fine the six memory addressing modes, described
below. :

Direct Mode: The operand's offset is contained in
the instruction as an 8 or 16-bit displacement ele-
ment.

Register Indirect Mode: The operand’s offset is in
one of the registers Sl, DI, BX, or BP.

Based Mode: The operand’s offset is the sum of an
8 or 16-bit displacement and the contents of a base
register (BX or BP).

R VAR e N1

PR ITIPN

- INTEL CORP {UP/PRPHLS?Y

InEexed Mode: The operand's offset is the sum of
an 8 or 16-bit displacement and the contents of an

.index register (Sl or D).

mte[80286

Based Indexed Mode: The operand’s offset is the '

sum of the contents of a base register and an index
register. - .

" Based Indexed Mode with Displacement: The op-

erand's ofiset is the sum of a base register’s con-
tents, an index register's contents, and an 8 or 16-bit
displacement. -

Data Types

The 80286 directly supports the following data

types: _ .

Integer:
tained in an 8-bit byte or a 16-bit
word. All operations assume a 2's
complement representation. Signed
32 and 64-bit integers are supported

A signed binary numeric value con- -

using the Numeric Data Processor, .

the 80287.

An unsigned 'binary numeric value
contained in an 8-bit byte or 16-bit
word.

Ordinat:

Pointer:
segment selector component and an
offset component. Each component
is a 16-bit word.

A contiguous sequence of bytes or
words. A string may contain from 1
byte to 64K bytes.

A byte representation of alphanu-

String:

ASCIt:

A 32-bit quantity, composed of a '

meric and control characters using

the ASCII standard of character rep-
resentation.

A byte (unpacked) representation of
the decimal digits 0-9.

A byte (packed) representation of
two decimal digits 0-9 storing one
digit in each nibble of the byte.

Floating Point: A signed 32, 64, of 80-bit real nhum-
ber representation.. (Floating point
operands are supported using the
80287 Numeric Processor).

BCD:

Packed BCD:

Figure 7 graphically represents the data types sup-
ported by the 80286.

I/0 Space

The 1/O space consists of 64K 8-bit or 32K 16-bit
ports. [/O instructions address the I1/0 space with

3-11

I ueae7s ooweeze o]

12E D ~7.49-17-16

sither an 8-bit port address, specified in the instruc-
tion, or a 16-bit port address in the DX register. 8-bit
port addresses are zero extended such that A1s~Ag
are LOW. I/O port addresses OOF8(H) through
00FF(H) are reserved.

7 L]

SIGNED

BYTE
SIGNBT S
MAGNITUDE

i - 7 o
UNSIGNED
ayYTE
L MSB
MAGNITUDE
wut! ar 0 o
SIGNED
WORD
SIGN BT (- MSB

WMAGNITUDE
" sanep n *3 42 g5 ¥V [-
DOUBLE
WORD*

SIGN BITJ L M58
MAGNITUDE

_

+7 +6 +5 +4- +3 +#2 +1 O
SIGNED 63 [TX1] an - 1813 f
QUAD "
WORD*
SIGN BIT J_ M5B —
MAGMNITUDE
3 +1 [} 0 - -~
UNSIGNED
WORD
i |
MAGNITUDE Lo
] +N : +t 0
. emary [° ! LR} °
cooeD m ves
DECIMAL
8Ci 8cD BCD
(8CD) DIGIT N DIGIT 1 oiaIT 0
7 YN o y *t' a7 9 o
ASCH ese
ASCH ASCH ASCll
CHARACTERN CHARACTER; CHARACTERp
7 N o g t1 o7 0 o
PACKED m
Bcn [X X3
[S—
#OST LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT
718 YN o 78 Y1 018 0 g
STRING eve
BYTE/'WORD N BYTE'WORD 1 BYTE WORD 0
n *? 42 gy ¥ [
POINTER
. SELECTOR OFFSET R
nte 49 +7 +6 5 +4 +3 +2 #1 04
FLOATING
e LI T LT T T 11
SIGN BIT-, | - J
EXPONENT mNIYUPE
210263-7

+Supported by 80287 Numeric Data Processor

Figure 7. 80286 Supported Data Types

intel

INTEL CORP {UP/PRPHLSZ}

Table 4. Interrupt Vector Assignments

80286

l 4826175 00bYL2Y Tl

L2E D T 7-49-17-16

Functon mtorupt | Roimte | GO ion,
- Causing Exception?
Divide error exception 0 DIV, IDIV Yes
Single step interrupt 1 All
NMI interrupt 2 INT 2 or NMi pin
Breakpoint interrupt 3 INT 3
INTO detected overflow exception 4 INTO " No
BOUND range exceeded exception 5 BOUND Yes
Invalid opcode exception 6 Any undefined opcode Yes
Processor extension not available exception 7 ESC or WAIT Yes
Intel reserved-do not use 8-15
Processor extension error interrupt 16 ESC or WAIT
Intel reserved—do not use 17-31
User defined 32-255
Interrupts setting the interrupt flag bit (IF) in the flag word. All

An interrupt transfers execution to a new program
focation. The old program address (CS:IP) and ma-
chine state (Flags) are saved on the stack to allow
resumption of the interrupted program. Interrupts fall
into three classes: hardware initiated, INT instruc-
tions, and instruction exceptions. Hardware initiated
interrupts occur in response to an external input and
are classified as non-maskable or maskable. Pro-
grams may cause an interrupt with an INT instruc-
tion. Instruction exceptions occur when an unusual
condition, which prevents further instruction pro-
cessing, is detected while attempting to execute an
instruction. The return address from an exception
will always point at the instruction causing the ex-
ception and include any leading instruction prefixes.

A table containing up to 256 pointers defines the
proper interrupt service routine for each interrupt. in-
terrupts 031, some of which are used for instruc-
tion exceptions, are reserved. For each interrupt, an
8-bit vector must be supplied to the 80286 which
identifies the appropriate table entry. Exceptions
supply the interrupt vector internally. INT instructions
contain or imply the vector and allow access to all
256 interrupts. Maskable hardware initiated inter-
rupts supply the 8-bit vector to the CPU during an
interrupt acknowledge bus sequence. Non-maska-
ble hardware interrupts use a predefined internally
supplied vector.

MASKABLE INTERRUPT (INTR)

The 80286 provides a maskable hardware interrupt
request pin, INTR. Software enables this input by

3-12

224 user-defined interrupt sources can share this in-
put, yet they can retain separate interrupt handlers.
An 8-bit vector read by the CPU during the interrupt
acknowledge sequence (discussed in System Inter-
face section) identifies the source of the interrupt.

Further maskable interrupts are disabled while serv-
icing an interrupt by resetting the IF bit as part of the
response to an interrupt or exception. The saved
flag'word will reflect the enabie status of the proces-
sor prior to the interrupt. Until the flag word is re-
stored to the flag register, the interrupt flag will be
zero unless specifically set. The interrupt return in-
struction includes restoring the flag word, thereby
restoring the original status of IF.

NON-MASKABLE INTERRUPT REQUEST (NMlI)

A non-maskable interrupt input (NM) is also provid-
ed. NMI has higher priority than INTR. A typical use
of NMI would be to activate a power failure routine.
The activation of this input causes an interrupt with
an internally supplied vector value of 2. No external
interrupt acknowledge sequence is performed.

While executing the NMI servicing procedure, the
80286 will service neither further NMI requests,
INTR requests, nor the processor extension seg-
ment overrun interrupt until an interrupt return (IRET)
instruction is executed or the CPU is reset. if NMI
occurs while currently servicing an NM|, its presence
will be saved for servicing after executing the first
IRET instruction. IF is cleared at the beginning of an
NM interrupt to inhibit INTR interrupts.

l 80286

_INTEL CORP {UP/PRPHLSY}

SINGLE STEP INTERRUPT Vs

The 80286 has an internal interrupt that allows pro-
grams to execute one instruction at a time. It is
called the single step interrupt and is controlled by
the single step flag bit (TF) in the flag word. Once
this bit is sef, an internal single step interrupt will
occur after the next instruction has been executed.
The interrupt clears the TF bit and uses an internally
supplied vector of 1. The IRET instruction is used to
set the TF bit and transfer control to the next instruc-
tion to be single stepped.

Interrupt Priorities

When simultaneous interrupt requests occur, they
are processed in a fixed order as shown in Table 5.
Interrupt processing involves saving the flags, return
address, and setting CS:IP to point at the first in-
struction of the interrupt handler. If other interrupts
remain enabled they are processed before the first
instruction of the current interrupt handler is execut-
ed. The last interrupt processed is therefore the first
one serviced.

Table 5. Interrupt Processing Order

l 4826175 00b4L30 bl

12E D — T-49-17-16

Table 6. 80286 Initial Register State after RESET

Fiag word 0002(H)
Machine Status Word FFFO(H)
Instruction pointer FFFO(H)
Code segment . FOOO(H)
Data segment 0000(H)
Extra segment 0000(H)
Stack segment 0000(H)

HOLD must not be active during the time from the
leading edge of RESET to 34 CLKs after the trailing
edge of RESET.

Machine Status Word Description

The machine status word - (MSW) records when a
task switch takes place and controls the operating
mode of the 80286. It is a 16-bit register of which the
lower four bits are used. One bit places the CPU into
protected mode, while the other three bits, as shown
in Table 7, control the processor extension interface.
After RESET, this register contains FFFO(H) which
places the 80286 in 8086 real address mode,

Table 7. MSW Bit Functions

Bit

Position Name Function

0 PE | Protected mode enable places the
80286 into protected mode and cannot
be cleared except by RESET.

Order Interrupt
1 Instruction exception
2 Single step
3 NMI
4 Processor extension segment overrun
5 INTR
6 INT instruction

Initialization and Processor Reset

Processor initialization or start up is accomplished
by driving the RESET input pin HIGH. RESET forces
the 80286 to ferminate all execution and local bus
activity. No instruction or bus activity will occur as
long as RESET is active. After RESET becomes in-
active and an internal processing interval elapses,
the 80286 begins execution in real address mode
with the instruction at physical location FFFFFO(H).
RESET also sets some registers to predefined val-
ues as shown in Table 6.

1 MP | Monitor processor extension allows
WAIT instructions to cause a processor
extension not present exception
{number 7).

2 EM | Emulate processor extension causes a
processor extension not present
exception (number 7) on ESC
instructions to allow emulating a
processor extension.

3 TS [Task switched indicates the next
instruction using a processor extension
will cause exception 7, allowing software
to test whether the current processor
extension context belongs to the current

task.

The LMSW and SMSW instructions can load and
store the MSW in real address mode. The recom-
mended use of TS, EM, and MP is shown in Table 8.

Table 8. Recommended MSW Encodings For Processor Extension Control

Instructions
TS { MP | EM Recommended Use Causing
Exception 7
0 0 0 Initial encoding after RESET, 80286 operation is identical to 8086, 88. None
0 0 1 No processor extension is available, Software will emulate its function. ESC
1 0 1 No processor extension is available. Software will emulate its function. The current ESC
processor extension context may belong to another task.
0 1 0 A processor extension exists. None
1 1 0 A processor extension exists, The current processor extension context may belongto | ESCor
another task. The Exception 7 on WAIT allows software to test for an error pending WAIT
{from a previous processor extension operation.

I
INTEL CORP {UP/PRPHLS}

Halt

The HLT instruction stops program execution and
prevents the CPU from using the local bus until re-
started. Either NMI, INTR with IF = 1, or RESET will
force the 80286 out of halt. If interrupted, the saved
CS:IP will point to the next instruction after the HLT.

8086 REAL ADDRESS MODE

The 80286 executes a fully upward-compatible su-
perset of the 8086 instruction set in real address
mode. In real address mode the 80286 is object
code compatible with 8086 and 8088 software. The
real address mode architecture (registers and ad-
dressing modes) is exactly as described in the
80286 Base Architecture section of this Functional
Description.

Memory Size

Physical memory is a contiguous array of up to
1,048,576 bytes (one megabyte) addressed by pins
Ag through Aqg and BHE. Agp through Apg should be
ignored.

Memory Addressing

In real address mode physical memory is a contigu-
ous array of up to 1,048,576 bytes (one megabyte)
addressed by pins Ag through Ajg and BHE. Ad-
dress bits Asp—Agg may not always be zero in real
mode. Asg-Ag3 should not be used by the system
while the 80286 is operating in Real Mode.

The selector portion of a pointer is interpreted as the
upper 16 bits of a 20-bit segment address. The lower
four bits of the 20-bit segment address are always
zero. Segment addresses, therefore, begin on multi-
ples of 16 bytes. See Figure 8 for a graphic repre-
sentation of address information.

All segments in real address mode are 64K bytes in
size and may be read, written, or executed. An ex-
ception or interrupt can occur if data operands or
instructions attempt to wrap around the end of a
segment (e.g. a word with its low order byte at offset
FFFF(H) and its high order byte at offset 0000(H). If,
in real address mode, the information contained in a
segment does not use the full 64K bytes, the unused
end of the segment may be overlayed by another
segment to reduce physical memory requirements.

Reserved Memory Locations

The 80286 reserves two fixed areas of memory in
real address mode (see Figure 9); system initializa-

80286 l

3-14

482L1?5 00bLYL3L &l

L2E D - T-49-17-16

tion area and interrupt table area. Locations from
addresses FFFFO(H) through FFFFF(H) are re-
served for system initialization. Initial execution be-
gins at location FFFFO(H). Locations 00000(H)
through 003FF(H) are reserved for interrupt vectors.

Ioooo OFFSET S ORESS

S

15

SEGMENT
ADDRESS

SEGMENT
SELECTOR

©)

20-BIT PHYSICAL
MEMORY ADDRESS

210253-8

Figure 8. 8086 Real Address Mode
Address Calculation

FFFFFH
RESET BOOTSTRAP
PROGRAM JUM
P FFFFOH
A .
" . ::
3FFH
INTERRUPT POINTER
FOR VECTOR 255
| 3FCH
[
- ™
INTERRUPT POINTER
FOR VECTOR 1 aH
INTERRUPT POINTER 3H
FOR VECTOR 0
oH
INITIAL CS:IP VALUE IS FO00:FFFO.
210253-9

Figure 9. 8086 Real Address Mode Initially
Reserved Memory Locations

l 4826175 00bYL32 Tl

intel
INTEL CORP {UP/PRPHLS? 12E D —T-49-17-16

Table 9. Real Address Mode Addressing Interrupts

80286

Function Interrupt Related Return Address
° Number Instructions Before Instruction?
Interrupt table limit too small exception 8 INT vector is not within table limit Yes
Processor extension segment overrun 9 ESC with memory operand extend- No
interrupt ing beyond offset FFFF({H)
Segment overrun exception 13 Word memory reference with offset Yes
= FFFF{H) or an attempt to exe-
cute past the end of a segment
interrupts PROTECTED VIRTUAL ADDRESS

Table 9 shows the interrupt vectors reserved for ex-
ceptions and interrupts which indicate an addressing
error. The exceptions leave the CPU'in the state ex-
isting before attempting to execute the failing in-
struction (except for PUSH, POP, PUSHA, or POPA).
Refer to the next section on protected mode initiali-
zation for a discussion on éxception 8.

Protected Mode Initialization

To prepare the 80286 for protected mode, the LIDT
instruction is used to load the 24-bit interrupt table
base and 16-bit limit for the protected mode interrupt
table. This instruction can also set a base and limit
for the interrupt vector table in real address mode.
After reset, the interrupt table base is initialized to
000000(H) and its size set to 03FF(H). These values
are compatible with 8086, 88 software. LIDT shouid
only be executed in preparation for protected mode.

Shutdown

Shutdown occurs when a severe error is detected
that prevents further instruction processing by the
CPU. Shutdown and halt are externally signalled via
a halt bus operation. They can be distinguished by
A HIGH for halt and Aj LOW for shutdown. In real
address mode, shutdown can occur under two con-
- ditions:

® Exceptions 8 or 13 happen and the IDT limit does

not include the interrupt vector.

® A CALL INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if
the IDT limit is at least 000F(H) and SP is greater
than 0005(H), otherwise shutdown can only be exit-
ed via the RESET input.

MODE

The 80286 executes a fully upward-compatible su-
perset of the 8086 instruction set in protected virtual
address mode (protected mode). Protected mode
also provides memory management and protection

mechanisms and associated instructions.

The 80286 enters protected virtual address mode
from real address mode by setting the PE (Protec-
tion Enable) bit of the machine status word with the
Load Machine Status Word (LMSW) instruction. Pro-
tected mode offers extended physical and virtual
memory address space, memory protection mecha-
nisms, and new operations to support operating sys-
tems and virtual memory.

All registers, instructions, and addressing modes de-
scribed in the 80286 Base Architecture section of
this Functional Description remain the same. Pro-
grams for the 8086, 88, 186, and real address mode
80286 can be run in protected mode; however, em-
bedded constants for segment selectors are ditfer-
ent.

Memory Size

The protected mode 80286 provides a 1 gigabyte
virtual address space per task mapped into a 16
megabyte physical address space defined by the ad-
dress pin Agz_Agp and BHE. The virtual address
space may be larger than the physical address
space since any use of an address that does not
map to a physical memory location will-cause a re-
startable exception.

Memory Addressing

As in real address mode, protected mode uses 32-
bit pointers, consisting of 16-bit selector and offset
components. The selector, however, specifies an in-
dex into a memory resident table rather than the up-

_per 16-bits of a real memory address. The 24-bit

3-15

INTEL CORP {UP/PRPHLS}

base address of the desired *ogmant.is obtained
from the tables in memory. The 16-bit offset is add-
ed to the-segment base address to form the physical
address as shown in Figure 10. The tables are auto-
matically referenced by the CPU whenever a seg-
ment register is loaded with a selector. All 80286
instructions which load a segment register will refer-
ence the memory based tables without additional

software. The memory based tables contain 8 byte

values called descriptors.

Inter 80286

I 488L1L75 00LY4L3I3 ll

ek D —71.49-17-16

DESCRIPTORS

Descriptors define the use of memory. Special types
of descriptors also define new functions for transfer
of control and task switching. The 80286 has seg-
ment descriptors for code, stack and data segments,
and system control descriptors for special system
data segments and control transfer operations. De-
scriptor accesses are performed as locked bus op-
erations to assure descriptor integrity in multi-proc-
assor systems. .

pEscrirToR | [yin s

U

v
210253-10

D)
<
)

CODE AND DATA SEGMENT DESCRIPTORS
s=1

Besides segment base addresses, code and data
descriptors contain other segment attributes includ-
ing segment size (1 to 64K bytes), access rights
(read only, read/write, execute only, and execute/
read), and presence in memory (for virtual memory
systems) (See Figure 11). Any segment usage vio-
fating a segment attribute indicated by the segment
descriptor will prevent the memory cycle and cause
an exception or interrupt.

Code or Data Segment Descriptor

14 07)

N ¥
+7 INTEL RESERAVED® +8

Figure 10. Protected Mode Memory Addressing

Access Rights Byte Definition

ACCESS
RiGHTS BYTE *5 "ID{"-I’[TYPE l* BASE 14 +4
+3 BASle.a +2
+1 LTy o [}
1
18 a7 ° L]
210253-11

" *Must be set to 0 for compatibility with 80386.

P o:'ttl on Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
: P=0 No mapping to physical memory exits, base and limit are
not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL}
4 Segment Descrip- §=1 Code or Data (includes stacks) segment descriptor
tor (S) S=0 System Segment Descriptor or Gate Descriptor
3 Executable (E) E=0 Data segment descriptor type is: I
2. Expansion Direc- ED =0 Expand up segment, offsets must be < limit. - Data
tion (ED) ED =1 Expand down segment, offsets must be > limit. Segment
1 Writeable (W) W =10 Data segment may not be written into. =1,
T W =1 Data segment may be written into. E=0)
H‘;‘;: 3 Executable (E) E=1 Code Segment Descriptor type is: If
Definition 2 Conforming (C) C=1 Code segment may only be executed Code
when CGPL >DPL and CPL Segment
remains unchanged,
1 Readable (R) R=0 Code segment may not be read (S=1,
) R=1 Code segment may be read. E=1)
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register
or used by selector test instructions.

Figure 11. Code and Data Segment Descriptor Formats

3-16

intel

INTEL CORP {UP/PRPHLS?

~

Code and data (including stack data) are stored in

80286

two types of segments: code segments and data,

segments. Both types are identified and defined by
segment descriptors (S = 1). Code segments are
identified by the executable (E) bit set to 1 in the
descriptor access rights byte. The access rights byte
of both code and data segment descriptor types
have three fields in common: present (P) bit, De-
scriptor Privilege Level (DPL), and accessed (A) bit.
' P = 0, any attempted use of this segment will
cause a not-present exception. DPL specifies the
privilege leve! of the segment descriptor. DPL con-
trols when the descriptor may be used by a task
(refer to privilege discussion below). The A bit shows
whether the segment has been previously accessed
for usage profiling, a necessity for virtual memory
systems. The CPU will always set this bit when ac-
cessing the descriptor.

Data segments (S = 1, E = 0) may be sither read-
only or read-write as controlled by the W bit of the
access rights byte. Read-only (W = 0) data seg-
ments may not be written into. Data segments may

grow in two directions, as determined by the Expan- °

sion Direction (ED) bit: upwards (ED = 0) for data
segments, and downwards (ED = 1) for a segment
containing a stack. The limit field for a data segment
descriptor is interpreted differently depending on the
ED bit (see Figure 11).

A code segment (S = 1, E = 1) may be execute-
only or execute/read as determined by the Read-
able (R) bit. Code segments may never be written
into and execute-only code segments (R = 0) may
not be read. A code segment may also have an attri-
bute called conforming (C). A conforming code seg-
ment may be shared by programs that execute at
different privilege levels. The DPL of a conforming
code segment defines the range of privilege levels
at which the segment may be executed (refer to priv-
ilege discussion below). The limit field identities the
last byte of a code segment.

SYSTEM SEGMENT DESCRIPTORS (S = 0,
TYPE = 1-3)

In addition to code and data segment descriptors,
the protected mode 80286 defines System Segment

Descriptors. These descriptors define special sys-

tem data segments which contain a table of descrip-
tors (Local Descriptor Table Descriptor) or segments
which contain the execution state of a task (Task
State Segment Descriptor).

Figure 12 gives the formats for the special system
data segment descriptors. The descriptors contain a
24-bit base address of the segment and a 16-bit lim-
it. The access byte defines the type of descriptor, its
state and privilege level. The descriptor contents are
valid and the segment is in physical memory if P =1.
If P = 0, the segment is not valid. The DPL field is
only used in Task State Segment descriptors and
indicates the privilege level at which the descrip-

3-17

| veeer?s oowuw3y 3
12E D —T-49-17-16

tor may be used (see Privilege). Since the Local De-
scriptor Table descriptor may only be used by a spe-
cial privileged Instruction, the DPL field is not used.
Bit 4 of the access byte is 0 to indicate that it is a
system control descriptor. The type fleld specifies
the descriptor type as Indicated in Figure 12.

System Segment Descriptor

7 87

T
INTEL ABSERVED*
3

+7 +¢

+ +4

rlomfe] e | st

+* +2

313 UNiTis o
1

[4

[.
210253-12

*Must be set to O for compatibliity with 80386.

System Segment Descriptor Flelds

Name | Value Description
TYPE 1 Available Task State Segment (TSS)
2 Local Descriptor Table
3 Busy Task State Segment (TSS)
P] Descriptor contents are not valid
1 Descriptor contents are valid
DPL 0-3 Descriptor Privilege Leve!
- BASE | 24-bit | Base Address of special system data
number | segmentin real memory
LIMIT | 16-bit | Offset of last byte in segment
number

Figure 12, System Segment Descriptor Format

GATE DESCRIPTORS (S = 0, TYPE = 4-7)

Gates are used to control access to entry points
within the target code segment. The gate descrip-
tors are call gates, task gates, interrupt gates and
trap gates. Gates provide a level of indirection be-
tween the source and destination of the control
transfer. This indirection allows the CPU to automati-
cally perform protection checks and control entry
point of the destination. Call gates are used to
change privilege levels (see Privilege), task gates
are used to perform a task switch, and interrupt and
trap gates are used to specify interrupt service rou-
tines. The interrupt gate disables interrupts (resets
IF) while the trap gate does not.

Gate Descriptor

7 .7

J
- INTEL AESEAVED®

+7

XXX
Ll

+

Tl e o] Soves

+3 DESTINATION SELECTOR -2]l X
i L

+1 DESTINATION OFFSET15.0
1

210253-13
*Must be set to 0 for compatibility with 80386 (X is don't care)

11 87

| Itel 80286
T-49-17-16
— INTEL CORP UP/PRPHLS 13 D
Gate Descriptor Flelds scriptor privilege level and specifies when this de-
scriptor may be used by a task (refer to privilege
Name Value Description discussion below). Bit 4 must equal O to indicate a
e ' g' —%lsIkGé:e system control descriptor. The type field specifies
TYPE p ZInterrupt Gate the descnptor type.as indicated in Figure 13.
7 -Trap Gate .
P - 0 Descriptor Contents are not SEGMENT DESCRIPTOR CACHE RFGISTERS
valid A segment descriptor cache register is assigned to
1 —Descriptor Contents are each of the four segment registers (CS, SS, DS, ES).
valid Segment descriptors are automatically loaded
DPL 0-3 | Descriptor Privilege Level (cached) into a segment descriptor cache register
WORD Number of words to copy (Fiqure 14) whenever the associated segment regis-
COUNT 0-31 | from callers stack to called ter is loaded with a selector. Only segment descrip-
- procedures stack. Only used tors may be loaded into segment descriptor cache
with call gate. registers. Once loaded, all references to that seg-
Selector to the target code ment of memory use the cached descriptor informa-
DESTINATION | 16.6it | e9ment (Call, Interrupt or tion instead of reaccessing the descriptor. The de-
SELECTOR | selector | 172 Gate) scriptor cache registers are not visible to programs.
. Selector to the target task No instructions exist to store their contents. They
-state sagment (Task Gate) only change when a segment register is loaded,
DESTINATION | 16-bit | Entry point within the target
OFFSET offset | code segment SELECTOR FIELDS

Figure 13. Gate Descriptor Format

Figure 13 shows the format of the gate descriptors.
The descriptor contains a destination pointer that
points to the descriptor of the target segment and
the entry point offset. The destination selector in an
interrupt gate, trap gate, and call gate must refer to a
code segment descriptor. These gate descriptors
contain the entry point to prevent a program from

l 4826175 0064L3S S |

A protected mode selector has three fields: descrip-
tor entry index, local or globa! descriptor table indi-
cator (T1), and selector privitege- (RPL) as shown in
Figure 15. These fields select one of two memory
based tables of descriptors, select the appropriate
table entry and aliow highspeed testing of the selec-
tor’s privilege attribute (refer to privilege discussion
below).

constructing and using an illegal entry point. Task seiecTon
gates may only refer to a task state segment. Since
task gates invoke a task switch, the destination off- [Ly Moex m "l’TI
set is not used in the task gate. s 3210
Exception 13 is generated when the gate is used if a Sl — FueTIoN
destination selector does not refer to the correct de- "0 | PRVNEGE | Liver beemen.Cn PRVLECE
scriptor type. The word count field is used in the call A
gate descriptor to indicate the number of parameters ; - P ——
(0-31 words) to be automatically copied from the INDICATOR {abn
caller's stack to the stack of the called routine when ™ Tl = Ly LOCAL DESCRIFTOR TABLE
a control transfer changes privilege levels. The word
count field is not used by any other gate descriptor. 183 | hoex SELECT DESCRIPTOR ENTRY W TABLE
The access byte format is the same for all gate de- . 210253-15
scriptors. P = 1 indicates that the gate contents are Figure 15. Selector Flelds
valid. P = 0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
PROGAAM VSIBLE T T T T T T canam s T 1
! AccEss |
SEGMENT SELECTORS : RIGHTS SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZE :
cs 1 |
oS |]
s ' '
s | 1
1% : “ L.E AL B!} :
SEGMENT REGISTERS i SEGMENT DESCRIPTOR CACHE REGISTERS]
(LOADED BY PROGRAM) L {AUTOMATICALLY LOADED BY CPU) J
—————————————————————————— 210253-14

Figure 14. Descriptor Cache Registers

3-18

intgl
INTEL CORP {UP/PRPHLS}

LOCAL AND GLOBAL DESCRIPTOR TABL* ;

Two tables of descriptors, called descriptor tabiss,
contain all descriptors accessible. by a task at any
given time. A descriptor table is a linear array of up
to 8192 descriptors. The upper 13 bits of the selec-
tor value are an index into a descriptor table. Each
table has a 24-bit base register to locate the descrip-
tor table in physical memory and a 16-bit limit regis-
ter that confine descriptor access to the defined lim-
its of the table as shown in Figure 16. A restartabie
exception (13) will occur if an attempt is made to
reference a descriptor outside the table limits.

One table, called the Global Descriptor table (GDT),
contains descriptors available to all tasks. The other
table, called the Local Descriptor Table (LDT), con-
tains descriptors that can be private to a task. Each
task may have its own private LDT. The GDT may
contain all descriptor types except interrupt and trap
descriptors. The LDT may contain only segment,

task gate, and call gate descriptors. A segment can-

not be accessed by a task if its segment descriptor
does not exist in either descriptor table at the time of
access.

A, MEMORY

GODY

Fs g
éﬁ -;]
& 1[5 | &

i

0

""""'"'1

LDT,

CURRENT
(Y134

[————

-
8 t
!
& |
p
] |
1
c 1
M ERN
|
]

1
!
! LDT BASE I
I | 24-8e7 PrYS aD. .
i I LOT, @
| PROGRAM INVISIBLE | 2 8
i (AUTOMATICALLY | 953
1 LOADED 1 34
FROM LDT DESCR. 3238
' winweon £39
L a [1
~ ~
210253-16

Flgure 16. Local and Global
Descriptor Table Definition

The LGDT and LLDT instructions load the base and
limit of the global and local descriptor tables. LGDT
and LLDT are privileged, i.e. they may only be exe-
cuted by trusted programs operating at level 0. The
LGDT instruction loads a six byte field containing the
16-bit table limit and 24-bit physical base address of
the Global Descriptor Table as shown in Figure 17.
The LLDT instruction loads a selector which refers
to a Local Descriptor Table descriptor containing the

3-19

—

-I ya2u1?s 0obub3e 7|

LeE D —T1-49-17-16

base address and limit for an LDT, as shown in Fig-
ure 12,

80286

i . 7 L]
+S | INTEL RESERVED" ' BASEzs .1¢ +e
+3 BASEs.o +2
]
+1 LiMTy5 o 0
i
15 "7]
210253-17
“Must be set 1o 0 for compatibility with 80386.

Figure 17. Global Descriptor Table and interrupt
Descriptor Table Data Type

INTERRUPT DESCRIPTOR TABLE

The protected mode 80286 has a third descriptor
table, called the Interrupt Descriptor Table (IDT)
(see Figure 18), used to define up to 256 interrupts.
It may contain only task gates, interrupt gates and
trap gates. The IDT (Interrupt Descriptor Table) has
a 24-bit physical base and 16-bit limit register in the
CPU. The privileged LIDT instruction loads these
registers with a six byte value of identical form to
that of the LGDT instruction (see Figure 17 and Pro-
tected Mode Initialization).

o MEMORY v

n

GATE FOR
INTERRUPT #n

GATE FOR
INTERRUPT #n-1 .
A INTERRUPT
DESCRIPTOR
cru . TABLE
] (IoT)
ol ° GATE FOR
10T L ’_ INTERRUPT #1 ¢ 1
GATE FOR a
INTERRUPT #0 g g d
107 BASE '] g3 4
n) J J z3 g
L L
“~ ~s
210253-18

Figure 18. Interrupt Descriptor Table Definition

References to IDT entries are made via INT instruc-
tions, external interrupt vectors, or exceptions. The
IDT must be at ieast 256 bytes in size to allocate
space for all reserved interrupts. -

Privilege

The 80286 has a four-level hierarchical privilege sys-
tem which controls the use of privileged instructions
and access to descriptors (and their associated seg-
ments) within a task. Four-level privilege, as shown
in Figure 18, is an extension of the user/supervisor
mode commonly found in minicomputers. The privi-
lege levels are numbered 0 through 3. Level 0 is the

intel

INTEL CORP {UP/PRPHLSZ}

NOTE: PL BECOMES NUMERICALLY LOWER AS PRIVILEGE LEVEL
INCREASES

210263-19

most privileged level. Privilege levels provide protec-
tion within a task. (Tasks are isolated by providing
private LDT’s for each task.) Operating system rou-
tines, interrupt handlers, and other system software
can be included and protected within the virtual ad-
dress space of each task using the four levels of
privilege. Each task in the system has a separate
stack for each of its privilege levels.

Tasks. descriptors, and selectors have a privilege
level attribute that determines whether the descrip-
tor may be used. Task privilege effects the use of
instructions and descriptors. Descriptor and selsctor
privilege only effect access to the descriptor.

TASK PRIVILEGE

A task always executes at one of the four privilege
levels. The task privilege level at any specific instant
is called the Current Privilege Leve! (CPL) and is de-
fined by the lower two bits of the CS register. CPL
cannot change during execution in a single code
segment. A task’s CPL may only be changed by con-
trol transfers through gate descriptors to a new code
segment (See Control Transfer). Tasks begin exe-
cuting at the CPL value specified by the code seg-
ment selector within TSS when the task is initiated
via a task switch operation (See Figure 20). A task
executing at Level 0 can access all data segments
defined in the GDT and the task's LDT and is con-
sidered the most trusted level. A task executing a
Level 3 has the most restricted access to data and is
considered the least trusted level.

DESCRIPTOR PRIVILEGE

Descriptor privilege is specified by the Descriptor
Privilege Level (DPL) fisld of the descriptor access
byte. DPL specifies the least trusted task privilege
level (CPL) at which a task may access the descrip-

3-20

|I Qaabl.?s 00bY4L37? qj

80286

12E D —T-49-17-16

tor. Descriptors with DPL = 0 are the most protect-
ed. Only tasks executing at privilege level 0
(CPL = 0) may access them. Descriptors with DPL
= 3 are the least protected (i.e. have the least re-
stricted access) since tasks can access them when
CPL = 0, 1, 2, or 3. This rule applies to all descrip-
tors, except LDT descriptors.

SELECTOR PRIVILEGE

Selector privilege is spacified by the Requested Priv-
ilege Level (RPL) field in the least significant two bits
of a selsctor. Selector RPL may establish a less
trusted privilege level than the current privilege level
for the use of a selector. This level is called the
task's effective privilege level (EPL). RPL can only
reduce the scope of a fask's access to data with this
selector. A task’s effective privilege is the numeric
maximum of RPL and CPL. A selector with RPL = 0
imposes no additional restriction on its use while a
selector with RPL = 3 can only refer to segments at
privilege Level 3 regardless of the task’s CPL. RPL
is generally used to verify that pointer parameters
passed to a more trusted procedure are not allowed
to use data at a more privileged level than the caller
(refer to pointer testing instructions).

Descriptor Access and Privilege
Validation

Determining the ability of a task to access a seg-
ment involves the type of segment to be accessed,
the instruction used, the type of descriptor used and
CPL, RPL, and DPL. The two basic types of segment
accesses are control transfer {selectors loaded into
CS) and data (selectors loaded into DS, ES or SS).

DATA SEGMENT ACCESS

Instructions that load selectors into DS and ES must
refer to a data segment descriptor or readable code
segment descriptor. The GPL of the task and the
RPL of the selector must be the same as or more
privileged (numerically equal to or lower than) than
the descriptor DPL. In general, a task can only ac-
cess data segments at the same or less privileged
levels than the CPL or RPL (whichever is numerically
higher) to prevent a program from accessing data it
cannot be trusted to use.

An exception to the rule is a readable conforming
code segment. This type of code segment can be
read from any privilege level.

If the privilege checks fail (e.g. DPL is numerica{lly
less than the maximum of CPL and RPL) or an incor-
rect type of descriptor is referenced (e.g. gate de-

intel
- INTEL CORP {UP/PRPHLS?}

scriptor or execute only code segment) exception 13
occurs. If the segment is not present, exception 11
is generated.

Instructions that load selectors into SS must refer to
data segment descriptors for writable data-seg-
ments. The descriptor privilege (DPL) and RPL must
equal CPL. All other descriptor types or a privilege
level violation will cause exception 13. A not present
fault causes exception 12.

CONTROL TRANSFER

Four types of control transfer can occur when a se-
lector is loaded into CS by a control transfer opera-
tion (see Table 10). Each transfer type can only oc-
cur if the operation which loaded the selector refer-
ences the comrect descriptor type. Any violation of
these descriptor usage rules (e.g. JMP through a call
gate or RET to a Task State Segment) will cause
exception 13. .

The ability to reference a descriptor for control trans-
fer is also subject to rules of privilege. A CALL or
JUMP instruction may only reference a code seg-
ment descriptor with DPL equal to the task CPL or a
conforming segment with DPL of equal or greater
privilege than CPL. The RPL of the selector used to
reference the code descriptor must have as much
privilege as CPL.

RET and IRET instructions may only reference code
segment descriptors with descriptor privilege equal
to or less privileged than the task CPL. The selector
loaded into CS is the return address from the stack.
After the return, the selector RPL is the task’s new
CPL, If CPL changes, the old stack pointer is popped
after the return address.

When a JMP or CALL references a Task State Seg-
ment descriptor, the descriptor DPL must be the
same or less privileged than the task’s CPL. Refer-

4826175 00LYL3A DI

80286
L2E D ~T-49-17-16

ence to a valid Task State Segment descriptor caus-
es a task switch (see Task Switch Operation). Refer-
ence to a Task State Segment descriptor at a more
privileged level than the task's CPL generates ex-
ception 13.

When an instruction or interrupt references a gate
‘descriptor, the gate DPL must have the same or less
privilege than the task CPL. If DPL is at a more privi-
leged level than CPL, exeception 13 occurs. If the
destination selector contained in the gate refer-
ences a code segment descriptor, the code seg-
ment descriptor DPL must be the same or more priv-
ileged than the task CPL. If not, Exception 13 is is-
sued. After the control transfer, the code segment
descriptors DPL is the task’s new CPL. If the desti-
nation selector in the gate references a task state
segment, a task switch is automatically performed
(see Task Switch Operation).

The privilege rules on control transfer require:

— JMP or CALL direct to a code segment (code
segment descriptor) can only be to a conforming
segment with DPL of equal or greater privilege
than CPL or a non-conforming segment at the
same privilege level.

— interrupts within the task or calls that may
change privilege levels, can only transfer control
through a gate at the same or a less privileged
level than CPL to a code segment at the same or
more privileged level than CPL.

— return instructions that don’t switch tasks can
only return control to a code segment at the
same or less privileged level.

- task switch can be performed by a call, jump or
interrupt which references either a task gate or
task state segment at the same or less privileged
level.

Table 10. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table
Intersegment within the same privilege level JMP, CALL, RET, IRET* | Code Segment | GDT/LDT
In_tersegment to the same or higher privilege level Interrupt { CALL Call Gate GDT/LDT
within task may change CPL. Interrupt Instruction, Trap or IDT
Exception, External Interrupt
interrupt Gate
Intersegment to a lower privilege level (changes task CPL) RET, IRET* Code Segment | GDT/LDT
CALL, IMP Task State GDT
Segment
Task Switch CALL, JMP Task Gate GDT/LDT
IRET**
Interrupt Instruction,
Exception, External Task Gate 10T
Interrupt

*NT (Nested Task bit of flag word) = 0
**NT (Nested Task bit of flag word) = 1

o 04

intel

INTEL CORP {UP/PRPHLS?}

PRIVILEGE LEVEL CHANGES

Any control transfer that changes CPL within the
task, causes a change of stacks as part of the oper-
ation. Initial values of SS:SP for privilege levels 0, 1,
and 2 are kept in the task state segment (refer to
Task Switch Operation). During a JMP or CALL con-
trol transfer, the new stack pointer is loaded into the
SS and SP registers and the previous stack pointer
is pushed onto the new stack. -

When returning to the original privilege level, its
stack is restored as part of the RET or IRET instruc-
tion operation. For subroutine talls that pass param-
eters on the stack and cross privilege levels, a fixed
number of words, as specified in the gate, are cop-
ied from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

Protection

The 80286 includes mechanisms to protect critical
instructions that affect the CPU execution state (e.g.
HLT) and codse or data segments from improper us-
age. These protection mechanisms are grouped into
three forms:

Restricted usage of segments (e.g. no write al-
lowed to read-only data segments). The only seg-
ments available for use are defined by descrip-
tors in the Local Descriptor Table (LDT) and
Global Descriptor Table (GDT).

Restricted access to segments via the rules of
privilege and descriptor usage.

Privileged instructions or operations that may
only be executed at certain privilege levels as de-
termined by the CPL and I/O Privilege Level
(IOPL). The IOPL is defined by bits 14 and 13 of
the flag word.

These checks are performed for all instructions and
can be split into three categories: segment load
checks (Table 11), operand reference checks (Table
12), and privileged instruction checks (Table 13).
Any violation of the rules shown will result in an ex-
ception. A not-present exception related to the stack
- segment causes exception 12.

The IRET and POPF instructions do not perform
some of their defined functions if CPL is not of suffi-
cient privilege (numerically small enough). Precisely
these are:

® The IF bit is not changed if CPL > 10PL.

¢ The IOPL field of the flag word is not changed if
CPL > 0.

No exceptions or otheér indication are given when
these conditions occur.

l 4a26L?5 0064L39 EI

80286

—T-49-17-1
12E p T-49-17-16
Table 11
Segment Register Load Checks
Exception
Error Description Number
Descriptor table limit exceeded 13
Segment descriptor not-present 1fori2
Privilege rules violated 13
Invalid descriptor/segment typa seg-
ment register load:
—Read only data segment {oad to
SS
—Special Control descriptor load to
- DS, ES, 8S 13
—Execute only segment load to
DS, ES, §S
* —Data segment load to CS
—Read/Execute code segment
load to SS
Table 12. Operand Reference Checks
Exception
Error Description Number
Write into code segment 13
Read from execute-only code
segment 13
Wiite to read-only data segment 13
Segment limit exceeded! 120r13

NOTE:
Carry out in offset calculations is ignored.

Table 13. Privileged Instruction Checks

Exception

Error Description Number

CPL # 0 when executing the following
instructions:
LIDT, LLDT, LGDT, LTR, LMSW,
CTS, HLT

CPL > |0PL when executing the fol-
lowing instructions:
INS, IN, QUTS, OUT, STI, CLI,
LOCK

13

13

EXCEPTIONS

The 80286 detects several types of exceptions and
interrupts, in protected mode (see Table 14). Most

"are restartable after the exceptional condition is re-

3-22

moved. Interrupt handlers for most exceptions can
read an error code, pushed on the stack after the
return address, that identifies the selector involved
(0 if none). The return address normally points to the
failing instruction, including all leading prefixes. For a
processor extension segment overrun exception,
the return address will not point at the ESC instruc-
tion that caused the exception; however, the proces-
sor extension registers may contain the address of
the failing instruction.

intel

INTEL CORP {UP/PRPHLS}

80286

l 482L175 00L4LUD ql

L2E D TT-49-17-16

Table 14. Protected Mode Exceptions

Return -
: Always *Error
Interrupt Funetion Address | p o start. Code
Vector ~ AtFalling able? on Stack?
Instruction?
8 Double exception detected Yes No2 Yes
9 Processor extension segment overrun No No2 No
10 Invalid task state segment Yes Yes Yes
Lh! Segment not present Yes Yes Yes
12 Stack segment overrun or stack segment not present Yes Yesl Yes
13 General protection Yes No2 Yes
NOTE:

1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception

will not be restartable because stack segment wrap around Is not

saved SP being either 0000(H), 0001(H), FFFE(H), or FFFF(H).

2. These exceptions indicate a violation to
under those conditions.

These exceptions indicate a violation to privilege
. Tules or usage rules has occurred. Restart is gener-
ally not attempted under those conditions.

All these checks are performed for all instructions
and can be split into three categories: segment load
checks (Table 11), operand reference checks (Table
12), and privileged instruction checks (Table 13).
Any violation of the rules shown will result in an ex-
ception. A not-present exception causes exception
11 or 12 and is restartable.

Special Operations

TASK SWITCH OPERATION

The 80286 provides a built-in task switch operation
which saves the entire 80286 execution state (regis-
ters, address space, and a link to the previous task),
loads a new execution state, and commences exe-
cution in the new task. Like gates, the task switch
operation Is invoked by executing an inter-segment
JMP or CALL instruction which refers to a Task
State Segment (TSS) or task gate descriptor in the
GDT or LDT. An INT n instruction, exception, or ex-
ternal interrupt may also invoke the task switch op-
eration by selecting a task gate descriptor in the as-
sociated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure
20) containing the entire 80286 execution state
while a task gate descriptor contains a TSS selsctor.
The limit field of the descriptor must be > 002B(H).

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
80286 called the Task Register (TR). This register
contains a selector referring to the task state seg-
ment descriptor that defines the current TSS. A hid-
den base and limit register associated with TR are
loaded whenever TR is loaded with a new selector.

3-23

permitted. This condition is identified by the value of the

privilege rules or usage rules has occurred. Restart is generaily not attempted

The IRET instruction is used to return control to the
task that called the current task or was interrupted.
Bit 14 in the fiag register is called the Nested Task
(NT) bit. It controls the function of the IRET instruc-
tion. If NT = 0, the IRET instruction performs the
regular current task by popping values off the stack;
when NT = 1, IRET performs a task switch opera-
tion back to the previous task.

When a CALL, JMP, or INT instruction initiates a
task switch, the old (except for case of JMP) and
new TSS will be marked busy and the back fink field
of the new TSS set to the old TSS selector. The NT
bit of the new task is set by CALL or INT initiated
task switches. An interrupt that does not cause a
task switch will clear NT. NT may also be set or
cleared by POPF or IRET instructions.

The task state segment is marked busy by changing
the descriptor-type field from Type 1 to Type 3. Use
of a selector that references a busy task state seg-
ment causes Exception 13.

PROCESSOR EXTENSION CONTEXT
SWITCHING

The context of a processor extension (such as the
80287 numerics processor) is not changed by the
task swilch operation. A processor extension con-
text need only be changed when a different task at-
tempts to use the processor extension {which still
contains the context of a previous task). The 80286
detects the first use of a processor extension after a
task switch by causing the processor extension not
present exception (7). The interrupt handler may
then decide whether a context change is necessary.

Whenever the 80286 switches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a
processor extension context may belong to a differ-
ent task than the current one. The processor exten-
sion not present exception (7) will occur when at-
tempting to execute an ESG or WAIT instruction if
TS =1 and a processor extension is present (MP=1
in MSW),

intel

INTEL CORP {UP/PRPHLS}
POINTER TESTING INSTRUCTIONS

The 80286 provides several instructions to speed
pointer testing and consistency checks for maintain-
ing system integrity (see Table 15). These instruc-

I 4826175 00LYLYL ul
80286

12 p T T-49-17-16

tions use the memory management hardware to ver-
ify that a selector value refers to an appropriate seg-
ment without risking an exception. A condition flag
(ZF) indicates whether use of the selector or seg-
ment will cause an exception.

ey X
cru mun'essnvén
X Tvee | oescmeTioN
TASK REGISTER D
system PIP[O[TYPEl BASEx-u 1 AN AVARLABLE TASK STATE
™ —_——— LiL SEGMENT. MAY BE USED AS
DESCHTOR ” THE DESTINATION OF A TASK
O R BASEise b} SWITCH OPERATION.
| |
| procrasiwvisisce | | 3 A BUSY TASK STATE SEGMENT.
i f . i LWNT1e o " CANNOT BE USED AS THE
h ' | ' DESTINATION OF A TASK
[T G - 1 SWITCH.
I e e J
J sASE !
i | A A
| B * | n ~
[D B r BYTE
15 o] ofFrser
(| vaskioTseLecTor [
08 SELECTOR 40
$S SELECTOR 3
SEGMENT IS NOT PRESENT
€8 SELECTOR » MEMORY, BASE AND LT ARE NOT
D
€8 SELECTOR EY)
[2
s)
BP 28 | CURRENT
} TASK
sp 26 [state
8X 0
TASK X 2
e san
SEGMENT Cx 20
AX "
FLAG WORD "
IP (ENTRY POINT) 1 J
SS FOR CPL 2 12
8P FOR CPL 2 10
8SFORCPL 1 o | wmaL
} STACKS
8P FOR CPL 1 o[FORCPLO,2
SS FOR CPLO 4
SP FOR CPLO :J
BACK LINK SELECTORTOTSS | o
x ~
210253-20

Figure 20. Task State Segment and TSS Registers

3-24

intal
— INTEL CORP {UP/PRPHLS?

Table 15. 80286 Polinter Test Instructions

instruction | Operands Function

Adjust Requested Privilege
Level: adjusts the RPL ot
the selector to the numeric
maximum of current selec-
tor RPL value and the RPL
value in the register, Set
zero flag if selector RPL
was changed by ARPL.

ARPL Selsctor,

Register

VERR Selector |.VERify for Read: sets the
zero flag if the segment re-
ferred to by the selector

can be read.

Selector VERify for Write: sets the
zero flag if the segment re-
ferred to by the selector

can be written.

VERW

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type allow.
Set zero flag if successful.

LSL Register,

Selector

Load Access Rights: reads
the descriptor access
rights byte into the register
if privilege rules allow. Set

LAR Register,

Selsctor

zero flag if successful.

DOUBLE FAULT AND SHUTDOWN

If two separate exceptions are detected during a sin-
gle instruction execution, the 80286 performs the
double fault exception (8). If an execution occurs
during processing of the double fault exception, the
80286 will enter shutdown. During shutdown no fur-
ther instructions or exceptions are processed. Either
NMI (CPU remains in protected mode) or RESET
(CPU exits protected mode) can force the 80286 out
of shutdown. Shutdown is externally signalled via a
HALT bus operation with A; LOW.

PROTECTED MODE INITIALIZATION

The 80286 initially executes in real address mode
after RESET. To allow initialization code to be
placed at the top of physical memory, Asg—Agg will
be HIGH when the 80286 performs memory refer-
ences relative to the CS register until CS is changed.
As3~Azg will be zero for references to the DS, ES, or
SS segments. Changing CS in real address mode
will force Ags—~Agg LOW whenever CS is used again.
The initial CS:IP value of FOOO0:FFFQ provides 64K
bytes of code space for initialization code without
changing GS.

Protected mode operation requires several registers
to be initialized. The GDT and IDT base registers
must refer to a valid GDT and IDT. After executing
the LMSW instruction to set PE, the 80286 must im-

3-25

4826175 00k4LUYS ¢ l

80286
L2E D - 7-49-17-16

mediately exacute an intra-segment JMP instruction
to clear the instruction queue of instructions decod-
ed in real address mode.

To force the 80286 CPU registers to match the initial
protected mode state assumed by software, execute
a JMP instruction with a selector referring to the ini-
tial TSS used in the system. This will load the task
register, local descriptor table register, segment reg-
isters and initial general register state. The TR
should point at a valid TSS since any task switch
operation involves saving the current task state.

SYSTEM INTERFACE

The 80286 system interface appears in two forms: a
local bus and a system bus. The local bus consists
of address, data, status, and control signals at the
pins of the CPU. A system bus is any buffered ver-
sion of the local bus. A system bus may also differ
from the local bus in terms of coding of status and
control lines and/or timing and loading of signals.
The 80286 family includes several devices to gener-
ate standard system buses such as the |IEEE 796
standard MULTIBUS,

Bus Interface Signals and Timing

The 80286 microsystem local bus interfaces the
80286 to local memory and /O components. The
interface has 24 address lines, 16 data lines, and 8
status and control signais.

The 80286 CPU, 82C284 clock generator, 82288
bus controller, 82289 bus arbiter, tranceivers, and
latches provide a buffered and decoded system bus
interface. The 820284 generates the system clock
and synchronizes READY and RESET. The 82288
converts bus operation status encoded by the 80286
into command and bus control signals. The 82289
bus arbiter generates Multibus bus arbitration sig-
nals. These components can provide the timing and
electrical power drive levels required for most sys-
tem bus interfaces including the Multibus.

Physical Memory and 1/0 Interface

A maximum of 16 megabytes of physical memory
can be addressed in protected mode. One mega-
byte can be addressed in real address mode. Memo-
1y is accessible as bytes or words. Words consist of
any two consecutive bytes addressed with the least
significant byte stored in the lowest address.

Byte transfers occur on either half of the 16-bit local
data bus. Even bytes are accessed over Dy..g while
odd bytes are transferred over Dis_g. Even-ad-
dressed words are transferred over Dys_g in one
bus cycle, while odd-addressed word require two
bus operations. The first transfers data on Dys5_g,
and the second transfers data on Dy_g. Both byte
data transfers occur automatically, transparent to
software.

intel
~ INTEL CORP {UP/PRPHLS?

Two bus signais, Ag and BHE, control transfers over
the lower and upper halves of the data bus. Even
address byte transfers are indicated by Ag LOW and
BHE HIGH. Odd address byte transfers are indicat-
ed by Ag HIGH and BHE LOW. Both Ag and BHE are
LOW for even address word transfers.

The I/O address space contains 64K addresses in
both modes: The 1/0 space is accessible as either
bytes or words, as is memory. Byte wide peripheral
devices may be attached to either the upper or lower
byte of the data bus. Byte-wide 1/0 devices attached
to the upper data byte (Dy5_g) are accessed with
odd 1/0 addresses. Devices on the lower data byte
are accessed with even 1/0 addresses. An interrupt
controller such as Intel’'s 8259A must be connected
to the lower data byte (Dy_g) for proper return of the
interrupt vector.

Bus Operation

The 80286 uses a double frequency system clock
(CLK input) to control bus timing. All signals on the
local bus are measured relative to the system CLK
input. The CPU divides the system clock by 2 to pro-
duce the internal processor clock, which determines
bus sfate. Each processor clock is composed of two
system clock cycles named phase 1 and phase 2.
The 82C284 clock generator output (PCLK) identi-
fies the next phase of the processor clock. (See Fig-
ure 21.)

[¢——— ONE PROCESSOR CLOCK CYCLE———

l&«——————— ONE BUS T STATE —————————»y
PHASE 1 PHASE 2
a——OF PROCESSOR. OF PROCESSOR -—»
CLOCK CYCLE CLOCK CYCLE

e N N 2aae N

ONE SYSTEM
CLK CYCLE

PCLK —/—____—_/_—

210253-21

Figure 21. System and Processor
Clock Relationships

Six types of bus operations are supported; memory
read, memory write, 170 read, 1/0 write, interrupt ac-
knowledge, and halt/shutdown. Data can be trans-
ferred at a maximum rate of one word per two proc-
essor clock cycles.

The 80286 bus has three basic states: idle (T;), send
status (Tg), and perform command (T¢). The 80286
CPU also has a fourth local bus state called hold
(Th). Th indicates that the 80286 has surrendered
control of the local bus to another bus master in
response to a HOLD request.

Each bus state is one processor clock long. Figure
22 shows the four 80286 local bus states and al-
lowed transitions.

3-26

‘ ye2bl?h uuaﬂb‘ﬁiL

80286

READY ¢ NEW CYCLE

210253-22

Figure 22. 80286 Bus States

Bus States

The idle (T;) state indicates that no data transfers
are in progress or requested. The first active state
Tg is signaled by status line S1 or SO going LOW
and identifying phase 1 of the processor clock. Dur-
ing Ts, the command encoding, the address, and
data (for a write operation) are available on the
80286 output pins. The 82288 bus controller de-
codes the status signals and generates Multibus
compatible read/write command and local trans-
ceiver control signals.

After Tg, the perform command (T¢) state is en-
tered. Memory or 1/0 devices respond to the bus
operation during Tg, either transferring read data to
the CPU or accepting write data. T¢ states may be
repeated as often as necessary to assure sufficient
time for the memory or 1/0 device to respond. The
READY signal determines whether T¢ is repeated. A
repeated T state is calied a wait state.

During hold (Tp), the 80286 will float all address,
data, and status output pins enabling another bus
master to use the local bus. The 80286 HOLD input
signal is used to place the 80286 into the T}, state.
The 80286 HLDA output signal indicates that the
CPU has entered T,

Pipelined Addressing

The 80286 uses a local bus interface with pipelined
timing to allow as much time as possible for data
access. Pipelined timing allows a new bus operation
to be initiated every two processor cycles, while al-
lowing each individual bus operation to last for three
processor cycles.

The timing of the address outputs is pipselined such
that the address of the next bus operation becomes
available during the current bus operation. Or in oth-
er words, the first clock of the next bus operation is
overlapped with the last clock of the current bus op-
eration. Therefore, address decode and routing logic
can operate in advance of the next bus operation.

12t D —7T1-49-17-16

it

l 482L1L75 00bLYLYY E.l

80286
L2E D TT-49-17-16

- INTEL CORP {UP/PR%LS?
<———READSUS.CYCI.EN - READ BUS CYCLEN + 1 —————]
n -1 '-' ~ —’i‘ l ’l: - +1 'I- - i - 'I" 2
Proc cik | |
S — z|=cu(cvn:n.s}nmsmnAH - ft — 2 PCLK CYCLE TRANSFER —————
An-he XK XK [vwosoonmen] XK

20 ¢ 31 \-

READY

PIPELINING: YALID ADDRESS (N « 1) AVAILABLE IN LAST PHASE OF BUS CYCLE (N). .

VALID READ
DATA (N + 1)

VALID READ
DATA (N}

210253-23

Figure 23. Basic Bus Cycie

External address latches may hold the address sta-
ble for the entire bus operation, and provide addi-
tional AC and DC buffering.

The 80286 does not maintain the address of the cur-
rent bus operation during all T, states. Instead, the
address for the next bus operation may be emitted
during phase 2 of any T,. The address remains valid
during phase 1 of the first T¢ to guarantee hold time,
relative to ALE, for the address latch inputs.

Bus Control Signals

The 82288 bus controller provides control signals;
address latch enable (ALE), Read/Write commands,
data transmit/receive (DT/R), and data enable
(DEN) that control the address latches, data trans-
ceivers, write enable, and output enable for memory
and I/0O systems.

The Address Latch Enable (ALE) output determines
-when the address may be latched. ALE provides at
least one system CLK period of address hold time
from the end of the previous bus operation until the
address for the next bus operation appears at the
latch outputs. This address hold time is required to
support MULTIBUS and common memory systems.

The data bus transceivers are controlied by 82288
outputs Data Enable (DEN) and Data Transmit/Re-
ceive (DT/R). DEN enables the data transceivers;
while DT/R controls tranceiver direction. DEN and
DT/R are timed to prevent bus contention between
the bus master, data bus transceivers, and system
data bus transceivers.

3-27

Command Timing Controls

Two system timing customization options, command
extension and command delay, are provided on the
80286 iocal bus.

Command extension allows additional time for exter-
nal devices to respond to a command and is analo-
gous to inserting wait states on the 8086, External
logic can control the duration of any bus operation
such that the operation is only as long as necessary.
The READY input signal can extend any bus opera-
tion for as long as necessary.

Command delay allows an increase of address or
write data setup time to system bus command active
for any bus operation by delaying when the system
bus command becomes active. Command delay is
controlled by the 82288 CMDLY input. After Tg, the
bus controller samples CMDLY at each failing edge
of CLK. If CMDLY is HIGH, the 82288 will not acti-
vate the command signal. When CMDLY is LOW,
the 82288 will activate the command signal. After
the command becomes active, the CMDLY input is
not sampled. .

When a command is delayed, the available re-
sponse time from command active to return read
data or accept write data is less. To customize sys-
tem bus timing, an address decoder can determine
which bus operations require delaying the com-
mand. The CMDLY input does not affect the timing
of ALE, DEN, or DT/R.

intel

INTEL CORP {UP/PRPHLS}

80286

J ueaeu?s 00b44S g |

12E D —T-49-17-16

XD wwghoonn 77— 7 XK

An-da woosoneey [XKK /

p=

- i, /
o WANG '
L= AR
S e [

210253-24

Figure 24. CMDLY Controls the Leading Edge of Command Signal

Figure 24 illustrates four uses of CMDLY. Example 1
shows delaying the read command two system
CLKs for cycle N-1 and no delay for cycle N, and
example 2 shows delaying the read command one
system CLK for cycle N-1 and one system CLK de-
lay for cycle N.

Bus Cycle Termination

At maximum transfer rates, the 80286 bus alternates
between the status and command states. The bus
status signals become inactive after Tg so that they
may correctly signal the start of the next bus opera-
tion after the completion of the current cycle. No
external indication of T exists on the 80286 local
bus. The bus master and bus controller enter T, di-
rectly after Tg and continue executing T¢ cycles until
terminated by READY.

READY Operation

The current bus master and 82288 bus controller
terminate each bus operation simultaneously to
achieve maximum bus operation bandwidth. Both
are informed in advance by READY active (open-
collector output from 82C284) which identifies the
last Tc cycle of the current bus operation. The bus
master and bus controller must see the same sense

of the READY signal, thereby requiring READY be
synchronous to the system clock.

Synchronous Ready

The 82C284 clock generator provides READY syn-
chronization from both synchronous and asynchro-
nous sources (see Figure 25). The synchronous
ready input (SRDY) of the clock generator is sam-
pled with the falling edge of CLK at the end of phase
1 of each T,. The state of SRDY is then broadcast to
the bus master and bus controiler via the READY
output line.

Asynchronous Ready

Many systems have devices or subsystems that are
asynchronous to the system clock. As a result, their
ready outputs cannot be guaranteed to meet the
82C284 SRDY setup and hold time requirements.
But the 82C284 asynchronous ready input (ARDY) is
designed to accept such signals. The ARDY input is
sampled at the beginning of each T¢ cycle by
82C284 synchronization logic. This provides one
system CLK cycle time to resolve its value before
broadcasting it to the bus master and bus controller.

J uoati7s ookuRue g |

Inter 80286

- INTEL CORP {UP/PRPHLSY 1L2E ?_:1”49-17-16
*———————MEMORY CYCLEN - § MEMORY CYCLE N
?I' - i " 'l‘ - # ‘I' « i " 'I" “ i o ';' «

mocex L [1 [
An-h o 400n L XKLL/

]

WM

T) ARV

READY {SEENOTE 1) {SEENOTE2) ,\
257 1TVMAVWANVAAYVAAANVVNYWNWWWWANWWNWWNNWNWWWS /7777777777777 7

{SEENOTE 3)

NOTES: 210253-25
1. SRDYEN is active low.

2. If SRDYEN is high, the state of SRDY will no affect READY.

3. ARDYEN is active low.

Figure 25. Synchronous and Asynchronous Ready

ARDY or ARDYEN must be HIGH at the end of Tg. The data bus is driven with write data during the
ARDY cannot be used to terminate bus cycle with no second phase of Ts. The delay in write data timing
wait states. allows the read data drivers, from a previous read

cycle, sufficient time to enter 3-state OFF before the
Each ready input of the 82C284 has an enable pin 80286 CPU begins driving the local data bus for

(SRDYEN and ARDYEN)]) to select whether the cur- write operations. Write data will always remain valid
rent bus operation will be terminated by the synchro- for one system clock past the last T, to provide suffi-
nous or asynchronous ready. Either of the ready in- cient hold time for Multibus or other similar memory

puts may terminate a bus operation. These enable or I/0 systems. During write-read or write-idle se-
inputs are active low and have the same timing as quences the data bus enters 3-state OFF during the
their respective ready inputs. Address decode logic second phase of the processor cycle after the last
usually selects whether the current bus operation Te. In a write-write sequence the data bus does not
should be terminated by ARDY or SRDY. enter 3-state OFF between T, and Tg.

Data Bus Control Bus Usage

Figures 26, 27, and 28 show how the DT/R, DEN, The 80286 local bus may be used for several func-
data bus, and address signals operate for different tions: instruction data transfers, data transfers by

combinations of read, write, and idie bus operations. ~ other bus masters, instruction fetching, processor

DT/R goes active (LOW) for a read operation. DT/R extension data transfers, interrupt acknowledge, and

remains HIGH before, during, and between write op- halt/shutdown. This section describes local bus ac-

erations. tivities which have special signals or requirements.
3-29

' 4826125 00LYLY? LI

mte[80286

INTEL CORP {l +'PRPHLS} 128 D —T-49-17-16

ki R

- = Ts | Tc Ts

1 2 “ B 2 » 1 2 1 | 2 |] L] 1

LK

T
VALID ADDR

P XK

/ R\ —
— N

A L

DTR S~y
21025326
Figure 26. Back to Back Read-Write Cycles
_—_T L WTEICVCLE Te L Te ReaD fVCLE Tc L n]
] -2 l 1] 2 | #] L |) I < ' " I « r o] -

CLK

210253-27

Figure 27. Back to Back Write-Read Cycles

3-30

l 4826175 00LYLYS 3.

Inte[80286
INTEL CORP {UP/PRPHLS? L2k DT-49-17-16
- B . WRITE CIVCtE Nt Te L - WRITE (l:VCLE N . i N !
] N A A w | w0 e e e

(i

VALID DATA N-1

WWTC
DEN
YOH
TR
210253-28
Figure 28. Back to Back Write-Write Cycles
HOLD and HLDA cycles other than Interrupt-Acknowledge cycles,

HOLD AND HLDA allow another bus master to gain
control of the local bus by placing the 80286 bus into
the Th state. The sequence of events required to
pass control between the 80286 and another iocal
bus master are shown in Figure 29.

In this example, the 80286 is initially in the T}, state
as signaled by HLDA being active. Upon leaving Tp,
as signaled by HLDA going inactive, a write opera-
tion is started. During the write operation another
local bus master requests the local bus from the
80286 as shown by the HOLD signal. After complet-
ing the write operation, the 80286 performs one T;
bus cycle, to guarantee write data hold time, then
enters Ty, as signaled by HLDA going active.

The CMDLY signal and ARDY ready are used to
start and stop the write bus command, respectively.
Note that SRDY must be inactive or disabled by
SRDYEN to guarantee ARDY will terminate the cy-
cle.

HOLD must not be active during the time from the
leading edge of RESET until 34 CLKs following the
trailing edge of RESET.

Lock

The CPU asserts an active lock signal during Inter-
rupt-Acknowledge cycles, the XCHG instruction, and
during some descriptor accesses. Lock is also as-
serted when the LOCK prefix is used. The LOCK
prefix may be used with the following ASM-286 as-
sembly instructions; MOVS, INS, and OUTS. For bus

3-31

Lock will be active for the first and subsequent cy-
cles of a series of cycles to be locked. Lock will not
be shown active during the last cycle to be locked.
For the next-to-fast cycle, Lock will become inactive
at the end of the first T, regardless of the number of
wait-states inserted. For Interrupt-Acknowledge cy-
cles, Lock will be active for each cycle, and will be-
come inactive at the end of the first T, for each cy-
cle regardless of the number of wait-states inserted.

Instruction Fetching

The 80286 Bus Unit (BU) will fetch instructions
ahead of the current instruction being executed. This
activity is called prefetching. it occurs when the local
bus would otherwise be idle and obeys the following
rules:

A prefetch bus operation starts when at least two
bytes of the 6-byte prefetch queue are empty.

The prefetcher normally performs word prefetches
independent of the byte alignment of the code seg-
ment base in physical memory.

The prefetcher will perform only a byte code fetch
operation for control transfers to an instruction be-
ginning on a numerically odd physical address.

Prefetching stops whenever a control transfer or
HLT instruction is decoded by the IU and placed into
the instruction queue.

In real address mode, the prefetcher may fetch up to
6 bytes beyond the last control transfer or HLT in-
struction in a code segment.

intel
INTEL CORP {UP/PRPHLS?
In protected mode, the prefetcher will never cause a

segment overrun exception. The prefetcher stops at
the last physical memory word of the code segment.

B vezu1es oosusua s

80286

12E D —T-49-17-16

If the last byte of a code segme:»t appears on an
even physical memory address, the prefetcher will
read the next physical byte of memory (perform a

Exception 13 will occur if the program attempts to word code fetch). The value of this byte is ignored

execute beyond the last full instruction in the code and any attempt to execute it causes exception 13,
segment. .’ .
Jaa——_BUS HOLD ACKNOWLEDGE I WNTE CYCLE ‘E."%m
SUS CTCLE TYoe L/ £} " T, Te Te Te v, T
) IO'!‘“I"'IOllﬂ'l:—lﬂl.ulﬂ|ﬂlﬂlo:'o!lo:'o!:a o!lo:l
[o
oo T _osex NoTE 43 = m:! woTES) (‘
EMOTEY _— Aseenoren)
i o ~_
Ay - Ay - (SEE 2)
0, VALD) NINERRER UMM R RN Y i
00 MTA '__‘ III/IIIIIIIIIIIIIIIIIIII/III
e o IS~
L Dy Bym— e - VALD } ________
. [S T <O~
5 _ NOT READY NOT MEADY (SEE NOTE 7.)
Froiid T N\

NOY READY NOT READY

" O N

DELAY ENABLE

wTC \ /-_——
VOH
| -

oew I

ue /N __
T8 - STATUS CYCLE
TC — COMMAND CYCLE

210253-29
NOTES:

1. Status lines are not driven by 80286, yet remain high due to pullup resistors in 82288 and 82289 during HOLD state.
2. Address, M/10 and COD/IF%IA may start floaling during any Tc depending on when internal 80286 bus arbiter de-
cides to release bus to external HOLD. The float starts in $2 of Tc.

3. BHE and LOCK may start floating after the end of any T depending on when internal 80286 bus arbiter decides to
release bus to external HOLD. The float starts in ¢1 of Tc.

4. The minimum HOLD to HLDA time is shown. Maximurn is one T longer.

5. The earlfiest HOLD time is shown. It will always allow a subsequent memory cycle if pending’is shown.

6. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other
machine state (i.e., Interrupts, Waits, Lock, sic.).
7. Asynchronous ready aflows termination of the
chronous ready state Is ignored after ready is sig

Figure 29. MULTIBUS® Write Terminated by Asynchronous Ready with Bus Hold

cycle. Synchronous ready does not signal ready in this example. Syn-
naled via the asynchronous input.

3-32

intel

-INTEL CORP {UP/PRPHLS}?}

Processor Extension Transfers

The processor extension interface uses 170 port ad-
dresses 00F8(H), 00FA(H), and OOFC(H) which are
part of the I/0 port address range reserved by Intel,
An ESC instruction with Machine Status Word bits
EM = 0 and TS = 0 will perform I/0 bus operations
to one or more of these I/0 port addresses indepen-
dent of the value of IOPL and CPL.

ESC instructions with memory references enable the
CPU to accept PEREQ inputs for processor exten-
sion operand transfers. The CPU will determine the
operand starting address and read/write status of
the instruction. For each operand transfer, two or
three bus operations are performed, one word trans-
fer with 1/0 port address 00FA(H) and one or two
bus operations with memory. Three bus operations
are required for each word operand aligned on an
odd byte address.

NOTE:
Odd-aligned numerics operands should be avoided
when using an 80286 system running six or more
memory-write wait states. The 80286 can generate
an incorrect numerics address if all the following
conditions are met:

— Two floating point (FP) instructions are fetched
and in the 80286 queue.

— The first FP instruction is any floating point store
oexcept FSTSW AX.

— The second FP instruction accesses memory.

— The operand of the first instruction is aligned on
an odd memory address.

— Six or more wait states are inserted during either
of the last two memory write (odd aligned oper-
ands are transferred as two bytes) transfers of
the first instruction.

The second FP operand’s address will be incre-
mented by one if these conditions are met. These
conditions are most likely to occur in a multi-master
system. For a hardware solution, contact your local
Intel representative.

Commands to the numerics copracessor should not
be delayed by nine or more T-states. Excessive
(nine or more) command-delays can cause the
80286 and 80287 to lose synchronization.

Interrupt Acknowledge Sequence

Figure 30 illustrates an interrupt acknowledge se-
quence performed by the 80286 in response to an

80286

3-33

—_—

. 4426175 00bYLSO L]

12E D—T-49-17-16

INTR input. An interrupt acknowledge sequence
consists of two INTA bus operations. The first allows
a master 8259A Programmable Interrupt Controller
(PIC) to determine which if any of its slaves should
return the interrupt vector. An eight bit vector is read
on DO-D7 of the 80286 during the second INTA bus
operation to select an interrupt handler routine from
the interrupt table.

The Master Cascade Enable (MCE) signal of the
82288 is used to enable the cascade address driv-
ers, during INTA bus operations (See Figure 30),
onto the local address bus for distribution to slave
interrupt controllers via the system address bus. The
80286 emits the LOCK signal (active LOW) during T,
of the first INTA bus operation. A local bus “*hold”
request will not be honored until the end of the sec-
ond INTA bus operation.

Three idle processor clocks are provided by the
80286 between INTA bus operations to allow for the
minimum INTA to INTA time and CAS (cascade ad-
dress) out delay of the 8259A. The second INTA bus
operation must always have at least one extra Te
state added via logic controling READY. This is
needed to meet the 82598A minimum INTA puise
width.

Local Bus Usage Priorities

The 80286 local bus is shared among several inter-
nal units and external HOLD requests. In case of
simultaneous requests, their relative priorities are:

(Highest) Any transfers which assert LOCK either
explicitly (via the LOCK instruction prefix)
or implicitly (i.e. some segment descriptor
accesses, interrupt acknowledge se-
quence, or an XCHG with memory).

The second of the two byte bus opera-
tions required for an odd aligned word op-
erand.

The second or third cycle of a processor
extension data transfer.

Local bus request via HOLD input.

Processor extension data operand trans-
fer via PEREQ input.

Data transfer performed by EU as part of
an instruction,

An instruction prefetch request from BU.
The EU will inhibit prefetching two proc-
essor clocks in advance of any data
transfers to minimize waiting by EU for a
prefetch to finish.

(Lowest)

intel
INTEL CORP {UP/PRPHLS}

£

|

INTACYCLE ¢

I
[oa L, e,]
LU U |

Tc
R |

n

BUS CYCLE TYPE I
— Ml N

Te
A b

l 4a2bLL7S 00L4LS) 3[

80286

12 p— T-49-17-16

|———— A CYCLE 2 ————»
Ts Tc Te
ot lug ln 1@ L}

n

n
)

LR]

n
0 1

I“ - I

91

(SEE NOTE 2)

AEADY
NOT READY AEADY

I,

mIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

e I - === = == === {__owreme__-mmmmmm = —

i (SEE NOTE 1.} fermors)

SR :::7 SRR L G-
ON D7-D0

W\ 777077 SN AT NN\ 710

{3EE NOTE 3.}

ROT READY READY

e
M\

cE

-/

ALE

[F-)

M\

-/
N

NOTES:

1. Data is ignored, upper data bus, Dg~D1s, should not change state during this time.

2. First INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width.

3. Second INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width.

4. EOCK is active for the first INTA cycle to prevent the 82289 from releasing the bus between INTA cycles in a multi-

210253-31

master system. LOCK is also active for the second INTA cycle.
5. Aoz—Ag exits 3-state OFF during $2 of the second T¢ in the INTA cycle.
6. Upper data bus should not change state during this time.

Figure 30. Interrupt Acknowledge Sequence

Halt or Shutdown Cycles

The 80286 externally indicates halt or shutdown
conditions as a bus operation. These conditions oc-
cur due to a HLT instruction or multiple protection
exceptions while attempting to execute one instruc-
tion. A halt or shutdown bus operation is signalled
when S1, SO and COD/INTA are LOW and M/IO is
HIGH. Ay HIGH indicates halt, and Ay LOW indi-
cates shutdown. The 82288 bus controller does not

3-34

issue ALE, nor is READY required to terminate a halt
or shutdown bus operation.

During halt or shutdown, the 80286 may service
PEREQ or HOLD requests. A processor extension
segment overrun exception during shutdown will in-
hibit further service of PEREQ. Either NMI or RESET
will force the 80286 out of either halt or shutdown.
An INTR, if interrupts are enabled, or a processor
extension segment overrun exception will also force
the 80286 out of halt.

B uec017s oobusse s

-
Inter 80286
INTEL CORP 1
_ {UP/PRPHLS?Y 12E D T-49-17-16
Vee Voo
"o AEM NADC — = MEMORY READ
e —L—‘H we wwic MENORY WRITE
Yoo rm’—l = - ORC 10 READ
i oY e 10 WRITE
s - Xz * = INTA £0GE
S0 s0 ALE
478 Tate Fes St s uce T
,l oL, 2 Ta1a READY READY OEN - 4» -t I~ - ADVAHCED MEMOAY
i E frcix axf—y o oTn F L2220 ocecove 1+ AmoiocmessicTs
= = e L] 83208 BUS F-44444- r — (| {OPTIONAL),
r—rc I cowtROLLER £ L1l li_ ey 1
= : L P -t T bmmms
SYNC MADY ——o{SROY RESET T ! ! _1 1 S &
EMASLE —] SROYEN | L
]
ASYNC READY ——=] AROY \ : AESET MY 1 L ¢
ENABLE — > ARDYEM LocK 1 [
L Lefcox coowmaf — = ol =1 Aoonessaus
cLocK " L] neaoy [.
Yee il VL st An-Ao LATCH
s 50
v [R A <>
1 - —=fHOto
I R it :
o1]‘ Vi -t :;AOR casos ~
H Ly i IR et s fe— corseLect
""-‘—:"“1"!1' __________ PEACK INTA
‘:||l,—-———————>nun up——l WR
gt w2 AD
!l‘l:[cPu T ——]spen
| 1: :l[D3 - O = ______‘_‘Sba-n, <::"n>m'
[1 2594
Wi b i ! INTERRUPT
R e N CONTROLLER
I [
w07
! MOCESSOR k“‘" -
1 EXTENSION - - oe
| 1OPTIONAL) 1
e m e e = — 4 ——:i oAt
TRANS - s
CEIVER
)
210253-32

Figure 31. Basic 80286 System Configuration

SYSTEM CONFIGURATIONS

The versatile bus structure of the 80286 microsys-
tem, with a full complement of support chips, allows
flexible configuration of a wide range of systems.
The basic configuration, shown in Figure 31, is simi-
Jar to an 8086 maximum mode system. It includes
the CPU plus an 8259A interrupt controlier, 82C284
clock generator, and the 82288 Bus Controller.

As indicated by the dashed lines in Figure 31, the
ability to add processor extensions is an integral fea-
ture of 80286 microsystems. The processor exten-
sion interface allows external hardware to perform
special functions and transfer data concurrent with
CPU execution of other instructions. Full system in-
tegrity is maintained because the 80286 supervises
all data transfers and instruction execution for the
processor extension.

3-35

The 80287 has all the instructions and data types of
an B087. The 80287 NPX can perform numeric cal-
culations and data transfers concurrently with CPU
program execution. Numerics code and data have
the same integrity as all other information protected
by the 80286 protection mechanism.

The 80286 can overiap chip select decoding and ad-
dress propagation during the data transfer for the
previous bus operation. This information is latched
by ALE during the middle of a T cycle. The latched
chip select and address information remains stable
during the bus operation while the next cycle's ad-
dress is being decoded and propagated into the sys-
tem. Decode logic can be implemented with a high
speed bipolar PROM.

The optional decode logic shown in Figure 31 takes
advantage of the overlap between address and data
of the 80286 bus cycle to generate advanced mem-
ory and [O-select signals. This minimizes system

l 482LL75 D0LYLS3 ? [

i E;
Vee Yeo
20051 Y38 Aess
{13
;‘.:' wrfe——
1O pome———t .
101 AMWAYS HULTIDUS®
T ChoLcx BP0 f———o now
0 L]
i 1] USY
MEADY cenQ o
CLn LOCK fo—
ane u 0 fey
2ss MO
BUS ARBITER
Ve
L
s T weoc MEMOAY AEAD
wwrc MEMORY WAITE
1onC 10 READ
owe ——— 1O WNITE
“ HrA NTERAUPT ACKNOWLEDL
ar y
n e
READY ot
T ax oT R
12789 BUS
' CONTAOLLER
i CUOLY M 10
! L
DuRE snovEK ' : =
ASYNC READY ————u1 ANDY ') SET ¥ 0
st ———e] wnoven Vi oo ¢
v azcens) ot cun “ — R ADORESS BuS
cC aoarzm - meapy €20 NTAp—
? [] —— A A),
1 g T <ﬁ} LATCH
J [—o ma [
—ofnxo
. 2w 1" 1reTT T y o] moa
[| e i CASoy A
| e v PRTS wr cs CHIP SELECT
fmmmee MY IIIIITNm .
_____ wa
pty o 0288 L ~©
i
1 || ||' cru T- P
O =
B : K
Ve [\ ! INTERRUPY
L UL . CONTROLLER
! 20207 1
] PROCESSOR ’(‘ -~— -
1 EXTENSION - -4
t {OPTIONAL))
| Sy OISO - TRANS- OATA BUS
L 7 cawen
Dt

21025333

Figure 32. MULTIBUS® System Bus Interface

r
performance degradation caused by address propa-
gation and decode delays. In addition to selecting
memory and 1/0, the advanced selects may be used
with configurations supporting local and system bus-
es to enable the appropriate bus interface for each
bus cycle. The COD/INTA and M/IO signals are ap-
plied to the decode logic to distinguish between in-
terrupt, 1/0, code and data bus cycles.

By adding the 82289 bus arbiter chip, the 80286 pro-
vides a MULTIBUS system bus interface as shown
in Figure 32. The ALE output of the 82288 for the

3-36

MULTIBUS bus is connected to its CMDLY input to
delay the start of commands one system CLK as
required to meet MULTIBUS address and write data
setup times. This arrangement will add at least one
extra T, state to each bus operation which uses the
MULTIBUS.

A second 82288 bus controller and additional latch-
es and transceivers could be added to the local bus
of Figure 32. This configuration allows the 80286 to
support an on-board bus for local memory and pe-
ripherals, and the MULTIBUS for system bus inter-
facing.

intel

: INTEL CORP {UP/PRPHLS?Y

sozss] 4825175 00LULSH al

L2E D_T-49-17-1¢

3
DATA Dyg =Dy DATA g
y, BATA
TR = . &
’___> 92200
"
conmouien | & |
CLu FeQ
[l VA,
Ry 82C284 160 180 %o
-t CLOCK ey
GENERATOR DRAM
<7 AN
cax
-
v 1833
f'ing ax ";m MULTIBUS® SELECT
—) e
sTATUS 35,514 10 kA C——Iuﬂwﬁ
CcoNTROL —
T, WIS
DECOOE
LOCAL
SELECT
SELECY
ADORESS
ADDRESS Ay, — Aq. BHE. TOCK
Bl 210253-34

Figure 33. 80286 System Configuration with Dual-Ported Memory

Figure 33 shows the addition of dual ported dynamic
memory between the MULTIBUS system bus and
the 80286 local bus. The dual port interface is pro-
vided by the 8207 Dual Port DRAM Controfler. The
8207 runs synchronously with the CPU to maximize
throughput for local memory references. It also arbi-
trates between requests from the local and system
buses and performs functions such as refresh,

initialization of RAM, and. read/modify/write cycles.
The 8207 combined with the 8206 Error Checking
and Correction memory controlier provide for single
bit error correction. The dual-ported memory can be
combined with a standard MULTIBUS system bus
interface to maximize performance and protection in
multiprocessor system configurations.

Table 16. 80286 Systems Recommended Pull Up Resistor Values

80286 Pin and Name Pullup Value Purpose
451
580 20K £10% Pull 30, 81, and PEACK inactive during 80286 hold periods(1)
6—PEACK
63— READY 9100 £5% Pull READY inactive within required minimum time (G = 150 pF,
lg < 7 mA)
NOTE:

1. Pull-up resistors are not required on 50 and 81 when the corresponding pins of the 82C284 are connected to S0 and 57.

I2ICET™-286 System Design
Considerations

One of the advantages of using the 80286 is that full
in-circuit emulation debugging support is provided
through the I2ICE system 80286 probe. To utilize
this powerfu! tool! it is necessary that the system de-
signer be aware of a few minor parametric and

3-37

functional ditferences between the 80286 and 12ICE
system 80286 probe. The 2ICE data sheet (I2ICE
Integrated Instrumentation and In-Circuit Emulation
System, order #210469) contains a detailed de-
scription of these design considerations. It is recom-
mended that this document be reviewed by the
80286 system designer to determine whether or not
these ditferences affect his design.

inte sozss | ua2w1?s 00b4ESS O | .
— INTEL CORP {UP/PRPHLS} L2E D T-49-17-16
ABSOLUTE MAXIMUM RATINGS* *Notice: Stresses above those listed under “Abso-

Jute Maximum Ratings” may cause permanent dam-
Ambient Temperature Under Bias0°Cto +70°C age lo the device. This is a stress raling only and

Storage Temperature —65°Cto+150°C functional operation of the device at these or any
Voltage on Any Pin with other conditions above those indicated in the opera-

Respect to Ground.............. -—1.0Vto +7V tional sections of this specification is not implied. Ex-
Power Dissipation..................... ... 33W posure to absolute maximum rating conditions for

extanded periods may affect device reliabilily.

D.C. CHARACTERISTICS (Vcc = 5V £5%, Tcase = 0°Cto +85°C)*

Symbol Parameter Min Max Unit Test Condition

lec Supply Current (0°C Turn On) 600 mA (Note 1)

Colk CLK Input Capacitance 20 pF (Note 2)

Cin Other Input Capacitance 10 pF (Note 2)

Co Input/Output Capacitance 20 pF (Note 2)
NOTES:

1. Tasted at worst case load and maximum frequency.
2. These are not tested. They are guaranteed by design characterization.

D.C. CHARACTERISTICS
(Vcc = 5V 5%, Tcase = 0°C to +85°C)* Tested at the minimum operating frequency of the part.

Symbol Parameter Min Max Unit Test Condition
ViL Input LOW Voltage -05 0.8 Vv

Vi Input HIGH Voltage 2.0 Vee +0.5)

Vite CLK Input LOW Voltage -05 0.6 \

ViHe CLK Input HIGH Voltage 3.8 Vgc +0.5 \% .

VoL Output LOW Voltge 0.45 v loL = 20mA
Vou Output HIGH Voltage 2.4 v loH = —400.0 pA
Iy Input Leakage Current 10 pA OV <V|NsS Voo
ILcr Input CLK, RESET Leakage Current +10 pA 0.45 < V)N < Veo
hcr Input CLK, RESET Leakage Current +1 mA 0<Vy<045
- BUSY and ERHOR Pins 30 500 pA | Vin=ov

o Output Leakage Current £10 pA 0.45 < Vout < Voo
o Output Leakage Current . 1 mA 0 < Vour < 0.45

*Tp is guaranteed from 0°C to +55°C as long as Tcase is not exceeded.

3-38

J Y6ebl?5 00bLYLSE El

mte[' 80286 ._
—— INTEL CORP {UP/PRPHLS} 12E D“T_49_17_16

]
A.C. CHARACTERISTICS (vce = 5V £5%, Toasg = 0°C to +85°C)*
AC timings are referenced to 0.8V and 2.0V points of signals as iliustrated in datasheet waveforms, unless
otherwise noted.

8 MHz 10 MHz 12.5 MHz
Symbol Parameter (Preliminary) Unit | Test Condition
8| -8 -10 -10 -12 -12
Min | Max| Min Max Min Max

1 System Clock (CLK) Period 62 | 250 50 250 40 250 ns

2 System Clock (CLK) LOW Time 15 | 225 12 232 " 237 ns |att,ov

3 System Clock (CLK) HIGH Time 25 | 235 16 239 | 13 239 ns |at3.6v

17 System Clock (CLK) Rise Time 10 8 — 8 ns |1.0vVto3.6v,

(Note 7)
18 System Clock (CLK) Fall Time 10 8 — 8 ns | 3.6Vto 1.0V,
(Note 7)

4 Asynch. Inputs Setup Time 20 20 15 ns | (Note 1)

5 Asynch. Inputs Hold Time 20 20 15 ns | {Note 1)

6 RESET Setup Time 28 23 18 ns

7 RESET Hold Time 5 5 5 ns

8 Read Data Setup Time 10 8 5 ns

9 Read Data Hold Time 8 8 6 ns

10 READY Setup Time 38 26 22 ns

11 READY Hold Time 25 25 20 ns

12 | Status/PEACK Valid Delay 1]40 | — — — — ns | (Notes 2, 3)
12a1 | Status Active Delay — | - 1 22 3 18 ns | {Notes 2, 3)
12a2 | PEACK Active Delay — | - i 22 3 20 ns | (Notes 2, 3)
12b | Status/PEACK inactive Delay — | — 1 30 3 22 ns [(Notes 2, 3)

13 Address Valid Delay 1 60 1 35 1 32 ns | {Notes 2, 3)

14 Wirite Data Valid Delay 0 | 50 0 30 0 30 ns | {Notes 2, 3)

15 Address/Status/Data Float Delay | 0 50 0 47 0 32 ns | (Notes2,4,7)

16 HLDA Valid Delay 0 | 50 0 47 0 27 ns | (Notes 2, 3)

19 Address Valid To Status 38 27 22 ns | (Notes 3, 5, 6)

Valid Setup Time

*Ta is guaranteed from 0°C to +55°C as long as Tcase is not exceeded.

NOTES:

1. Asynchronous inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY. This specification is given only for testing
purposes, to assure recognition at a specific CLK edge.

2. Delay from 1.0V on the GLK, to 0.8V or 2.0V or float on the output as appropriate for valid or floating condition.

3. Output load: C|_ = 100 pF.

4. Float condition occurs when output current is less than ILo in magnitude.

6. Delay measured from address either reaching 0.8V or 2.0V (valid) to status going active reaching 2.0V or status going
inactive reaching 0.8V.
6. For load capacitance of 10 pF or more on STATUS/PEACK lines, subtract typically 7 ns for 8 MHz, 10 MHz and 12.5 MHz
spec.

7. These are not tested. They are guaranteed by design characterization.

3-39

LHj:Eb].?S gok4LS? HI

Inte[80266

-INTEL CORP {UP/PRPHLSZ
A.C. CHARACTERISTICS (Continued)

12E D~T-49-17-16

NOTE 10:
AC Setup, Hold and Delay Time Measurement—General

DEVICE
QUTPUT
—l
- 210253-37
NOTE 8:]
AC Test Loading on Outputs
40V
CLK INPUT
0.45v
210253-38
NOTE 9:
AC Drive and Measurement Points—CLK input
4.0V
3.6V 36V
CLK INPUT
\ 1.0V 1.0V
0.45v
]
rlsnup ~»te— tHoro ~—|
24V
’ Q |
OTHER KRR 20v
DEVICE
INPUT
0.8V
0.45V
le— toELaY
DEVICE
OUTPUT
210253-39

3-40

B vs20175 oonuncy o |

|nte[80286

"INTEL CORP {UP/PRPHLS} 12E D 1.49-17-1b
A.C. CHARACTERISTICS (Gontinued)

82C284 Timing Requirements

Symbol Parameter 82C284-8 | 82C284-10 | 82C284-12 Units c T;:: _
] Min | Max | Min | Max | Min | Max onditions
11 SROY/SADYEN Setup Time | 17 15 15 - ns
12 SRDY/SRDYEN Hold Time 0 2 2 ns
13 ARDY/ARDYEN Setup Time | © 0 0 ns (Note 1)
14 ARDY/ARDYEN Hold Time 30 30 25 ns | (Note 1)
19 PCLK Delay 0 45 0 35 0 23 ns | G =75pF
loL = 5mA
loH= —1mA

NOTE 1:
These times are given for testing purposes to assure a predetermined action.

82288 Timing Requirements

Symbol Parameter 82288-8 | 82288-10 | 82288-12 Units c Tde';t
Min | Max | Min | Max | Min | Max onditions

12 CMDLY Setup Time 20 15 15 ns
13 CMDLY Hold Time 1 1 1 ns
30 Command Delay | Command | 5 20 5 20 5 20 Cr = 300 pF max

from CLK Inactive ns loL = 32 mA max
29 Command| 3 |25 | 3 [21| 3 | 21 lon = —5mA max

Active
16 ALE Active Delay 3 20 3 16 3 16 ns
17 ALE Inactive Delay 25 19 19 ns
19 DT/E Read Active Delay 25 - 23 23 ns CL = 150 pF
22 DT/R Read Inactive Delay 5 35 5 20 5 18 ns loL = 16 mA max
20 DEN Read Active Delay 5 35 5 21 5 21 ns _
loH = —1 mA max

21 DEN Read Inactive Delay 3 35 3 21 3 19 ns
23 DEN Write Active Delay 30 23 | 23 ns
24 DEN Write Inactive Delay 3 30 3 19 3 19 ns

3-41

l 4826175 00LYLSS 6'

|nte[80286
INTEL CORP ['P/PRPHLS} 12E D —T-49-17-16
WAVEFORMS
MAJOR CYCLE TIMING
READ CYCLE WRITE CYCLE

BUS CYCLE TYPE h

Vou
oK

ILLUSTRATED WITH ZERO

WAIT STATES
Ts

WAIT STATE

Ts

ILLUSTRATED WITH ONE

READ
(M OR Ts)

B 4
. u/ﬁ'm:’/’;_: I, 3vn.u: ADDRE|$S VALID ADORESS Y am 1
8]
e m VALID CONTROL vaio controL___ | YK
@~
4@ [18
Djg=Dg *==cm=eevememc-vafoccadon-ad -L] pe-- VALID WRITE DATA
VALID READ DATA
il -3
L 1@ [~ - ©
AN LTIy
- - 2
— : O
SRDY$SRDYEN m&& T T AT N
B
l $
s T, N

wwveinoven LTI

3

N
@
VAN Vay

N\
__ {@ —t—
uwic
§ - @ -6 (SEE NOTE 1)
® HROC
-1
o1/R
I -8
~i8
- -8
- Rk L
210253-40
NOTE:

1. The modified timing is due to the CMDLY signal being active.

3-42

intal
INTEL CORP {UP/PRPHLSY

WAVEFORMS (Continued)

80286

l 4826175 00bYLLO 14_.

12E D -T-49-17-16

80286 ASYNCHRONOUS
{7

INPUT SIGNAL TIMING
@t~ /
®

BUS CYCLE TYPE
1—'

o/
W

INTR .
HOLD PEREQ
(SEE NOTE 2.)

—-]

o

|
PCLK
(SEENOTE 1) \

210253-41

NOTES:

1. PCLK indicates which processor cycle phase will occur
on the next CLK. PCLK may not indicate the correct phase
until the first bus cycle is performed.

2. These inputs are asynchronous. The setup and hold
times shown assure recognition for testing purposes.

80286 RESET INPUT TIMING AND
SUBSEQUENT PROCESSOR CYCLE PHASE

210253-42

NOTE:
When RESET mests the- setup time shown, the next CLK
will start or repeat ¢2 of a processor cycle.

EXITING AND ENTERING HOLD
BUS CYCLE TYPE Ty T OR T, i i
— Veu 2 '3 2 #t $2 Py 92
e WAL AR AR SR
—|@®
HLDA (SEE NOTE 4.1)'
' —JZo>— "
(s NoTE 3.) —{@D]— N —~| {3)}-—(sEE NOTE 3.)
___em==- secscesqumecce- {5 fe=ro==e-==c- -
145 iF Tg
—ef{ZD—
£ g
® e TR O e (E el ..
PEACK ! !F F NPX|TRANSFER '
GHE,LOCK (seenotES)— @ - — 9 l—(sEENOTE 1.)
‘23:,/,&13 cmmmmemmmee e L (((((VALID I cemeesecccenccncocase
COD/INTA ’
(SEE NOTE 6) — (D —l ® (SEE NOTE 2.)
Dyg=Dpeeemememcacoccccanscmcucsmnx VALID J¢ WRITE cceccmcaccscccannanan
[
T\ / ./ /S
210253-43
NOTES:

1. These signals may not be driven by the 80286 during the time shown. The worst case in terms of latest float time is

shown.

2. The data bus will be driven as shown if the last cycle before T} in the diagram was a write Tg,.
3. The 80286 floats its status pins during Ty. External 20 K9 resistors keep these signals high (see Table 16).

4. For HOLD request set up to HLDA, refer to Figure 29.

5. BHE and LOCK are driven at this time but will not become valid until Ts.
6. The data bus will remain in 3-state OFF if a read cycle is performed.

3-43

. l 4826175 00LYLLL b
intel 80286 l
INTEL CORP {UP/PRPHLS? 12E D —T-49-17-16
WAVEFORMS (Continued)
80286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY

WS CYQLE T
n b e T Te 1
You | 8 “ “ O * " ” '3 ” o
ax
Ya /0 A0 F PROC. DIT. 1O MEHOKY MEMORT ST I PROC. OXT. TO WOMORY
/mmrmnmm/—w—nvmnme.m,
s \ I/ I \ ,
LCRORT ACCASSS I PROC. (XT. TO MOWORY TRANSTR

/0 PORT ADORSS OOFA(H) I WEMORT TO PHOC, OXT. FRANSTER —>

2B DX e

F [N 1/0 PORT ADORESS COFA{M) ¥ PROC. DXT, TO MEWORT TRANSTTA
3 . TAKSFEA

UDIORY ACCRESS ¥ LIEMORT 1O P2OC. DT,

T

(R 1)

(30X WOTE 2. ‘3.
e N\ 7

53~44

NOTES:

1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The
first bus operation will be either a memory read at operand address or I/0 read at port address OOFA(H).

2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is: 3X
® -128pmax.— © min.- The actual, configuration dependent, maximum time is: 3X ® —128pmax ~ @O min, + AX2X 0.

A is the number of extra T¢ states added to either the first or second bus operation of the processor extension data operand
transfer sequence.

INITIAL 80286 PIN STATE DURING RESET

S CYCLE TYPE

Voo o R o " a w ¥ oa o M
YA YWa Ve Va Ve Wa Ve
Ve 182 NOTE 2 (7
—]®fe— ISEE NOTE 1.} {.F.}@F.l t‘
neser /// l‘ ATLEAST 55 I > R\\
JECLXPERIODS f—(T)—1 > T
e 0 55
[T ql
TS ' @+ 55
e [r— ; J
- (i
wis f
UNKHOWN .
€o0/NTA | X 56
45

—f () |e-—seenotE)

210253-45

NOTES:

1. Setup time for RESET T may be violated with the consideration that ¢1 of the processor clock may begin one system
CLK period later.

2. Setup and hold times for RESET J must be met for proper operation, but RESET | may occur during ¢1 or $2,

3. The data bus is only guaranteed to be in 3-state OFF at the time shown.

3-44

R e 2,

INTEL CORP {UP/PRPHLS}?}

intel 80286

B usacies (RTRERY |

L2E D —T-49-17-16

BYTE eYTE2 A BYTES ‘mvrEd T sYTES
rssar e eseraae . . .
INEA RN T HE T i
orcont Talelmeal T om] LoWosPAA i WIGH DISP/DATA 1 LOW DATA 1 HIGH DATA i
1 REGISTER OPERAND:REGISTERS TO USE W OFFSET CALCULATION
e REGISTER OPERANDVEXTENSION OF GPCOOE Lo
REGISTER WOOEMEKORY MODE WITH DISPLACEMENT LENGTH .
TE OPERATION
DIRECTION 15 TO REGISTERDIRECTION IS FROM REGISTER
- OPERATION (INSTRUCTION) CODE
A. SHORT OPCODE FORMAT EXAMPLE
BYTE ¢ svTE2 BYTE3 BYTE4 BYTES
7l.lll‘[’z|.7.' ¢ 7 8 84 3 21 8 -_--";-_T_; _____ “
Illlll”lll[flll . I T
LONG QPCODE mod reg | wm I _: HeGH Disp _!
8. LONG OPCODE FORMAT EXAMPLE
- 210253-46

Figure 35. 80286 Instruction Format Examples

80286 INSTRUCTION SET SUMMARY
lnstructiqn Timing Notes

The instruction clock counts listed below establish
the maximum execution rate of the 80286, With no
delays in bus cycles, the actual clock count of an
80286 program will average 5% more than the cal-
culated clock count, due to instruction sequences
which execute faster than they can be fetched from
memory.) .

To calculate elapsed times for instruction se-
quences, multiply the sum of all instruction clock
counts, as listed in the table below, by the processor
clock period. An 8 MHz processor clock has a clock
period of 125 nanoseconds and requires an 80286
system clock (CLK input) of 16 MHz.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for execution. Control transfer in-
struction clock counts include all time required to
fetch, decode, and prepare the next instruction for
execution.

2. Bus cycles do not require wait states.

3. There are no processor extension data transfer or
local bus HOLD requests.’

4. No exceptions occur during instruction execution.

m =

3-45

Instruction Set Summary Notes

Addressing displacements selected by the MOD
field are not shown. If necessary they appear after
the instruction fields shown.

Above/below refers to unsigned value .

Greater refers to positive signed value

Less refers to less positive (more negatlve) signed
values

ifd =1 then to register; if d = 0 then from register

ifw =1 then word instruction; if w = 0 then byte
instruction

ifs = 0 then 16-bit immediate data form the oper-
and

ifs =1 then an immediate data byte is sign-ex-

tended to form the 18-bit operand
x don't care

z * used for string primitives for comparison with
ZF FLAG

If two clock counts are given, the smaller refers to a
register operand and the larger refers to a memory
operand

* = add one clock if offset calculation requires
summing 3 elements

number of times repeated
number of bytes of code in next instruction
Level (L}—Lexical nesting level of the procedure

n=

TN

o L

intgl

INTEL CORP {UP/PRPHLS?

The following comments describe possible excep-
tions, side effects, and allowed usage for instruc-
tions in both operating modes of the 80286.

REAL ADDRESS MODE ONLY

1.

This is a protected mode instruction. Attempted

: [4826175 00LYLL3 TI)

12E D —_T-49-17-16

execution in real address mode will result in anr

undsefined opcode exception (6).

. A segment overrun ‘exception (13) will occur if a

word operand reference at offset FFFF(H) is at-
tempted.

. This instruction may be executed in real address

mode to initialize the CPU for protected mode.

. The IOPL and NT fields will remain 0. _
. Processor extension segment overrun interrupt

(9) will occur if the operand exceeds the seg-
ment limit.

EITHER MODE

6.

7.

8.

An exception may occur, depending on the value
of the operand.

LOCK is automatically asserted regardless of the
presence or absence of the LOCK instruction
prefix.

LOCK does not remain active between all oper-
and transfers.

PROTECTED VIRTUAL ADDRESS MODE ONLY

9.

10.

A general protection exception (13) will occur if
the memory operand cannot be used due to ei-

13.

ther a segment limit or access rights violation. if -

a stack segment limit is violated, a stack seg-
ment overrun exception (12) occurs.

For segment load operations, the CPL, RPL, and
DPL must agree with privilege rules to avoid an
exception. The segment must be present to

avoid a not-present exception (11). if the SS reg-

ister is the destination, and a segment not-pres-
ent violation occurs, a stack exception (12) oc-
curs,

3-46

80286

11.

12,

14.

15.

16.

17.

8.

All segment descriptor accesses in the GDT or
LDT made by this instruction will automat(cally
assert LOCK to maintain descrlptor lntegnty in
multiprocessor systems. -

JMP, CALL, INT, RET, IRET lnstructlons refer-
ring to another code segment will cause a gener-
al protection exception (13) if any privilege rule is
violated.

A general protection exceptlon {13) occurs if
CPL # 0.

A general protection exception (13) occurs if
CPL > IOPL.

The IF field of the flag word is not updated if CPL
> I0PL. The IOPL field is updated only if
CPL =

Any violation of privilege rules as applied to the
selector operand do not cause a protection ex-
ception; rather, the instruction does not return a.
result and the zero flag is cleared.

If the starting address of the memory operand
violates a segment limit, or an Invalid access is
attempted, a general protection exception (13)
will oceur before the ESC instruction is execut-
ed. A stack segment overrun exception (12) will
occur if the stack limit is violated by the oper-
and’s starting address. If a segment limit'is vio-
lated during an attempted data transfer then a
processor extension segment overrun exception
(9) occurs.

The destination of an INT, JMP, CALL, RET or
IRET instruction must be in the defined limit of a
code segment or a general protection exceptlon
(13) will oceur.

intel

INTEL CORP {UP/PRPHLS?

80286 INSTRUCTION SET SUMMARY

l 4826175 00LYyLyy],[
80286 '

12E D—7.49-17-16

COMMENTS

frimediate

CLOCK COUNT
- Protected Protected
FUNCTION : FORMAT Real | “vitum | 7™ | virtuas
Address Address
- Mode Address Mode Address

Mode Mode

PATA TRANSFER 3
OV =Move: .

Register to Register/Memory Iﬂ 00100w I modreg r/m I 2,'3‘ 23 2 9’
Register/memory to ragister L’i 000101w | madreg ¢/m | . 2,5 25 2 -9
Immediate to register/memory L1 100011w ' modG00 r/m | data l dataifw =1 2;3* 2,3 2 9
jmmediate to register r1 011w reg l daia | datafw=1 l 2 2
Memory to accumutator [1010000w | eaddtow | addrhign | , 5 5 2 9"
Accumulator to memory I 1010001w l addr-low r addr-high I 3 3 2 -]
Register/memory to sagmenlragislé I 10001110 l mod O reg r/m I 2,5 17,19¢ 2 9,10,11
Kegment register to reglster/memory | 10001100 | mod0reg r/m | 28 | 28 2 9
PUSH=Push:
Memory (11111111 [mod110mm] 5 5° 2 9
Registor |ototo reg - - 3 3 2 2
Sagment register 000reg110) . i 3 2 9

FOP=Pop:
- Memory
Register

Eegment register

[10001111 [modooo wm]

01011 reg

POPA:

(og#01)

F 01100001

XCHG = Exhcange:
Register/memaory with register
Register with accumulator
IN=Input from:

Fixed port

Variable port

OUT = Qutput to:

Fixed port

Variable port
IXLAT=Translate byte to AL
L EA =Load EA to register

L DS =Load pointer to DS
L.ES =Load pointer to ES

. DOOO11W |m6dreg r/m

10010 reg

|1110010w[port

[1110011w]
[rotosne]

pot |

[10001101 Jmodreg
[11000101 [modreg v/m|
{ 11000100 Imadreg r/m|

rImI

(mod+#11)

{mod=£1)

35 as 27 78

3 3

5 5 14

5 s 4

3 3 14
3 3 14

5 5 8

a [s

7. 210 "2 9,10,11
7 21+ 1.2 | sdom

Shaded areas indicate inslmcﬁoqs not availab!e in 80886, 88 microsystems.

e e

i

ot &

b e oy bt e iy
prsepiu s se b futie e 1Y

3-47

J vsee1?s oowuess 3

ln‘l’er 80286

INTEL CORP {UP/PRPHLS} 12E D—T-49-17-16

80286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS
FUNCTION FORMAT Real P'm'd Real m’d
A:dor;.u Address A:i::' Address
Mods Mode
DATA TRANSFER (Continued)
L AHF Load AH with flags 2 2
- BAHF=Store AHinto flags 2 2
PUSHF = Push flags a 3 2 9
FOPF =Pop flags 5 5 - 24 9,15
ARITHMETIC
ADD = Add: .
Reg/memory withregisterto either | 000000dw | modreg r/m | 21 | a7 2 ®
Jmmediate to ragister/memory [100000sw [modooorvm] data [damtsw=o01]] 87 | a7 2 3
Jmmediata to accumulator [ooooctow] dats | datatw=1 | 3 3
ADC=Add with carry:
Reg/memory with register to aither | 000100dw | modreg r/m | 270 | a7 2 9
Jmmediate to registes/mermory [100000sw [modotowm] deta [daatsw=o1]| aze | are 2 9
mmediate(oaccumulﬁtor L0001010w l data dataHw=1 | 3 ' 3
NC=Increment: - :
Register/memory 111111 1w modooa em | 27 27 2 9
Register 2 2
EuB=Ssubtract: .
Reg/memory and register to sither D 01010dw I modreg r/m | 2,7 2,7° 2 9
mmediate from register/memory | 100000sw | mod101 /m| data |daafsw=o01]} a7e | are 2 9
jmmediate from accumulator [oo10110w] - gata [datatw=1 | 3 3’
8=Subtract with borraw:
Reg/memory and register to either I 000110dw l modreg r/m] 2,7 2,7* 2 g
fmmediate from register/memory ' 100000sw l mod011 r/m I data l dalaifsw=01—| 3,7° 3.7 2 9
jmmediate from accumulator I 0001110w | data | dataifw=1 J 3 3
PEC=Decrement .
Register/memory [1111111w [modo01 wm] 27° 27 2 8
I
CMP=Compare .
Register/memory with register IH1 1101w Imod regQ rlml 26 26* 2 9
Register with register/memory l 0011100w lmodreg rlml 2,7* 2,7 2 8
diate with regiater/memory [100000sw [mod 111 wm[data | camitsw=o1|| ae | aer 2 9
with accumulator foot111ow] data | aatmitw=1 | 3 3
NEG=Change sign {1111011w [modo11 e/m] : 2 7 2 9
AAA = ASCIl adjust for add 3 3
PAA =Decimal adjust for add 3 3
3-48

i
1k
i
"3
i
4]
H
5
1

P

e

el BES A i e e

e

mte[80286
INTEL CORP {UP/PRPHLS}

80286 INSTRUCTION SET SUMMARY (Continued)

4826175 00b4tok s ||

12E D—T-49-17-16

DIV = Divide (unsigned)

[1111011w [mod 110

CLOCK COUNT COMMENTS
Protected Protected
FUNCTION FORMAT Real | "\ om | Foal 1
Address Address
Mod Address Mod Address
Mode Mode
ARITHMETIC (Continusd)
AAS = ASGil adjust for sublract 3 3.
DAS = Dacimal adjust for subtract 3 3
fauL = Mutity (unsigned): [1111011w [mod100 r/m|
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16* 16* 2 9
Memory-Word 24° 24* 2 9
JMUL = Integer multiply (signed): I 1111011w |mod101 r/m
Register-Byte
Register-Word
Memory-Byle .
Memory-Word)
m.-m;gmmmumwm“ fotior OMF }modreg i

l&ﬂd} R

Register-Byte - 14 14 8 [}
Register-Word 22 22 [8
Mamory-Byte 17* 17* 26 69
Memaory-Word 25* 25 28 6,9
DIV =Integer divide (signed) 1111011w |mod11t r/m
Register-Byte 17 17] 6
Register-Word 25 25 6 [}
Memory-Byte 20* 20° 26 %]
pemory-Word 28° 28* 26 6,9
AAM = ASCIl adjust for multiply | 11010100 I 00001010 I 16 16
AAD =ASCIl adjust for divide ﬁ1010101 i 00001010 | 14 14
CBW = Convert byte to word 10011000 2 2 -
CWD = Convert word to double word 10011001 2 2
1L.OGIC
thlﬂouu Instructions:
Register/Memory by 1 l 1101000w |mod'l'|'|' r/m! 2,7° 2,7* 2 9
nglsterlMemorybyCL ' 1101001w lmodTl'I’ r/ml 5+n,6+n' 5+n8+n* 2 9
egster/Momorgby Count - - [1100000% [mod T wimf. " eoum
" TTT lnatruction

000 ROL .

001 ROR

010 RCL

o011 RCR

100 SHL/SAL

101 SHR N

111 SAR

Shaded areas indicate instructions not avallable in 8086, 88 microsystems.

3-49

—_—

y
intal 80286 . kIS 0k ?.

INTEL CORP {UP/PRPHLS?}

T

12E D-T-49-17-16
80286 INSTRUCTION SET SUMMARY (Continued)

N R R TR SRR

W

AR TS S0

CLOCK COUNT COMMENTS
FUNCTION FORMAT Real P':,:::,M Real P’:,',::;ed
Address Address
Mode Address Mode Address
Mode Mode
ARITHMETIC (Continued)
AND = And: -
Reg/memory and register to either | 001000dw l mod reg r/m]] 2,7 2,7 2 8
Immediate to register/memory l 1000000w | mod 100 r/m I dala | dataifw=1 3,7 37* 2 9
jmmediate to accumulator I 0010010w | data ldalalfw=1 I 3 3
TEST = And function to flags, no result: ’
Register/memory and register | 1000010w l mod reg rlm—l 26 28°* 2 9
Immediate data and register/memory IL 11011w I mod 000 r/m I data | dalafw=1 38° 3,6* 2]
data and [1010100wL data Ida'aifw=1l 3 3
OR=0r:
Reg/memory and register to either I 000010dw I mod reg rlmI 2,7* 27 2 8
Jmmediate to register/memory . liOOOOOOW | mod001 r/m | data [dataifw=1 3,7 . 37 2]
mmediate to accumulator {oooottow] daa [datmitw=1] a 3 ,
XOR=Exclusive or:
Reg/memory and register to either I 001100dw l modreg f/m I 2,7 2,7 2 9
Immediate to register/memory I 1000000w l mod 110 r/m I data I dataifw =1 ;’3.7‘ 3,7* 2 e
Immediate to accumulator lﬂ‘ 1010w | data Idataifw = 1] 3 3
0T = Invert register/memory I 1111011w [modOI 0 r/m | 2,7 27 2 9
TRING MANIPULATION:
[OVS =Move byte/word 5 5 2 9.
MPS = Compare byte/word 8 8 2 9
AS = Scan byte/word 7 7 2 9
ODS = Load byta/wd 1o AL/AX 5 5 2 9
TOS=Stor byte/wd from AL/A 9
Ns<puttyiminontkpot ~ * [ot1otiow]
qu@pqtpyte{wé(oDquﬁ‘ fattoinwl
Repeated by countinCX .
OV5=Move string I 11110011 [10.10010\01] 5+4n §5+4n 2 9
MPS=Compare string I 11110012 [1010011w1 5+9n 5+9n 28 89
AS=Scan string [11110012 [1010111w] s+6n | s+en | 28 89
L.ODS=Load string ’ |4!110011 I 1010110w I 5+4n S5+4n 28 8,9
[11110011 [1010101w] -
“Prrsreoss [ortortow]
u awing oo [11410041 FO110FLTw]

Shaded areas indicate instructions not available In 8086, 88 microsystems.

3-50

mtel 80286
INTEL CORP {UP/PRPHLS}

80286 INSTRUCTION SET SUMMARY (Continued)

J 820175 ooouees 9

12E D —T1-49-17-16

CLOCK COUNT COMMENTS
Protected Protected
[FUNCTION FORMAT Real Virtual Real Virtual
Address Address
Mode Address Mode Address
Mode Mode
ICONTROL TRANSFER
CALL =Cal: .
irect within segment [11101000 | dsplow | dsphigh | 7+m 74+m 2 18
Register/memory r11111111 |mod010 r/ml 7 +m,11+m*| 7+m, 11+m* 28 89,18
§ndirect within segment -
Direct intersegment] 10011010 [segment offset l 13+m 26+m 2 11,12,18
Protected Mode Only (Direct Intersegment): I selector |
Via call gate to same privilege level 41+m 8,11,12,18
Via calf gate to different privilege level, no parameters 82+m 8,11,12,i8
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12,18
ViaTSS 177+m 8,11,12,18
Via task gate 182+m 8,11,12,18
Indirect intersegment ﬁ 1111111 |mod011 r/m (mod=#11) 16+m 20+m* 2 8,9,11,12,18
Protected Mode Only (Indlrect Intersegment): .
Via call gate to same privilege leve! " 444+m* 8,9,11,12,18
Via call gate to different privilege level, no parameters ° 83 +m* 8,9,11,12,18
Via call gate to different privilege level, x parameters 90+4x +m* 8,9,11,12,18
ViaTSS 180+ m* 8,9,11,12,18
Via task gate 185+m* 8,9,11,12,18
LIMP = Unconditlonal jump:
Hsrm/ro_ﬁg I 11101011 | disp-low | 7+m 74m 18
Direct within segment r1 1101001 I) disp-low | disp-high I 7+m 7+m 18
[Register/memory indirect within seg |T1111111 |mod100 r/m| 7+mit+m*| 7+m, 11+m* 2 9,18
Direct intersegment r1 1101010 l segment offset J 1M+m 23+m T 11,1218
Protected Mode Only (Direct Intersegment): r t selector l .
Via call gate to same privilege lsvel - 38+4+m 8,11,12,18
ViaTSS . 175+m 8,11,12,18
Via task gate 180+m 8,11,12,18
Indirect intersegment [11111111 lmod1o1 r/nﬂ {mod+#11) 154+ m* 26+ m* 2 8,9,11,12,18
Protected Mode Only (Indirect Intersegment): .
Via call gate to same privilege level 41+m* 8,9,11,12,18
ViaTSS 178+ m* 8,9,11,12,18
Via task gate 183+ m* 8,9,11,12,18
ET=Retumn from CALL:
Within segment 11000011 11+m 11+m 2 8,8,18
\Within seg adding immed to SP ! 11000010 I data-low I data-high J H1+m 11+m 2 89,18
intersegment . - 15+m 25+m 2 8,9,11,12,18
gmentaddingimmedialetoSP | 11001010 | _ datalow | datahigh | | 15+m 2 [89,11,1218
Protected Mode Only (RET):
To different privilege level 55+m 9,11,12,18

3-51

R e, B ey A I LA TIMCN

B weeei7s oowues nl

Iﬂter 80286

INTEL CORP {UP/PRPHLS} 12E D — T-49-17-16
80286 INSTRUCTION SET SUMMARY (Continued)

i CLOCK COUNT COMMENTS
weon ronur N - R el B
. Mode Address Mode Address

. Mode Mode

CONTROL TRANSFER (Continued)

JE/5Z=Jump on equal zero , [o1110100 | asp | _ 74+mor8 | 7+mord ia

JL/UNGE=Jump onless/mot greaterorequal | 01111100 | disp | 7 7+mord | 7+mora 18

JLE/JNG=Jump on less or equal/notgreater | 01111110 | disp | 7T+mord | 7+mord 18

JB/INAE =Jump on below/not above orequal | 01110010 | disp | 7+mor8 | 7+mord : 18

JBE/JNA=Jump on below or equal/notabove | 01110110 | disp | 7+mord | 7+mord 18

JP/JPE = Jump on parity/parily even Lot1110t0 | aep | 7+mord | 7+mor3 18

4O=Jump on overflow [01110000 ’ disp l 7+mord 7+mor3 : 18

JS=Jump on sign mnwoo | disp | 7+ mord 7+mor3 18

JNE/JNZ=Jump on not equal/not zero |L1110101 I disp I 7+mor3 7+mord 18

JNL/JGE = Jump on not less/greaterorequal | 01111101 | disp | 7+mord | 7+mor3 | 18

JNLE/JG = Jump on not less or equal/greater | 011111114 I d“lspj 7+mord 7+mord 18

JNB/JAE = Jump on not below/abaove or equal lﬁnoon | disp | 7+mord %+m_ot3) 18

JNBE/JA=Jump on notbelow of equal/above | 01110111 | disp | 7+mord | 7+mor3 18

INP/JPO=Jump on ot par/par odd [ot111011 [aep | 7+mor3 | 7+mora 18

JNO=Jump on not overflow [o1110001 | s | | 74mora | 7+mors 18

JNS = Jump on not sign lo1111001 | asp | 7+mord | 7+mors 18

LOOP=Loop CX times | 11100010 | asp | 8+mord | 8+mord 18

LOOPZ/LOOPE = Loop while zero/equal I 11100001 | disp ! 8+mord 8+mord 18

LOOPNZ/LOOPNE = Loop whila not zero/equal | 11100000 | disp | 8+mord | 8+mord 18

JCXZ=Jump on CX zero anoon I disp J 8+mor4 8+mord 18

ENTER= ' 11091006 | dataiow | databign | €]

L= - : o

L=t i

Lh Bl R

LEAVE ~Leavs Procedite .

INT = Interrupt:) .)

Type specified | 11001101 | wpe | 23+m 278

Type 3 . 23+m " 278

INTO = Interrupt on overflow . 24 +tmor3 . 268

(Bifno 3ifno
interrupt) Interrupt)

Shaded areas indicate instructions not available in 8086, 88 microsystems.

3-52

] 4826175 nue’.quq_jl

|nte[80286

-INTEL CORP {UP/PRPHLS? 12E D —T-49-17-16
80286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
. Reat Protected Real Protected
FUNCTION R . VFOHMAT * Virtual Virtual
Address Address
' Mods Address Mode Address
) Mode Mode
ICONTROL TRANSFER (Continued) i
Protected Mode Only: . - .
Via Interrupt or trap gate to same privilege level - o . 40+ m o 7.8,11,12,18
vVia interrupt or trap gate to fit different privilege lsvet . - . - B 78+ m 7.8,11,12,18
Via Task Gate 167+m . 7.8,11,12,18
#RET=lmanupt rotum ') . ’ 174+m A+ m 24 8,9,11,12,15,18
Protected Mode Only: ’) . :
To different privilege level . . . 558+m 8,9,11,12,15,18

To different task (NT=1)

Pouun oemvamanofrange

8,9,11,12,18

" fet100016 [medreg rim | -

PROCESSOR CONTROL - ' ‘ T :
CLC=Clear canry [T1111000] ’ ’ 2 2
CMC=Complemant cany : 2 2
TC=Set carry 2 2
LD = Clear direction 2 2
TD = Set direction -2 2
{1=Clear interrupt 3 3 14
=Set interrupt -~ 2 2 14
v : . | e "
e | s
OCK Bus lockpreﬁx 0]
SC=Procsssor Extension Escape (11011777 [modtiL vm| 8,17
{TTT LLL are opcode to processor extension)
BEG=SegmontOvemideProf [00t reg t10 |)
PROTECTINCONTROL | e

Lem~Loadg¢obamafptormoramgm Fooocnni ioooaoom mod 010,
: T=S!oregiqbaldesc:a)10tmb¥eregsfev fooesrsry T 20000001 |mod00d.
jmtaLaadmrruptmmuuera@sw [oosarirs fosasooot [medors
w—&mmmmmm« roootnf i 00900001 [mocm :

W=Lo&dbcaldgsm«hbéeredshr s
frommgistecmemoqf

)rcooﬁnfoeoooetxo Egnewm tml

r—mmddesawmrw : s o
- toregistar/memary - ﬁoooun[oooooooo [modooo :tm]a

Shaded areas indicate |nstruct|ons not avalilable in 8086 88 mlcrosystems

3-53

15 A A P A A RS, o, Py P

s

I

s

st
iprer

et T T

Ve A

i
3
H

J uz2c17s oowue?l SI

80286 I
_INTEL CORP {UP/PRPHLS?} 12E D-7.49-17-16
80286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
FUNCTION FORMAT Real ":,m'd Real "',‘,’,:,j‘,?" .

VERR= Verify wirite access*

j[—cooonﬂ E uqoonoao i muowu;

Shaded areas indicate instructions not available in 8086, 88 microsystems.

3-54

Jyp—

[EPrpy——"

INTEL CORP {UP/PRPHLS?}

Footnotes

482LL7?5S 00LUYL?Z Ul

Inte[80286

12E D —T-49-17-16

_ REG is assigned according to the following table:

The Effective Address (EA) of the memory operand-

is computed according to the»rrlod'ar_:d r/m -ﬁqlds:)

it mod = 11 then r/m is treated as a REG field

if mod = 00 then DISP = 0‘ dlsp-low and dlsp-hxgh
are absent

if mod = 01 then DISP-= disp-fow srgn-extended to
16 bits, disp-high is absent

if mod = 10 then DISP-= disp-high: drsp-low .

if r/m T_.OOO-_then EA = (BX) + (SI) + DISP

it r/m = 001 then EA = (BX) + (DI) + DISP
if r/m = 010 then EA = (BP) + (S}) + DISP
if r/m = 011 then EA = (BP) + (DI) + DISP -
if r/m = 100 then EA = (S) + DISP)
if /m = 101 then EA = (DI) + DISP

if r/m = 110 then EA = (BP} + DISP*

if r/m = 111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data if
required)]
*axcept if mod = 00 and r/m = 110 then EQ = disp-high: disp-low.

SEGMENT OVERRIDE PREFIX

001reg110l

reg is assigned according to the following:

Segment
reg Register
00 ES
0t CS
10 SSs
11 DC

355

16-Bit (w = 1) . 8-Bit (w = 0)

- 000-AX T 000 AL
001 CX 001 OL
010 DX 010 DL
041 :BX - -~ - .. -01% BL.
100 SP 100 AH.
101 BP. 101 CH
101 " 8I° ©. 110 _DH
11 DI N 111" BH ’

The physrca| addresses of all operands addressed
by the BP register are computed using the SS seg-
ment register. The physical addresses of the desti-
nation operands ‘of the string primitive -operations
(those addressed by the DI register) are computed
using the ES segment, which may not be overridden.

DATA SHEET REVISION _REVIEW

The following list represents key differences be-
tween this and the -012 data sheet. Please review
this summary carefully.

1. Specifications for the 6 MHz version of the part
have been deleted. Intel no longer manufactures
an 80286-6.

2. The system diagrams (Figures 31 and 32) have
been modified. The circuit which drives the RES
input of the 82C284 has been modified in order to
allow the 82C284 to correctly generate a system
reset signal. See the 82C284 data sheet (Order
No. 210453) for further information.

