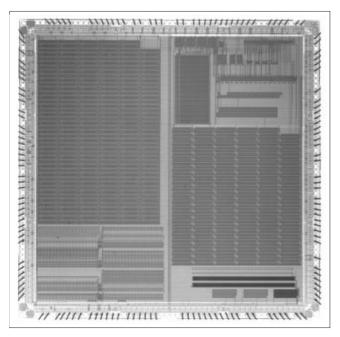
THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS



AUGUST 1992

DS3535 - 1.0

CLA70000V LOW VOLTAGE SPECIFICATION 1.0µ CMOS GATE ARRAYS

GENERAL DESCRIPTION

Advances in processing technology have led to the development of an array family which can operate at 3 volts. This series of arrays may be used with the lower voltage power supply rails which are becoming increasingly common. Applications include battery portable such as laptop computers where low power consumption is essential as well as pagers and consumer applications like hand held language translators and games. This summary datasheet gives information on the CLA70000 series AC and DC characteristics at low voltage.

CLA70000 FAMILY

ARRAY	RAW GATES	PADS
CLA70000	5000	44
CLA71000	12000	68
CLA72000	19000	84
CLA73000	27000	100
CLA74000	39000	120
CLA75000	70000	160
CLA76000	110000	200
CLA77000	182000	256
CLA78000	256000	304

FEATURES

- Operates at 3.3V
- 1.0μ (0.8μ Leff) twin well, epitaxial CMOS process
- 5,000 to 250,000 available gates on a chanelless array architecture
- Low current and power (<1µA/gate/MHz)
- Slew controlled outputs with drivers up to 12mA for bus driving and other applications.
- ESD protection in excess of 2kV
- Comprehensive cell library including DSP and compiled memory cells (ROM blocks to 64K bits and RAM blocks to 16K bits)
- Supports JTAG/BIST test philosophies (IEEE 1149-1 Test Procedures)
- Fully supported on Industry Standard workstations and in-house software

Description Page **Process Technology** 2 Core Design 2 I/O Design 2 **AC Characteristics** 3 **DC** Characteristics 4 **Design Tools** 5 Packaging 6

CONTENTS

CMOS PROCESS TECHNOLOGY

The CLA70000 arrays are based on GEC Plessey Semiconductors well proven 1 μ CMOS process, manufactured at GPS's advanced, Class 10, six-inch wafer fabrication facility. The process (fig.1) is a twin well, self aligned oxide-isolated technology, with an effective channel length of 0.8 μ m (1.0 μ m drawn), giving a low defect density, high reliability, and inherently low power dissipation. The process has excellent immunity to latch-up, and ESD, and exhibits stable performance characteristics.

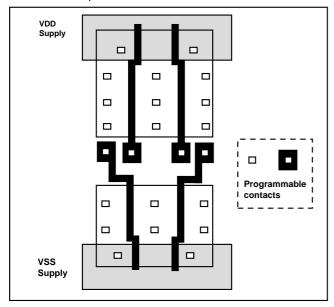


Figure 2 : Diagrammatic representation of Array Core Cell

INPUT/OUTPUT BUFFER DESIGN

The peripheral cells (fig.3) are fully programmable as Input, Output, VDD or GND, and they are designed to offer several interfacing options, TTL and CMOS for example. The cells already contain input 'pull-up' and 'pull-down' resistors and Electro Static Discharge protection elements. Components for implementing Schmitt Triggers, TTL threshold detectors, tristate control, and flip-flops for signal re-timing are also included. A range of output buffers is available with various output drive currents to match system requirements.

Noise transients due to a large number of simultaneously switching outputs are an increasing problem as bus widths widen (The supply pad location, and the inductance of the bond wires and package leads are also factors). CLA70000 Arrays offer several I/O buffers with the capability to control the output slew (di/dt) (fig.4) which are invaluable in controlling these transients when driving large capacitive loads such as busses.

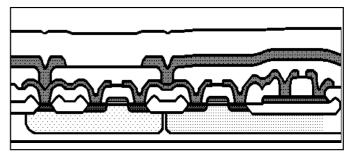


Figure 1 : Process 'VQ' Process Cross Section

CORE CELL DESIGN

A four transistor group (2 NMOS and 2PMOS) (fig 2.) forms the basic cell of the core array. This array element is repeated in a regular fashion over the complete core area to give a homogeneous 'Full Field' (sea of gates) array. This lends itself to hierarchical design, allowing pre-routed user defined subcircuits to be repeated anywhere on the array. The core cell structure has been carefully designed to maximise the number of nets which may be routed through the cell. This enables optimal routing for both data flow and control signal distribution schemes thus giving very high overall utilisation figures. This feature is of particular benefit in designs using highly structured blocks such as memory or arithmetic functions.

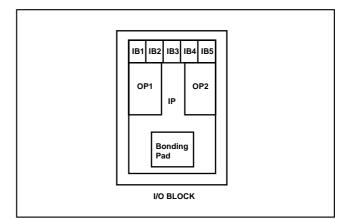


Figure 3

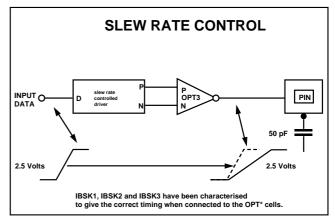


Figure 4

AC CHARACTERISTICS The performance of the CLA70000V device depends on numerous factors including:

Supply voltage Ambient temperature, and temperature of the devices active junctions Gate front, i.e. the logic loading on the gate outputs Interconnection loading on the gates Processing tolerance, i.e. the manufacturing spreads

The CLA70000 technology library contains all the performance information for each cell in the design libraries. The PDS design software suite accesses this data, and the simulation program automatically calculates the design's performance under the selected operating conditions. Prior to layout, estimates of the interconnection loadings are used in the simulations. After layout, track loadings are extracted from the physical design to allow re-simulation with actual values to confirm device performance.

The effect of those factors on the propagation delays of arange of selected cells is illustrated in the tables below.

Fanout is in gate load units

INTERNAL	CORE	CELLS		Typical propagation Delay Ns 5 volts 25°C	Prop Dela 3 vol	st case agation ay (ns) ts 70°C nout
Name	Cells	Description	Symbol	Fanout = 2	2	4
INV2	1	INVERTER DUAL DRIVE	tpLH	0.27	0.95	1.14
			tpLH	0.18	0.64	0.76
NAND2	1	2-INPUT NAND GATE	tpHL	0.39	1.37	1.75
			tpLH	0.30	1.07	1.41
NOR2	1	2-INPUT NOR GATE	tpLH	0.50	1.77	2.46
			tpLH	0.22	0.78	1.09
DF	4	MASTER SLAVE D-TYPE FLIP FLOP	tpHL	0.54	1.90	2.18
			tpLH	0.55	1.96	2.11

INTERMED	Typical propagation Delay Ns 5 volts 25°C	Propa Dela 3 volt	agation y (ns) s 70°C nout			
Name	Cells	Description	Symbol	Fanout = 2	2	4
IBGATE	-	LARGE 2 INPUT NAND GATE +2 INPUT NOR	tpLH	0.34	1.20	1.39
		GATE +2 INPUT NOR	tpLH	0.27	0.97	1.14
IBDF	-	MASTER SLAVE D-TYPE FLIP FLOP	tpHL	0.48	1.69	1.96
			tpLH	0.50	1.78	1.93
IBCMOS1	- CMOS INPUT BUFFER WITH 2 INPUT NAND GATE		tpLH	0.60	2.15	2.28
		WITT 2 INFOT NAND GATE	tpLH	0.45	1.59	1.65

OUTPUT E	BUFFER	CELLS		Typical propagation Delay Ns 5 volts 25°C	Prop Dela 3 vol	st case agation ay (ns) ts 70°C nout
Name	Cells	Description	Symbol	Fanout = 10pF	10pF	50pF
OP3	-	STANDARD OUTPUT BUFFER	tpLH	0.73	2.58	8.83
		BUFFER	tpLH	0.49	1.73	5.98
OP6	-	MEDIUM OUTPUT BUFFER	tpHL	0.50	1.77	4.88
		BUFFER	tpLH	0.33	1.16	3.29
OP12	-	LARGE OUTPUT BUFFER	tpLH	0.38	1.35	2.91
			tpLH	0.25	0.90	2.04

DC ELECTRICAL CHARACTERISTICS All characteristics at 3 - 5.5 volts and 0 -70°C temperature

			VALUE			
CHARACTERISTIC	SYM	Min	Тур	Max	UNIT	CONDITIONS
LOW LEVEL INPUT VOLTAGE	VIL				V	
TTL Inputs (IBTTL1/IBTTL2) CMOS Inputs (IBCMOS1/IBCMOS2)				0.6 0.2VDD		
HIGH LEVEL INPUT VOLTAGE	VIH				V	
TTL Inputs (IBTTL1/IBTTL2) CMOS Inputs (IBCMOS1/IBCMOS2)		2.2V 0.75VDD				
INPUT HYSTERESIS (IBST1) Rising Falling (IBST2) Rising Falling	VT+ VT- VT+ VT-		1.9 1.2 1.3 0.8		V	VIL to VIH VIH to VIL VIL to VIH VIH to VIL VIH to VIL
INPUT CURRENT/RESISTANCE (CMOS / TTL INPUTS) No Resistor Inputs with 1Kohm Resistors Inputs with 2Kohm Resistors Inputs with 4Kohm Resistors Inputs with 75Kohm Resistors Resistor values nominal - See note 1	IIN	0.50 1.00 2.00 20.00	1.00 2.00 4.00 75.00	1 2 4 8 250	μΑ ΚΩ ΚΩ ΚΩ ΚΩ	VIN = VDD or VSS
HIGH LEVEL OUTPUT VOLTAGE All outputs Smallest drive cell OP1/OPT1/OPOS1 Low drive cell OP2/OPT2/OPOS2 Standard drive cell OP3/OPT3/OPOS3 Medium drive cell OP6/OPT6/OPOS6 Large drive cell OP12/OPT12/OPOS12	VOH	0.75VDD 0.75VDD 0.75VDD 0.75VDD 0.75VDD 0.75VDD	VDD - 0.05 0.9VDD 0.9VDD 0.9VDD 0.9VDD 0.9VDD 0.9VDD		V	$IOH = -1\mu A$ IOH = -1mA IOH = -2mA IOH = -3mA IOH = -6mA IOH = -12mA
LOW LEVEL OUTPUT VOLTAGE All outputs Smallest drive cell OP1/OPT1/OPOD1 Low drive cell OP2/OPT2/OPOD2 Standard drive cell OP3/OPT3/OPOD3 Medium drive cell OP6/OPT6/OPOD6 Large drive cell OP12/OPT12/OPOD12	VOL		VSS + 0.05 0.2 0.2 0.2 0.2 0.2 0.2	0.4 0.4 0.4 0.4 0.4	V	$IOL = 1\mu A$ $IOL = 1mA$ $IOL = 2mA$ $IOL = 3mA$ $IOL = 6mA$ $IOL = 12mA$
TRISTATE OUTPUT LEAKAGE CURRENT Tristate, open drain and open source output cells	IOZ	-1		1	μΑ	VOUT = VSS or VDD
OUTPUT SHORT CIRCUIT CURRENT Standard outputs OP3/OPT3/OPOD3 (See note 2) OP3/OPT3/OPOS3	IOS	67 37	135 75	270 150	mA	VDD = MAX, VOUT = VDD VDD = MAX, VOUT = 0V
OPERATING SUPPLY CURRENT (per gate) (see note 3)	IDDOP		1		μA/MHz	
INPUT CAPACITANCE	CI		5		pF	ANY INPUTS (Note 4)
OUTPUT CAPACITANCE	COUT		5		pF	ANY OUTPUT (Note 4)
BIDIRECTIONAL PIN CAPACITANCE	CVO		7		pF	ANY I/O PIN (Note 5)

Note 1: If resistors are used with outputs the correct value of the resistor must be used to maintain VOL/VOH logic levels.

Note 2: Standard driver output OP3 etc. Short circuit current for other outputs will scale. Not more than one output may be shorted at a time for a maximum duration of one second.

Note 3: Excluding peripheral buffers.

Note 4: Excludes package leadframe capacitance or bidirectional pins.

Note 5: Excludes package.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	MIN	MAX	UNITS		

Supply	Voltage	- 0.5	7.0	V	
Input	Voltage	- 0.5	VDD+0.5	V	
Output	Voltage	- 0.5	VDD+0.5	V	
Operation above these absolute maximum ratings or prolonged periods above the recommended operating limits may					

permanently damage device characteristics and may affect reliability.

Storage	Temperature:			
	Ceramic	-65	150	degree C
	Plastic	- 40	125	degree C

RECOMMENDED OPERATING LIMITS						
PARAMETER	MIN	MAX	UNITS			
Supply Voltage Input Voltage Output Voltage Current per pad	3.0 VSS VSS	5.5 VDD VDD 100	V V V mA			
Operating Temperatur	e:					
Commercial Grade	0	70	degree C			
Industrial Grade	-40	85	degree C			
Military Grade	-55	125	degree C			

DESIGN TOOLS

The focus of the GEC Plessey design tool methodology is that of maintaining an open CAD system with all interfaces standardized via EDIF 2.0. This enables us to provide full support for a variety of 3rd party ASIC design tools and facilitates rapid updating of associated libraries. It also provides an interface to the GEC Plessey (PDS2) design system, which offers a total design environment including behavioral and functional level modelling.

PDS2 - THE GPS ASIC DESIGN SYSTEM

- Behavioral, Functional, and Gate Level Modelling
- VHDL and Third Party Links
- Supports Hierarchical Design Techniques
- EDIF 2.0 Interface

PDS2 is GPS's own proprietary ASIC design system. It provides a fully-integrated, technology independent VLSI design environment for all GPS CMOS SemiCustom products.

THIRD PARTY SOFTWARE SUPPORT

- Design Kits for major industry standard ASIC design software tools
- All libraries include fully detailed timing information
- EDIF 2.0 Interface
- Post layout back annotation available

GPS supports a wide range of third party design tools including IKOS, Mentor, Verilog, and Viewlogic. The design kits offer fully detailed timing information for all cell libraries, netlist extraction utilities, and post layout back annotation capability where applicable. An example of a workstation design flow is shown in the figure 5 (opposite). Please contact your local GEC Plessey Semiconductor's sales office for further information about support of particular tools.

DESIGN SUPPORT

Design support is available from various centres worldwide each of which is connected to our Headquarters via high speed data links. A design centre engineer is assigned to each customers circuit, to ensure good communication, and a smooth and efficient design flow.

As part of the design process GPS operates a thorough design audit procedure to verify compliance with customer specification and to ensure manufacturability. The procedure includes four separate review meetings, with the customer, held a key stages of the design. The standard design audit procedure is outlined opposite. PDS2 runs on Digital Equipment computers and is self configuring according to the available machine resources. It comprises design capture (schematic capture or VHDL), testability analysis, logic simulation, fault simulation, auto place and route, and back annotation. The system offers full support for hierarchical design techniques, maintained from design capture through to layout, as well as advanced design management tools. PDS2 may be used either at a GPS Design Center or under licence at the customer's premises. A three day training course is available for first time users.

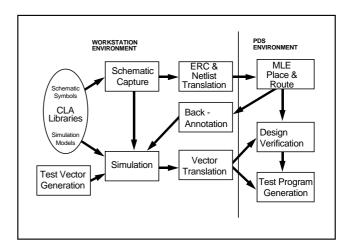


Figure 5 : Workstation Design Flow

- Review 1: Held at the beginning of the design cycle to check and agree on specifications and design timescales.
- Review 2 Held after Logic Simulation and prior to Layout. Checks to ensure satisfactory functionality, timing performance, and adequate fault coverage
- Review 3 Held after Layout and Post layout Simulation. Verification of design performance after insertion of actual track loads. Final check of all device specifications before prototype manufacture.
- Review 4 Held after prototype delivery. Confirms that the devices meet the specification and are suitable for full scale production.

PACKAGING

Production quantities of the CLA70000 family are available in industry-standard ceramic and plastic packages according the codes shown below. Prototype samples are normally supplied in ceramic only.

DC	DILMON	Dual in Line, Multilayer ceramic. Brazed leads Metal Sealed Lid. Through Board.
DG	CERDIP	Dual In Line, Ceramic body, Alloy leadframe, Glass Sealed, Through Board.
DP	PLASDIP	Dual In Line, Copper or Alloy leadframe, Plastic Moulded. Through Board.
AC	P.G.A.	Pin Grid Array, Multilayer Ceramic. Metal Sealed lid. Through Board.
AC (P)	POWER P.G.A.	As above with cavity down and Cu/W heat plate.
MP	SMALL OUTLINE (S.O.)	Dual In Line, 'Gullwing' Formed Leads. Plastic Moulded Surface Mount.
LC	LCC	Leadless Chip Carrier. Multilayer Ceramic. Metal Sealed Lid. Surface Mount.
HC	LEADED CHIP CARRIER	Quad Multilayer Ceramic. Brazed J Formed Leads. Metal Sealed Lid. Surface Mount
GC	LEADED CHIP CARRIER	Quad Multilayer Ceramic. Brazed Leads. Metal Sealed Lid. Surface Mount.
GC (P)	POWER LEADED CHIP CARRIER	As above with cavity down, and Cu/W heat plate.
HG	QUAD CERPAC	Quad Ceramic Body, 'J' Formed Leads. Glass Sealed. Surface Mount.
GG	CERAMIC QUAD FLATPACK	Quad Ceramic Body, 'Gullwing' Formed Leads. Glass Sealed. Surface Mount.
HP	PLCC	Quad Plastic Leaded Chip Carrier. 'J' Formed Leads. Plastic Moulded. Surface Mount
GP	PQFP	Plastic Quad Flat Pack. 'Gullwing' Formed Leads. Plastic Moulded. Surface Mount.

PRIMARY SEMI-CUSTOM DESIGN CENTRES

UNITED KINGDOM: Swindon, Tel: (0793) 518000 Tx: 449637 Fax: (0793) 518411. Oldham, Tel: (061) 682 6844, Fax: (061) 688 7898. Lincoln, Tel: (0522) 500500 Tx: 56380 Fax: (0522) 500550. Wembley, Tel: (081) 908 4111 Tx: 28817 Fax: (081) 908 3801. **UNITED STATES OF AMERICA:** Scotts Valley, Tel: (408) 438 2900 ITT Tx: 4940840 Fax: (408) 438 5576. Dedham, Tel: (617) 320-9369. Fax: (617) 320-9383. Irvine, Tel: (714) 455-2950. Fax: (714) 455-9671. **AUSTRALIA:** Rydalmere, NSW, Tel: (612) 638 1888. Fax: (612) 638 1798. **FRANCE:** Les Ulis Cedex, Tel: (6) 446 23 45 Tx: 602858F. Fax: (6) 446 06 07. **ITALY:** Milan, Tel: (02) 33001044/45 Tx: 331347 Fax: (GR3) 2316904. **GERMANY:** Munich, Tel: (089) 3609 06 0 Tx: 523980. Fax: (089) 3609 06 55. **JAPAN:** Tokyo, Tel: (3) 839 3001. Fax: (3) 839 3005.

GEC PLESSEY

HEADQUARTERS OPERATIONS GEC PLESSEY SEMICONDUCTORS Cheney Manor, Swindon, Wiltshire SN2 2QW, United Kingdom. Tel: (0793) 518000 Tx: 449637 Fax: (0793) 518411

GEC PLESSEY SEMICONDUCTORS

Sequoia Research Park, 1500 Green Hills Road, Scotts Valley, California 95066, United States of America. Tel (408) 438 2900 ITT Telex: 4940840 Fax: (408) 438 5576 CUSTOMER SERVICE CENTRES

- FRANCE & BENELUX Les Ulis Cedex Tel: (1) 64 46 23 45 Tx: 602858F Fax : (1) 64 46 06 07
- GERMANY Munich Tel: (089) 3609 06-0 Tx: 523980 Fax : (089) 3609 06-55
- ITALY Milan Tel: (02) 33001044/45 Tx: 331347 Fax: (GR3) 316904
- JAPAN Tokyo Tel: (03) 3296-0281 Fax: (03) 3296-0228
- NORTH AMERICA Integrated Circuits, Scotts Valley, USA Tel (408) 438 2900 ITT Tx: 4940840 Fax: (408) 438 7023.
- SOS, Microwave and Hybrid Products, Farmingdale, USA Tel (516) 293 8686 Fax: (516) 293 0061.
- SOUTH EAST ASIA Singapore Tel: 2919291 Fax: 2916455
- SWEDEN Johanneshov Tel: 46 8 7228690 Fax: 46 8 7227879
- UNITED KINGDOM & SCANDINAVIA
- Swindon Tel: (0793) 518510 Tx: 444410 Fax : (0793) 518582
- These are supported by Agents and Distributors in major countries world-wide.

© GEC Plessey Semiconductors 1992 Publication No. DS 3535 Issue No. 1.0 August 1992

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.