## CXA3627ER

## All Band Tuner IC with On-chip PLL

## Description

The CXA3627ER is a monolithic TV tuner IC which integrates local oscillator and mixer circuits for VHF band, local oscillator and mixer circuits for UHF band, an IF amplifier and a tuning PLL onto a single chip, enabling further miniaturization of the tuner by adopting a small package.

## Features

- Low power consumption (5V, 63mA typ.)
- Low noise figure, low distortion characteristics
- High gain/low gain selectable
- Supports IF double-tuned/adjacent channel trap
- Balanced oscillator circuits with excellent oscillation stability
- On-chip PLL supports $I^{2} \mathrm{C}$ bus
- On-chip high voltage drive transistor for charge pump
- Frequency step selectable from 31.25, 50 or 62.5 kHz (when using a 4 MHz crystal)
- Low-phase noise synthesizer
- On-chip 4-output band switch (output voltage: 5V, current capacity: 13mA)
- 32-pin VQFN small package
- UHF band switch output switchable
32 pin VQFN (Plastic)


## Absolute Maximum Ratings

$\begin{array}{llcc}\text { - Supply voltage } & \text { Vcc } & -0.3 \text { to }+5.5 & \text { V } \\ \text { - Operating temperature } & \text { Topr } & -25 \text { to }+75 & { }^{\circ} \mathrm{C} \\ \text { - Storage temperature } & \text { Tstg } & -55 \text { to }+150 & { }^{\circ} \mathrm{C} \\ \text { - Allowable power dissipation } & & \\ & \text { Pd } & 610 & \mathrm{~mW}\end{array}$

## Operating Conditions

Supply voltage Vcc 4.75 to 5.30 V

## Applications

- TV tuners
- VCR tuners
- CATV tuners


## Structure

Bipolar silicon monolithic IC

Note: This IC has pins whose electrostatic discharge strength is weak as the operating frequency is high and the high-frequency process is used for this IC. Take care of handling the IC.

[^0]Block Diagram and Pin Configuration


Pin Description

\begin{tabular}{|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
$$ \& Symbol \& Pin voltage [V] \& Equivalent circuit \& Description <br>
\hline 1

2 \& IFIN1

IFIN2 \& 2.0 \&  \& | IF inputs. |
| :--- |
| These pins must be connected to the mixer outputs via coupling capacitance. | <br>

\hline 3 \& Vcc \& - \& - \& Power supply. <br>
\hline 4
5 \& MIXOUT1

MIXOUT2 \& - \&  \& | Mixer outputs. |
| :--- |
| These pins output the signal in open collector format, and they must be connected to the power supply via a load. | <br>

\hline 6 \& GND1 \& - \& - \& Analog circuit GND. <br>

\hline 7 \& VHFIN \& 2.4 during VHF reception 0.0 during UHF reception \&  \& | VHF input. |
| :--- |
| The input format is unbalanced input. | <br>

\hline 8 \& BYP \& \[
$$
\begin{gathered}
3.8 \\
\text { (when open) }
\end{gathered}
$$

\] \&  \& | VHF input GND and selection of band switching. |
| :--- |
| GND: BS4 UHF |
| Open: BS3 UHF | <br>

\hline
\end{tabular}



| Pin No. | Symbol | Pin voltage [V] | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 17 | UOSCB1 | 2.4 during VHF reception 2.2 during UHF reception |  | External resonance circuit connection for UHF oscillator. |
| 18 | UOSCE1 | 2.0 during VHF reception 1.5 during UHF reception |  |  |
| 19 | UOSCE2 | 2.0 during VHF reception 1.5 during UHF reception |  |  |
| 20 | UOSCB2 | 2.4 during VHF reception 2.2 during UHF reception |  |  |
| 24 | GND2 | - | - | PLL circuit GND. |
| 22 | VT | - |  | Varicap drive voltage output. This pin outputs the signal in open collector format, and it must be connected to the tuning power supply via a load. |
| 23 | CPO | 2.0 |  | Charge pump output. Connects the loop filter. |
| 24 | REFOSC | 4.4 |  | Crystal connection for reference oscillator. |
| 26 | ADSW | 1.25 <br> (when open) |  | Address selection. Controls address bits 1 and 2. |


| $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Symbol | Pin voltage [V] | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 27 | IFOUT | 2.8 | (3) <br> (27) | IF output. |
| 28 | NC | - | - |  |
| 29 | SCL | - |  | Clock input. |
| 30 | SDA | - |  | Data input. |

## Electrical Characteristics (See the Electrical Characteristics Measurement Circuit.)

Circuit Current
$\left(\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{IFV}\right.$ cc $\left.=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

| Item | Symbol | Measurement conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| Circuit current | Iccv | Vcc current <br> Band switch output open during VHF operation | 41 | 64 | 88 | mA |
|  | Iccu | Vcc current <br> Band switch output open during UHF operation | 40 | 63 | 87 | mA |

OSC/MIX/IF Amplifier Block

| Item | Symbol | Measurement conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conversion gain*1 | CG1 | VHF operation $\mathrm{fRF}^{\text {a }}=55 \mathrm{MHz}$ High gain mode | 19.0 | 22.0 | 25.0 | dB |
|  | CG2 | VHF operation $\mathrm{fRF}^{\text {a }} 36360 \mathrm{MHz}$ High gain mode | 19.5 | 22.5 | 25.5 | dB |
|  | CG3 | UHF operation $\mathrm{fRF}^{\text {a }} 36360 \mathrm{MHz} \mathrm{High} \mathrm{gain} \mathrm{mode}$ | 23.0 | 26.0 | 29.0 | dB |
|  | CG4 | UHF operation $\mathrm{fRF}^{\text {a }}=800 \mathrm{MHz}$ High gain mode | 23.0 | 26.0 | 29.0 | dB |
|  | CG5 | VHF operation $\mathrm{fRF}^{\text {a }}=55 \mathrm{MHz}$ Low gain mode | 17.0 | 20.0 | 23.0 | dB |
|  | CG6 | VHF operation $\mathrm{fRF}^{\text {a }} 363 \mathrm{MHz}$ Low gain mode | 17.5 | 20.5 | 23.5 | dB |
|  | CG7 | UHF operation $\mathrm{fRF}^{\text {a }}=360 \mathrm{MHz}$ Low gain mode | 21.0 | 24.0 | 27.0 | dB |
|  | CG8 | UHF operation $\mathrm{fRF}^{\text {a }}=800 \mathrm{MHz}$ Low gain mode | 21.0 | 24.0 | 27.0 | dB |
| Noise figure*1, *2 | NF1 | VHF operation $f_{R F}=55 \mathrm{MHz}$ High gain mode |  | 12 | 15 | dB |
|  | NF2 | VHF operation $\mathrm{fRF}^{\text {a }}=360 \mathrm{MHz}$ High gain mode |  | 12 | 15 | dB |
|  | NF3 | UHF operation $\mathrm{fRF}^{\text {a }} 3630 \mathrm{MHz} \mathrm{High} \mathrm{gain} \mathrm{mode}$ |  | 10 | 13 | dB |
|  | NF4 | UHF operation $\mathrm{fRF}^{\text {a }}=800 \mathrm{MHz}$ High gain mode |  | 11 | 14 | dB |
|  | NF5 | VHF operation $\mathrm{fRF}^{\text {a }} 555 \mathrm{MHz}$ Low gain mode |  | 13 | 16 | dB |
|  | NF6 | VHF operation $f_{R F}=360 \mathrm{MHz}$ Low gain mode |  | 13 | 16 | dB |
|  | NF7 | UHF operation $f_{R F}=360 \mathrm{MHz}$ Low gain mode |  | 11 | 14 | dB |
|  | NF8 | UHF operation $\mathrm{fRF}^{\text {a }}=800 \mathrm{MHz}$ Low gain mode |  | 12 | 15 | dB |
| $1 \%$ cross modulation $1^{* 1}, *_{3}$ | CM1 | VHF operation $\mathrm{fD}=55 \mathrm{MHz}$ <br> fud $= \pm 12 \mathrm{MHz}(30 \%$ AM) High gain mode | 99 | 103 |  | $\mathrm{dB} \mu$ |
|  | CM2 | VHF operation $\mathrm{fD}=360 \mathrm{MHz}$ <br> fud $= \pm 12 \mathrm{MHz}(30 \%$ AM) High gain mode | 99 | 103 |  | $\mathrm{dB} \mu$ |
|  | CM3 | UHF operation $\mathrm{fD}=360 \mathrm{MHz}$ <br> fud $= \pm 12 \mathrm{MHz}(30 \%$ AM) High gain mode | 97 | 101 |  | $\mathrm{dB} \mu$ |
|  | CM4 | UHF operation $\mathrm{fD}=800 \mathrm{MHz}$ <br> fud $= \pm 12 \mathrm{MHz}(30 \%$ AM) High gain mode | 94 | 98 |  | $\mathrm{dB} \mu$ |
|  | CM5 | VHF operation $\mathrm{fD}=55 \mathrm{MHz}$ <br> fud $= \pm 12 \mathrm{MHz}(30 \%$ AM) Low gain mode | 100 | 104 |  | $\mathrm{dB} \mu$ |
|  | CM6 | VHF operation $\mathrm{fD}=360 \mathrm{MHz}$ fud $= \pm 12 \mathrm{MHz}(30 \%$ AM) Low gain mode | 100 | 104 |  | $\mathrm{dB} \mu$ |
|  | CM7 | UHF operation $\mathrm{fD}=360 \mathrm{MHz}$ fud $= \pm 12 \mathrm{MHz}(30 \%$ AM) Low gain mode | 98 | 102 |  | $\mathrm{dB} \mu$ |
|  | CM8 | UHF operation $\mathrm{fD}=800 \mathrm{MHz}$ fud $= \pm 12 \mathrm{MHz}(30 \%$ AM) Low gain mode | 94 | 98 |  | $\mathrm{dB} \mu$ |
| Maximum output | Pomax | $50 \Omega$ load, saturation output | 8 | 11 |  | dBm |

[^1]| Item | Symbol | Measurement conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Switch ON drift (PLL not operating) ${ }^{*}$ | $\Delta \mathrm{fsw} 1$ | VHF operation fosc $=100 \mathrm{MHz}$ $\Delta f$ from 3s to 3min after switch ON |  |  | $\pm 200$ | kHz |
|  | $\Delta \mathrm{fsw} 2$ | VHF operation fosc $=405 \mathrm{MHz}$ $\Delta f$ from 3s to 3min after switch ON |  |  | $\pm 650$ | kHz |
|  | $\Delta \mathrm{fsw} 3$ | UHF operation fosc $=405 \mathrm{MHz}$ $\Delta f$ from 3 s to 3 min after switch ON |  |  | $\pm 350$ | kHz |
|  | $\Delta \mathrm{fsw} 4$ | UHF operation fosc $=845 \mathrm{MHz}$ $\Delta f$ from 3s to 3 min after switch ON |  |  | $\pm 400$ | kHz |
| Supply voltage drift (PLL not operating) ${ }^{* 4}$ | $\Delta \mathrm{fst} 1$ | VHF operation fosc $=100 \mathrm{MHz}$ $\Delta f$ when Vcc 5 V changes $\pm 5 \%$ |  |  | $\pm 100$ | kHz |
|  | $\Delta \mathrm{fst} 2$ | VHF operation fosc $=405 \mathrm{MHz}$ $\Delta \mathrm{f}$ when Vcc 5 V changes $\pm 5 \%$ |  |  | $\pm 350$ | kHz |
|  | $\Delta \mathrm{fst} 3$ | UHF operation fosc $=405 \mathrm{MHz}$ $\Delta f$ when Vcc 5 V changes $\pm 5 \%$ |  |  | $\pm 100$ | kHz |
|  | $\Delta \mathrm{fst} 4$ | UHF operation fosc $=845 \mathrm{MHz}$ $\Delta f$ when Vcc 5 V changes $\pm 5 \%$ |  |  | $\pm 100$ | kHz |
| Oscillator phase noise | C/N1 | VHF operation 10 kHz offset $\mathrm{CP}=1$ Phase comparison frequency $=31.25 \mathrm{kHz}$ | 80 |  |  | $\mathrm{dBc} / \mathrm{Hz}$ |
|  | C/N2 | UHF operation 10 kHz offset $\mathrm{CP}=1$ Phase comparison frequency $=31.25 \mathrm{kHz}$ | 80 |  |  | $\mathrm{dBc} / \mathrm{Hz}$ |

*1 Value measured with untuned input.
*2 NF meter direct-reading value (DSB measurement).
*3 Value with a desired reception signal input level of -30 dBm , an interference signal of $100 \mathrm{kHz} / 30 \%$ AM, and an interference signal level where $\mathrm{S} / \mathrm{I}=46 \mathrm{~dB}$ measured with a spectrum analyzer.
*4 Value when the PLL is not operating.

## PLL Block

| Item | Symbol | Measurement conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lock-up time | LUT1 | VHF operation $\mathrm{CP}=1$ fosc $100 \mathrm{MHz} \leftrightarrow$ fosc 405 MHz |  |  | 50 | ms |
|  | LUT2 | UHF operation $\quad$ CP $=1$ fosc $405 \mathrm{MHz} \leftrightarrow$ fosc 845 MHz |  |  | 50 | ms |
| Reference leak | REFL | Phase comparison frequency $=31.25 \mathrm{kHz} \quad C P=1$ | 50 |  |  | dBc |
| CL and DA inputs |  |  |  |  |  |  |
| "H" level input voltage | VIH |  | 3 |  | Vcc | V |
| "L" level input voltage | VIL |  | GND |  | 1.5 | V |
| "H" level input current | IIH | $\mathrm{VIH}=\mathrm{Vcc}$ |  | 0 | -0.1 | $\mu \mathrm{A}$ |
| "L" level input current | IIL | $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$ |  | -0.2 | -4 | $\mu \mathrm{A}$ |
| AD input |  |  |  |  |  |  |
| "H" level input voltage | VIH |  | 3 |  | Vcc | V |
| "L" level input voltage | VIL |  | GND |  | 1 | V |
| "H" level input current | IIH | $\mathrm{VIH}=\mathrm{Vcc}$ |  | 100 | 200 | $\mu \mathrm{A}$ |
| "L" level input current | IIL | $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$ |  | -35 | -100 | $\mu \mathrm{A}$ |
| SDA output |  |  |  |  |  |  |
| "H" output leak current | IsdaLk | V IN $=5.5 \mathrm{~V}$ |  |  | 5 | $\mu \mathrm{A}$ |
| "L" output voltage | Vsdal | Sink $=-3 \mathrm{~mA}$ | GND |  | 0.4 | V |
| CPO (charge pump) |  |  |  |  |  |  |
| Output current 1 | ICPO1 | When CP = 0 is selected | $\pm 30$ | $\pm 50$ | $\pm 80$ | $\mu \mathrm{A}$ |
| Leak current 1 | LeakCP1 | When $\mathrm{CP}=0$ is selected |  |  | 30 | nA |
| Output current 2 | ICPO2 | When $\mathrm{CP}=1$ is selected | $\pm 120$ | $\pm 200$ | $\pm 320$ | $\mu \mathrm{A}$ |
| Leak current 2 | LeakCP2 | When $\mathrm{CP}=1$ is selected |  |  | 100 | nA |
| VT (VC voltage output) |  |  |  |  |  |  |
| Maximum output voltage | VTH |  |  |  | 34 | V |
| Minimum output voltage | VTL | Sink current $=1 \mathrm{~mA}$ |  | 0.15 | 0.8 | V |
| REFOSC |  |  |  |  |  |  |
| Oscillation frequency range | Fxtosc |  | 3 |  | 12 | MHz |
| Input capacitance | Cxtosc |  | 22 | 24 | 26 | pF |
| Negative resistance | Rneg | Crystal source impedance fref $=4 \mathrm{MHz}$ | -1 | -3 |  | k $\Omega$ |
| Band SW |  |  |  |  |  |  |
| Output current | IBS | When ON |  |  | -13 | mA |
| Saturation voltage | VSAT | ```When ON Source current = 13mA``` |  | 250 | 330 | mV |
| Leak current | LeakBS | When OFF IFVcc $=5.5 \mathrm{~V}$ |  | 0.5 | 3 | $\mu \mathrm{A}$ |


| Item | Symbol | Measurement conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bus timing ( ${ }^{2} \mathrm{C}$ bus) |  |  |  |  |  |  |
| SCL clock frequency | fscl |  | 0 |  | 400 | kHz |
| Start waiting time | tw;sTA |  | 1300 |  |  | ns |
| Start hold time | th;sTA |  | 600 |  |  | ns |
| Low hold time | tıow |  | 1300 |  |  | ns |
| High hold time | thigh |  | 600 |  |  | ns |
| Start setup time | ts;sTA |  | 600 |  |  | ns |
| Data hold time | t\#; DAT $^{\text {d }}$ |  | 0 |  | 900 | ns |
| Data setup time | ts;DAT |  | 600 |  |  | ns |
| Rise time | tR |  |  |  | 300 | ns |
| Fall time | tF |  |  |  | 300 | ns |
| Stop setup time | ts;sto |  | 600 |  |  | ns |

## Electrical Characteristics Measurement Circuit



## Application Circuit



Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

## Description of Functions

The CXA3627ER is the terrestrial TV broadcasting tuner IC which converts frequencies to IF in order to tune and detect only the desired reception frequency of VHF and UHF band signals.
In addition to the mixer, local oscillation and IF amplifier circuits required for frequency conversion to IF, this IC also integrates a PLL circuit for local oscillation frequency control onto a single chip.
The functions of the various circuits are described below.

## 1. Mixer circuit

This circuit outputs the frequency difference between the signal input to VHFIN or UHFIN and the local oscillation signal.

## 2. Local oscillation circuit

A VCO is formed by externally connecting an LC resonance circuit composed of a varicap diode and inductance.

## 3. IF amplifier circuit

This circuit amplifies the mixer IF output, and consists of an amplifier stage and low impedance output stage.

## 4. PLL circuit

This PLL circuit fixes the local oscillation frequency to the desired frequency. It consists of a programmable divider, reference divider, phase comparator, charge pump and reference oscillator. The control format supports the $\mathrm{I}^{2} \mathrm{C}$ bus format.
The frequency steps of $31.25,50$ or 62.5 kHz can be selected by the $\mathrm{I}^{2} \mathrm{C}$ bus data-based reference divider frequency division setting value.

## 5. Band switch circuit

The CXA3627ER has four sets of built-in PNP transistors for switching between the VL, VH and UHF bands and for switching the FM trap, etc. These PNP transistors can be controlled by the bus data.
The emitters for these PNP transistors are connected to the power supply pin (Vcc), and are ON and output 5 V when the bus data is " $1(\mathrm{H})$ ".
Two types of relations of the bus data and the IC internal OSC/MIX circuits operation are available as shown below. These relations can be selected by grounding or leaving open Pin 8 (BYP).

## BYP: Grounding

| Band SW data |  |  |  | MIX circuit |  |  | OSC circuit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BS1 | BS2 | BS3 | BS4 | VHF | UHF | VHF | UHF |  |
| $*$ | $*$ | $*$ | 0 | O | X | O | X |  |
| $*$ | $*$ | $*$ | 1 | X | O | X | O |  |

## BYP: Open

| Band SW data |  |  |  | MIX circuit |  |  | OSC circuit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BS1 | BS2 | BS3 | BS4 | VHF | UHF | VHF | UHF |  |
| $*$ | $*$ | 0 | $*$ | O | X | O | X |  |
| $*$ | $*$ | 1 | $*$ | X | O | X | O |  |

[^2]
## Description of Analog Block Operation (See the Electrical Characteristics Measurement Circuit.)

## VHF oscillator circuit

- This is the differential amplifier-type oscillator circuit. Pins 13 and 16 are base and Pins 14 and 15 are collector. Pins 13, 15 and Pins 16, 14 have the in-phase input/output relation respectively.
This circuit is oscillated with the positive feedback applied by connecting the output to the input via the coupling capacitor and the feedback capacitor.
Oscillation frequency is varied by connecting an LC parallel resonance circuit including a varicap and controlling the voltage applied to the varicap.


## VHF mixer circuit

- The mixer circuit employs a double balanced mixer with little local oscillation signal leakage.

The input format is base input type, with Pin 8 grounded either directly or via a capacitor and the RF signal input to Pin 7.
(Pin 8 can also be used to select VHF/UHF switching mode with the BS3/BS4 data.)

- The RF signal is fed from the oscillator, converted to IF frequency and output from Pins 4 and 5. Pins 4 and 5 are open collectors, so external power feed is necessary. Also, connect single-tuned filters to Pins 4 and 5.


## UHF oscillator circuit

- The oscillator circuit is designed so that two collector ground type Colpitts oscillators perform differential oscillation operation via an LC resonance circuit including a varicap.
- Resonance capacitance is connected between Pins 17 and 18, Pins 18 and 19, and Pins 19 and 20, and an LC resonance circuit including a varicap is connected between Pins 17 and 20.


## UHF mixer circuit

- This circuit employs a double balanced mixer like the VHF mixer circuit.

The input format is base input type, with Pins 10 and 11 as the RF input pins. The input method can be selected from balanced input consisting of differential input to Pins 10 and 11 or unbalanced input consisting of grounding Pin 10 via a capacitor and input to Pin 11.

- Pins 4 and 5 are the mixer outputs. Pins 4 and 5 are open collectors, so external power feed is necessary. Also, connect single-tuned filters to Pins 4 and 5.


## IF amplifier circuit

- Pins 1 and 2 are the IF amplifier inputs, and the input impedance is approximately $1.6 \mathrm{k} \Omega$.
- The signals frequency converted by the mixer are output from Pins 4 and 5, and Pins 4 and 5 are connected to Pins 1 and 2 via capacitors. (An adjacent channel trap circuit can be formed by connecting LC parallel circuits in place of capacitors.)
- The signal amplified by the IF amplifier is output from Pin 27 . The output impedance is approximately $10 \Omega$.


## Description of PLL Block

This IC is controlled by the $\mathrm{I}^{2} \mathrm{C}$ bus.
The PLL of this IC performs high-speed phase comparison, providing low reference leak and quick lock-up time characteristics.
During power on, the power-on reset circuit operates to initialize the frequency data to all " 0 " and the band data to all "OFF". Power-on reset is performed when $\mathrm{Vcc} \geq 3.2 \mathrm{~V}$ at room temperature $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$.

## 1) Address setting

Up to four addresses can be selected by the hardware bit settings, so that multiple PLL can exist within one system.
The responding address can be set according to the ADSW pin voltage.

## Address

| 1 | 1 | 0 | 0 | 0 | MA1 | MA0 | R/W |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Hardware bits

| ADSW pin voltage | MA1 | MA0 |
| :---: | :---: | :---: |
| 0 to 0.1 Vcc | 0 | 0 |
| OPEN or <br> 0.2 Vcc to 0.3 Vcc | 0 | 1 |
| 0.4 Vcc to 0.6 Vcc | 1 | 0 |
| 0.9 Vcc to Vcc | 1 | 1 |

## 2) Frequency data setting

The VCO lock frequency is obtained according to the following formula.
fosc $=2 \times$ fref $\times(32 \mathrm{M}+\mathrm{S})$
fosc: local oscillator frequency
fref: phase comparison frequency
M: main divider frequency division ratio
S: swallow counter frequency division ratio
The variable frequency division ranges of $M$ and $S$ are as follows, and are set as binary.
$S<M \leq 1023$
$0 \leq \mathrm{S} \leq 31$

## 3) Control format

When performing control for this IC, byte 1 contains the address data, bytes 2 and 3 contain the frequency data, byte 4 contains the control data, and byte 5 contains the band switch data.

These data are latch transferred in the manner of byte 1 , byte $2+$ byte 3 , and byte $4+$ byte 5 .
When the correct address is received and acknowledged, the data is recognized as frequency data if the first bit of the next byte is " 0 ", and as control data and band switch data if this bit is "1".
Also, when data transmission is stopped part-way, the previously programmed data is valid. Therefore, once the control and band switch data have been programmed, 3-byte commands consisting of the address and frequency data are possible.
Further, even if the $I^{2} \mathrm{C}$ bus stop conditions are not met, data can be input by sending the start conditions and the new address.

The control format is as shown in the table below.

Slave Receiver

|  | MSB |  |  |  |  |  |  | LSB |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |  |
| Address byte | 1 | 1 | 0 | 0 | 0 | MA1 | MA0 | 0 | A |
| Divider byte1 | 0 | M9 | M8 | M7 | M6 | M5 | M4 | M3 | A |
| Divider byte2 | M2 | M1 | M0 | S4 | S3 | S2 | S1 | S0 | A |
| Control byte | 1 | CP | GC | CD | X | R1 | R0 | OS | A |
| Band SW byte | X | X | X | X | BS4 | BS3 | BS2 | BS1 | A |

X: Don't care

## A: Acknowledge bit

MA0, MA1: address setting
MO to: main divider frequency division ratio setting
S0 to: swallow counter frequency division ratio setting
CD: charge pump OFF (when "1")
OS: varicap output OFF (when "1")
CP: charge pump current switching ( $200 \mu \mathrm{~A}$ when "1", $50 \mu \mathrm{~A}$ when " 0 ")
GC: $\quad$ gain switching (IC gain reduced by 2 dB when "1")
BS1 to BS4: band switch control (output PNP transistor ON when "1")
R0, R1: reference divider frequency division ratio setting (See the Reference Divider Frequency Division Ratio Table.)

Reference Divider Frequency Division Ratio Table

| $R 1$ | $R 0$ | Reference Divider |
| :---: | :---: | :---: |
| 0 | 1 | 256 |
| 1 | 1 | 128 |
| $X$ | 0 | 160 |

## X: Don't care

$I^{2} \mathrm{C}$ Bus Timing Chart


## Example of Representative Characteristics



Conversion gain vs. Reception frequency (Untuned input)


Next adjacent cross modulation vs. Reception frequency
(Untuned input)


Band SW output voltage vs. Output current
(BS1, BS2, BS3, BS4)


Noise figure vs. Reception frequency (Untuned input, in DSB)


Oscillation frequency power supply fluctuation (PLL off)




PCS beat characteristics (untuned input)


Tuning Response Time

VHF (Low) $95 \mathrm{MHz} \rightarrow$ VHF (High) 395MHz



UHF $413 \mathrm{MHz} \rightarrow$ UHF 847 MHz



VHF (High) 395MHz $\rightarrow$ VHF (Low) 95MHz



UHF 847MHz $\rightarrow$ UHF 413 MHz






VHF Input Impedance


UHF Input Impedance


IF Output Impedance



[^0]:    Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

[^1]:    - 7 -

[^2]:    *: Don't care
    O: Operating
    X: Not operating

