

Current Transducer LA 25-NP/SP11

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 1 A$

Electrical data

I_{PN}	Primary nominal r.m.s. current		1		Α
I _P	Primary current, measuring range		0 ± 1.5		Α
$\mathbf{R}_{_{\mathrm{M}}}$	Measuring resistance		\mathbf{R}_{Mmin}	\mathbf{R}_{Mmax}	
	with ± 15 V	@ $\pm 1.0 A_{max}$	100	320	Ω
		@ ± 1.5 A _{max}	100	190	Ω
I _{SN}	Secondary nominal r.m.s. current		25		mΑ
K _N	Conversion ratio		25:1000		
V _c	Supply voltage (± 5 %)		± 15		V
I _C	Current consumption		10 + I _s		mΑ
$\check{\mathbf{V}_{d}}$	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		2.5		kV
V _b	R.m.s. rated voltage 1), safe separation		600		V
J	ba	asic isolation	1700		V

Accuracy - Dynamic performance data

X e _L	Typical accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.5 < 0.2		% %
I _O I _{OM} I _{OT}	Offset current $^{2)}$ @ $\mathbf{I}_{\mathrm{p}} = 0$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Residual current $^{3)}$ @ $\mathbf{I}_{\mathrm{p}} = 0$, after a Thermal drift of \mathbf{I}_{O}	in overload of 3 x I_{PN} 0°C + 25°C	± 0.05 ± 0.06	Max ± 0.15 ± 0.15 ± 0.25 ± 0.35	mA mA mA
t _r f	Response time $^{\rm 4)}$ @ 90 % of ${\bf I}_{\rm P\ max}$ Frequency bandwidth (- 1 dB)		< 1 DC 1	150	μs kHz

General data

\mathbf{T}_{A}	Ambient operating temperature	0 + 70	°C
			_
$T_{_{S}}$	Ambient storage temperature	- 25 + 85	°C
$\mathbf{R}_{_{P}}$	Primary coil resistance @ T _A = 25°C	< 51	$m\Omega$
R_s	Secondary coil resistance @ T _A = 70°C	110	Ω
L _P	Primary insertion inductance	31	μΗ
R _{IS}	Isolation resistance @ 500 V, T _A = 25°C	> 1500	$M\Omega$
m	Mass	22	g
	Standards 5)	EN 50178	

Notes: 1) Pollution class 2

- ²⁾ Measurement carried out after 15 mn functionning
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available

Features

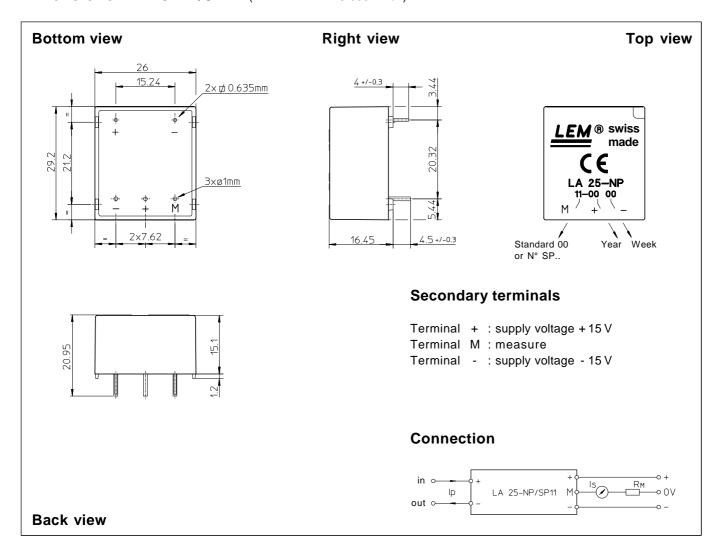
- Closed loop (compensated) multiturns current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- I_{PN} = 1 A
- $I_p = 0.. \pm 1.5 \text{ A}$
- $\mathbf{K}_{N} = 25 : 1000.$

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

990125/1

Dimensions LA 25-NP/SP11 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Fastening & connection of primary

Fastening & connection of secondary 3 pins Ø 1 mm

• Recommended PCB hole

± 0.2 mm

2 pins

0.635 x 0.635 mm

1.2 mm

Remark

 \bullet I_s is positive when I_p flows from terminal + to terminal -.