Preferred Device # **High Current Bias Resistor Transistor** #### **PNP Silicon** - Collector –Emitter Sustaining Voltage $V_{CEO(sus)} = 30 \text{ Vdc (Min)} @ I_C = 10 \text{ mAdc}$ - High DC Current Gain - $$\begin{array}{l} h_{FE} \ = 125 \ (Min) \ @ \ I_{C} = 0.8 \ Adc \\ = 90 \ (Min) \ @ \ I_{C} = 3.0 \ Adc \end{array}$$ • Low Collector –Emitter Saturation Voltage – $$V_{CE(sat)} = 0.275 \text{ Vdc (Max)} @ I_C = 1.2 \text{ Adc}$$ = 0.55 Vdc (Max) @ $I_C = 3.0 \text{ Adc}$ - SOT-223 Surface Mount Packaging - ESD Rating Human Body Model: Class 1B - Machine Model: Class B #### **MAXIMUM RATINGS** ($T_C = 25^{\circ}C$ unless otherwise noted) | Rating | Symbol | Value | Unit | |--|-----------------------------------|-------------------|-------------------------| | Collector–Emitter Voltage | V _{CEO} | 30 | Vdc | | Collector-Base Voltage | V _{CB} | 45 | Vdc | | Emitter-Base Voltage | V _{EB} | ±6.0 | Vdc | | Base Current – Continuous | I _B | 1.0 | Adc | | Collector Current – Continuous
– Peak | I _C | 3.0
5.0 | Adc | | Total Power Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$ Total P_D @ $T_A = 25^{\circ}C$ mounted on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material Total P_D @ $T_A = 25^{\circ}C$ mounted on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 bd material | P _D | 3.0
24
1.56 | Watts
mW/°C
Watts | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -55 to
+150 | °C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|--|-----------------|------| | Thermal Resistance – Junction to Case – Junction to Ambient on 1" sq. (645 sq. mm) Collector pad on FR-4 board material – Junction to Ambient on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 board material | R _{θJC}
R _{θJA}
R _{θJA} | 42
80
174 | °C/W | | Maximum Lead Temperature for
Soldering Purposes, 1/8" from
case for 5 seconds | T _L | 260 | °C | #### ON Semiconductor® http://onsemi.com POWER BJT $I_C = 3.0$ AMPERES $BV_{CEO} = 30$ VOLTS $V_{CE(sat)} = 0.275$ VOLTS SOT-223 CASE 318E STYLE 1 #### **MARKING DIAGRAM** 9435R = Device Code #### ORDERING INFORMATION | Device | Package | Shipping | |-----------|---------|------------------| | NSB9435T1 | SOT-223 | 1000/Tape & Reel | **Preferred** devices are recommended choices for future use and best overall value. ### $\textbf{ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}C \ unless \ otherwise \ noted)$ | Characteristics | Symbol | Min | Тур | Max | Unit | |---|-----------------------|------------------|-----------------|-------------------------|------| | OFF CHARACTERISTICS | | | • | • | • | | Collector–Emitter Sustaining Voltage (I _C = 10 mAdc, I _B = 0 Adc) | V _{CEO(sus)} | 30 | - | - | Vdc | | Emitter–Base Voltage
(I _E = 50 μAdc, I _C = 0 Adc) | V _{EBO} | 6.0 | - | - | Vdc | | Collector Cutoff Current
(V _{CE} = 25 Vdc)
(V _{CE} = 25 Vdc, T _J = 125°C) | I _{CER} | -
- | _
_ | 20
200 | μAdc | | Emitter Cutoff Current (V _{BE} = 5.0 Vdc) | I _{EBO} | _ | - | 700 | μAdc | | ON CHARACTERISTICS (Note 1) | | | | | • | | Collector–Emitter Saturation Voltage ($I_C = 0.8$ Adc, $I_B = 20$ mAdc) ($I_C = 1.2$ Adc, $I_B = 20$ mAdc) ($I_C = 3.0$ Adc, $I_B = 0.3$ Adc) | V _{CE(sat)} | -
-
- | 0.155
-
- | 0.210
0.275
0.550 | Vdc | | Base–Emitter Saturation Voltage (I _C = 3.0 Adc, I _B = 0.3 Adc) | V _{BE(sat)} | - | - | 1.25 | Vdc | | Base–Emitter On Voltage
(I _C = 1.2 Adc, V _{CE} = 4.0 Vdc) | V _{BE(on)} | - | - | 1.10 | Vdc | | DC Current Gain $(I_C = 0.8 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 1.2 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 3.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ | h _{FE} | 125
110
90 | 220
_
_ | -
-
- | - | | Resistor | R1 | 7.5 | 10 | 12.5 | kΩ | | DYNAMIC CHARACTERISTICS | | | • | • | • | | Output Capacitance
(V _{CB} = 10 Vdc, I _E = 0 Adc, f = 1.0 MHz) | C _{ob} | - | 100 | 150 | pF | | Input Capacitance
(V _{EB} = 8.0 Vdc) | C _{ib} | - | 135 | - | pF | | Current–Gain – Bandwidth Product (Note 2)
(I _C = 500 mA, V _{CE} = 10 V, F _{test} = 1.0 MHz) | f _T | _ | 110 | _ | MHz | Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. f_T = |h_{FE}| • f_{test} 10 Figure 7. Output Capacitance Figure 9. Power Derating There are two limitations on the power handling ability of a transistor: average junction temperature and secondary breakdown. Safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 8 is based on $T_{J(pk)} = 150$ °C; T_C is variable depending on conditions. Secondary breakdown pulse limits are valid for duty cycles to 10% provided T_{J(pk)} $\leq 150^{\circ}$ C. $T_{J(pk)}$ may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown. Figure 10. Thermal Response #### **PACKAGE DIMENSIONS** SOT-223 (TO-261) PLASTIC PACKAGE CASE 318E-04 ISSUE K - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. | | INCHES | | MILLIN | IETERS | |-----|--------|--------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.249 | 0.263 | 6.30 | 6.70 | | В | 0.130 | 0.145 | 3.30 | 3.70 | | C | 0.060 | 0.068 | 1.50 | 1.75 | | D | 0.024 | 0.035 | 0.60 | 0.89 | | F | 0.115 | 0.126 | 2.90 | 3.20 | | G | 0.087 | 0.094 | 2.20 | 2.40 | | Н | 0.0008 | 0.0040 | 0.020 | 0.100 | | J | 0.009 | 0.014 | 0.24 | 0.35 | | K | 0.060 | 0.078 | 1.50 | 2.00 | | L | 0.033 | 0.041 | 0.85 | 1.05 | | M | 0° | 10 ° | 0 ° | 10 ° | | S | 0.264 | 0.287 | 6.70 | 7.30 | - STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR # **Notes** # **Notes** ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### PUBLICATION ORDERING INFORMATION #### Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada **JAPAN**: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.