MACCM 0.5W X/Ku-Band Power Amplifier

8.0-12.0 GHz

Preliminary Information

Features

- 8.0-12.0 GHz Operation
- 0.5 Watt Saturated Output Power Level
- Variable Drain Voltage (4-10V) Operation
- Self-Aligned MSAG[®] MESFET Process
- High Performance Ceramic Bolt Down Package

Primary Applications

- Point-to-Point Radio
- Weather Radar
- Airborne Radar

Description

The MAAPGM0034 is a packaged, 2-stage, 0.5 W power amplifier with on-chip bias networks in a bolt down ceramic package, allowing easy assembly. This product is fully matched to 50 ohms on both the input and output. It can be used as a power amplifier stage or as a driver stage in high power applications.

Each device is 100% RF tested to ensure performance compliance. The part is fabricated using M/A-COM's GaAs Multifunction Self-Aligned Gate (MSAG[®]) MESFET Process.

8.0-12.0 GHz GaAs MMIC Amplifier

Pin Number	Description	
1	No Connection	
2	No Connection	
3	RF IN	
4	No Connection	
5	V _{GG}	
6	No Connection	
7	No Connection	
8	RF OUT	
9	No Connection	
10	V _{DD}	

Maximum Operating Conditions¹

Parameter	Symbol	Absolute Maximum	Units
Input Power	P _{IN}	21.0	dBm
Drain Supply Voltage	Vdd	+12.0	V
Gate Supply Voltage	V _{GG}	-3.0	V
Quiescent Drain Current (No RF)	IDQ	150	mA
Quiescent DC Power Dissipated (No RF)	P _{DISS}	1.5	W
Junction Temperature	TJ	180	°C
Storage Temperature	Tstg	-55 to +150	°C

1. Operation outside of these ranges may reduce product reliability.

MAAPGM0034

Recommended Operating Conditions

Characteristic	Symbol	Min	Тур	Max	Unit
Drain Supply Voltage	V _{DD}	4.0	8.0	10.0	V
Gate Supply Voltage	V _{GG}	-2.3	-2.0	-1.5	V
Input Power	P _{IN}		16.0	19.0	dBm
Junction Temperature	TJ			150	°C
Thermal Resistance	T JC		58.6		°C/W
MMIC Base Temperature	Тв			Note 2	°C

2. Maximum MMIC Base Temperature = 150°C — T_{JC}* V_{DD} * I_{DQ}

Electrical Characteristics:	$T_{\rm B} = 40^{\circ} {\rm C}^3, Z_0 = 50$	$W_{1} V_{DD} = 10V_{1} V_{GG} =$	$-1.8V, P_{in} = 16 \text{ dBm}, R_G = 6040$
-----------------------------	--	-----------------------------------	--

			• •
Parameter	Symbol	Typical	Units
Bandwidth	f	8.0-12.0	GHz
Output Power	POUT	27.5	dBm
Power Added Efficiency	PAE	30	%
1-dB Compression Point	P1dB	27	dBm
Small Signal Gain	G	14.5	dB
Input VSWR	VSWR	2.5:1	
Output VSWR	VSWR	2.5:1	
Gate Supply Current	l _{GG}	< 2	mA
Drain Supply Current	I _{DD}	< 200	mA
Noise Figure	NF	8.5	dB
2 nd Harmonic	2f	-28	dBc
3 rd Harmonic	3f	-35	dBc
Output Third Order Intercept	ΟΤΟΙ	33	dBm
3 rd Order Intermodulation Distortion, Single Carrier Level = 17 dBm	IM3	-13	dBm
5 th Order Intermodulation Distortion, Single Carrier Level = 17 dBm	IM5	-36	dBm

3. T_B = MMIC Base Temperature

Operating Instructions

This device is static sensitive. Please handle with care. To operate the device, follow these steps.

- 1. Apply $V_{GG} = -1.8 \text{ V}$, $V_{DD} = 0 \text{ V}$.
- 2. Ramp V_{DD} to desired voltage, typically 8 V.
- 3. Adjust V_{GG} to set I_{DQ} , (approxmately @ -1.8V).
- 4. Set RF input.
- 5. Power down sequence in reverse. Turn V_{GG} off last.

Specifications subject to change without notice. Email: macom_adbu_ics@tycoelectronics.com

- North America: Tel. (800) 366-2266
- Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
- Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

0.5W X/Ku-Band Power Amplifier

MAAPGM0034

Specifications subject to change without notice. Email: macom_adbu_ics@tycoelectronics.com

- North America: Tel. (800) 366-2266
- Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
- Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

0.5W X/Ku-Band Power Amplifier

MAAPGM0034

Specifications subject to change without notice. Email: macom_adbu_ics@tycoelectronics.com

- North America: Tel. (800) 366-2266
- Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
- Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

0.5W X/Ku-Band Power Amplifier

MAAPGM0034

Figure 5. CR-15 Package Dimensions

The CR-15 is a high frequency, low thermal resistance package. The package consists of a cofired ceramic construction with a copper-tungsten base and iron-nickel-cobalt leads. The finish consists of electrolytic gold over nickel plate.

Specifications subject to change without notice. Email: macom_adbu_ics@tycoelectronics.com

- North America: Tel. (800) 366-2266
- Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
- Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

tyco | Electronics

MAAPGM0034

0.5W X/Ku-Band Power Amplifier

Figure 6. Recommended Bias Configuration

Assembly Instructions:

This flange mount style package provides a robust interface between a highly integrated GaAs MMIC device and a circuit board which may be assembled using conventional surface mount techniques. A thin shim made of a thermally and electrically conductive, ductile material should be used prior to installation of the CR-15 to improve the thermal and electrical performance of the package to housing interface. Refer to **M/A-COM Application Note #M567*** for more information.

For applications where surface mount components are to be installed after the CR-15 installation, this package will not be damaged when subjected to typical convection or IR oven reflow profiles. Refer to **M/A-COM Application Note #M538*** for maximum allowable reflow time and temperature. Alternatively, the package leads may be individually soldered. Whether an iron or hot gas soldering equipment is used, care should be taken to insure that the temperature is well controlled and electric static discharge (ESD) safe.

Biasing Note: Must apply negative bias to V_{GG} before applying positive bias to V_{DD} to prevent damage to amplifier.

* Application Notes can be found by going to the Site Search Page on M/A-COM's web page (http://www.macom.com/search/search.jsp) and searching for the required Application Note.

Specifications subject to change without notice.

Email: macom_adbu_ics@tycoelectronics.com

- North America: Tel. (800) 366-2266
- Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
- Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

tyco | Electronics

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com