
Features

- ♦ 1.2 Watt Saturated Output Power Level
- ♦ Variable Drain Voltage (4-10V) Operation
- ♦ Self-Aligned MSAG® Process

Primary Applications

- ♦ 2.5-2.7 GHz MMDS
- ♦ GPS
- ♦ Radar
- ◆ Telemetry

Description

The MAAPGM0036 is a packaged, 2-stage, 1.2 W power amplifier with on-chip bias networks in a bolt down ceramic package, allowing easy assembly. This product is fully matched to 50 ohms on both the input and output. It can be used as a power amplifier stage or as a driver stage in high power applications.

Each device is 100% RF tested to ensure performance compliance. The part is fabricated using M/A-COM's GaAs Multifunction Self-Aligned Gate (MSAG®) MESFET Process. M/A-COM's MSAG process features robust silicon-like manufacturing processes, planar processing of ion implanted transistors and multiple implant capability enabling power, low-noise, switch and digital FETs on a single chip. The use of refractory metals and the absence of platinum in the gate metal formulation prevents hydrogen poisoning when employed in hermetic packaging.

Pin Number	RF Designator		
1	No Connection		
2	V_{GG}		
3	RF IN		
4	V_{GG}		
5	No Connection		
6	No Connection		
7	V_{DD}		
8	RF OUT		
9	V_{DD}		
10	No Connection		

Maximum Operating Conditions ¹

Parameter	Symbol	Absolute Maximum	Units
Input Power	P _{IN}	23.0	dBm
Drain Supply Voltage	V _{DD} +12.0		V
Gate Supply Voltage	V_{GG}	V _{GG} -3.0	
Quiescent Drain Current (No RF, 40% IDSS)	I _{DQ}	730	mA
Quiescent DC Power Dissipated (No RF)	P _{DISS}	6.6	W
Junction Temperature	T _J	180	°C
Storage Temperature	T _{STG}	-55 to +150	°C
Processing Temperature		230	°C

^{1.} Operation outside of these ranges may reduce product reliability.

Recommended Operating Conditions

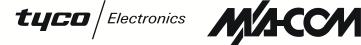
Characteristic	Symbol	Min	Тур	Max	Unit
Drain Supply Voltage	V_{DD}	4.0	8.0	10.0	V
Gate Supply Voltage	V_{GG}	-2.4	-2.0	-1.5	V
Input Power	P _{IN}		18	21	dBm
Junction Temperature	T_J			150	°C
Thermal Resistance	Θ_{JC}		14.2		°C/W
Package Base Temperature	T _B			Note 2	°C

^{2.} Maximum Package Base Temperature = 150°C — Θ_{JC}* V_{DD} * I_{DQ}

Electrical Characteristics: T_B = 40°C, Z_0 = 50 Ω , V_{DD} = 8V, I_{DQ} ≈ 460 mA³, P_{in} = 18 dBm, R_G ≈ 150 Ω

Parameter	Symbol	Typical	Units
Bandwidth	f	1.2-3.2	GHz
Output Power	POUT	31	dBm
Power Added Efficiency	PAE	29	%
1-dB Compression Point	P1dB	31	dBm
Small Signal Gain	G	20	dB
Input VSWR	VSWR	1.7:1	
Output VSWR	VSWR	2.0:1	
Gate Supply Current	I _{GG}	< 5	mA
Drain Supply Current	I _{DD}	< 800	mA
Noise Figure	NF	5	dB
2 nd Harmonic	2f	-15	dBc
3 rd Harmonic	3f	-30	dBc
Output Third Order Intercept	ОТОІ	40	dBm
3 rd Order Intermodulation Distortion, Single Carrier Level = 21 dBm	IM3	-11	dBm
5 th Order Intermodulation Distortion, Single Carrier Level = 21 dBm	IM5	-35	dBm

3. Adjust V_{GG} between -2.4 to -1.5V to achieve indicated I_{DQ} .


Operating Instructions

This device is static sensitive. Please handle with care. To operate the device, follow these steps.

- 1. Apply $V_{GG} \approx -1.8V$, $V_{DD} = 0 V$.
- 2. Ramp V_{DD} to desired voltage, typically 8 V.
- 3. Adjust V_{GG} to set I_{DQ} , (See Note 3 above).
- 4. Set RF input.
- 5. Power down sequence in reverse. Turn V_{GG} off last.

Specifications subject to change without notice. Email: macom_adbu_ics@tycoelectronics.com

- North America: Tel. (800) 366-2266
- Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
- Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

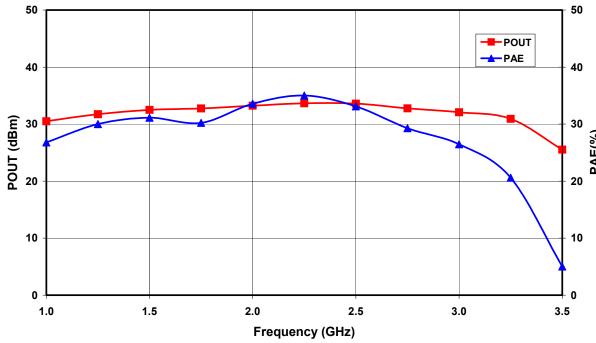


Figure 1. Output Power and Power Added Efficiency vs. Frequency at V_{DD} = 8V and Pin = 18 dBm.

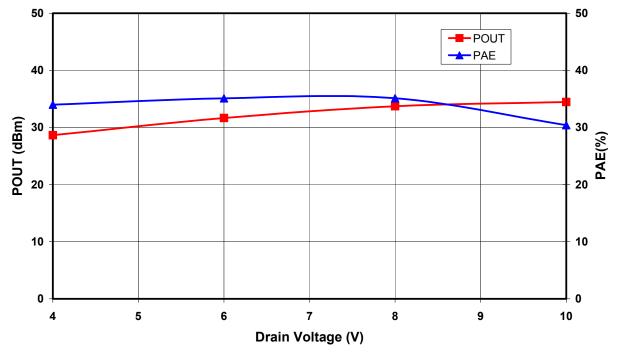


Figure 2. Saturated Output Power and Power Added Efficiency vs. Drain Voltage at f_0 = 2.25 GHz.

Specifications subject to change without notice. Email: macom_adbu_ics@tycoelectronics.com

- North America: Tel. (800) 366-2266
- Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
- Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

MAAPGM0036

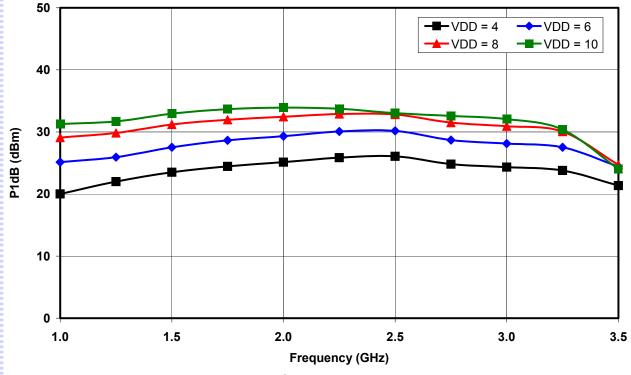


Figure 3. 1dB Compression Point vs. Frequency

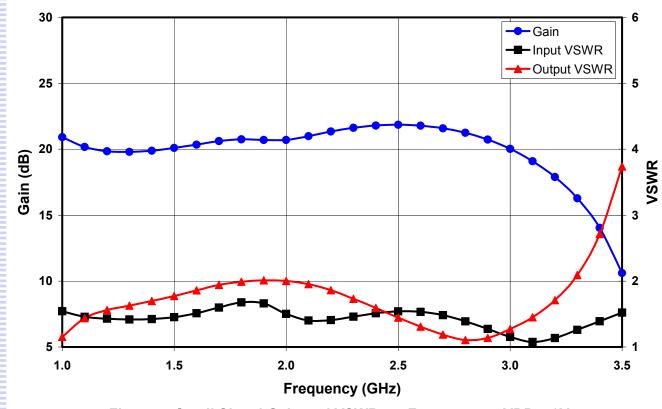
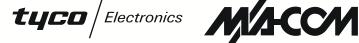



Figure 4. Small Signal Gain and VSWR vs. Frequency at VDD = 8V.

Specifications subject to change without notice. Email: macom_adbu_ics@tycoelectronics.com

- North America: Tel. (800) 366-2266
- Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
- Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

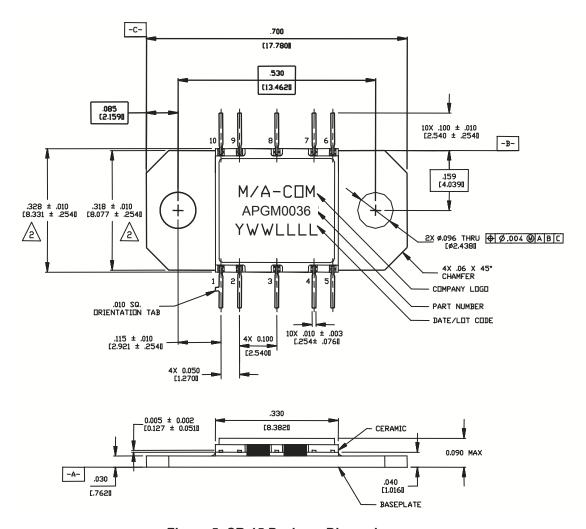


Figure 5. CR-15 Package Dimensions

The CR-15 is a high frequency, low thermal resistance package. The package consists of a cofired ceramic construction with a copper-tungsten base and iron-nickel-cobalt leads. The finish consists of electrolytic gold over nickel plate.

Specifications subject to change without notice. Email: macom_adbu_ics@tycoelectronics.com

■ North America: Tel. (800) 366-2266

Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

■ Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

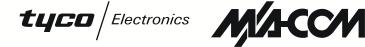
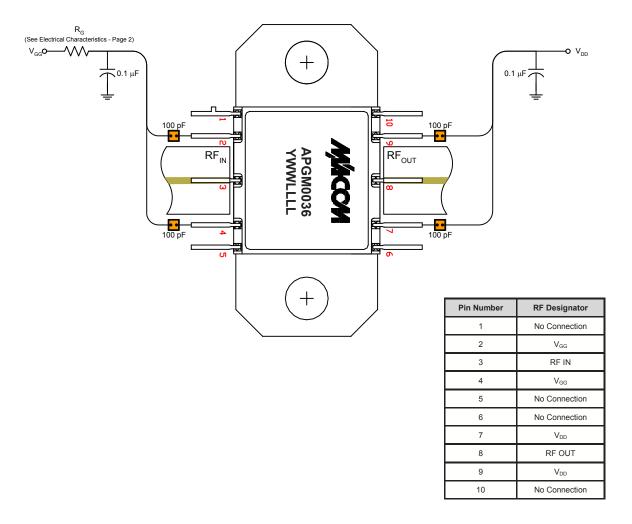



Figure 6. Recommended Bias Configuration

Assembly Instructions:

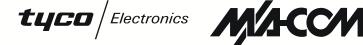
This flange mount style package provides a robust interface between a highly integrated GaAs MMIC device and a circuit board which may be assembled using conventional surface mount techniques. A thin shim made of a thermally and electrically conductive, ductile material should be used prior to installation of the CR-15 to improve the thermal and electrical performance of the package to housing interface. Refer to M/A-COM Application Note #M567* for more information .

For applications where surface mount components are to be installed after the CR-15 installation, this package will not be damaged when subjected to typical convection or IR oven reflow profiles. Refer to M/A-COM Application Note #M538* for maximum allowable reflow time and temperature. Alternatively, the package leads may be individually soldered. Whether an iron or hot gas soldering equipment is used, care should be taken to insure that the temperature is well controlled and electric static discharge (ESD) safe.

> * Application Notes can be found by going to the Site Search Page on M/A-COM's web page (http://www.macom.com/search/search.jsp) and searching for the required Application Note.

Biasing Notes:

- The 100pF bypass capacitors must be placed as close to the V_{GG} and V_{DD} pins as possible (recommended < 100 mils).
- A negative bias must be applied to V_{GG} before applying a positive bias to V_{DD} to prevent damage to the amplifier.


Specifications subject to change without notice.

Email: macom_adbu_ics@tycoelectronics.com

■ North America: Tel. (800) 366-2266

Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com