IS1622

Features

- 1. OPIC light detector for RF signal detection (6-division PIN type photodiode and amplifier IC integrated onto single chip)
- 2. Low operating voltage design (Operating voltage : 2.7 to 5.5V)
- 3. Sensitivity switching between playback mode and recording mode
- 4. Compact and thin transparent package (Package dimensions : 3.7 x 6.1 x 1.5 mm)

Applications

1. Optical pickup for recorder type MD players

OPIC Light Detector for Recorder Type MD (Mini Disk) **RF Signal Detection**

Outline Dimensions

(Unit:mm)

* OPIC (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.

Recommended Operating Conditions

The switching circuit operates according to H and L voltage of the MR/R terminals.

Mode	MR/R terminal voltage	SW state	Gain resistance	
Playback mode	L	OFF	R1	
Recording mode	Н	ON	R1R2/(R1+R2)	

Absolute Maximum Ratings

Absolute Maximum F	$(Ta=25^{\circ}C)$		
Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	- 0.5to+ 6.0	V
Cathode terminal voltage	Vĸ	- 0.5to+ 6.0	V
Mode switching terminal voltage	V _{MP/R}	-0.5toVcc	V
*1 Output voltage	Vo	-0.5toVcc	V
*2 Power dissipation	Р	150	mW
Operating temperature	Topr	- 20to+ 70	°C
Storage temperature	T _{stg}	- 40to+ 85	°C
*3 Soldering temperature	T _{sol}	+ 260	°C

*1 To apply to individual terminals of V_A , V_B , V_C , V_D , I_E and I_F .

*2 To decrease at the rate of 2mW/ °Cat Ta>= 25°C.

*3 For MAX. 3 seconds in the soldering area

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device."

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating supply voltage range	V _{CC1}	2.7	3.0	5.5	V
Cathode terminal voltage	Vĸ	2.7	3.0	5.5	V
*4 Playback mode incident light quantity range 1	φ P1	1	6	17	μW
*5 Playback mode incident light quantity range 2	\$ P2	0.5	3	6	μW
^{*4} Recording mode incident light quantity range 1	φR1	15	50	130	μW
*5 Recording mode incident light quantity range 2	\$ R2	7	17	36	μW

*4 The incident light quantity range applies to individual photodiodes of A, B, C and D and is specified in the incident light quantity per single photodiode.

*5 The incident light quantity range applies to individual photodiodes of E and F and is specified in the incident light quantity per single photodiode.

Electro-optical Characteristics (Current flowing out of terminal : +, Current flowing into terminal : -)

 $(Ta=25^{\circ}C, V_{CC}=V_{K}=3.0V)$

		Parameter	Symbol	Conditions *8	MIN.	TYP.	MAX.	Unit	Application
Playback mode	Supply	y current	ICCP	-	2.0	5.2	9.0	mA	V _{CC}
	Dark o	Dark output voltage VodP		-	1.1	1.4	1.6	V	V_A, V_B, V_C, V_D
	Dark ou	ark output differential voltage VodPS		-	- 25	0	25	mV	V _A ,V _B ,V _C ,V _D
	*6 Sensitivity R _{pP}		R_{pP}	-	13	22.5	34	$mV/\mu W$	V _A ,V _B ,V _C ,V _D
	Sensitivity temperature coefficient R _p		R _{pPt}	Ta=-20to+70°C	-	+ 7 000	-	ppm/°C	V _A ,V _B ,V _C ,V _D
	Respo	nse frequency	f_{CP}	- 3dB	3.0	5.3	-	MHz	V_A, V_B, V_C, V_D
	Outpu	t noise level	V_{nP}	f = 720kHz, BW = 10kHz	-	- 90	- 80	dBm	V_A, V_B, V_C, V_D
Recording mode	Supply	Supply current I _{CCR} -		-	3.0	5.6	10.0	mA	V _{CC}
	Dark output voltage V _{od}		V_{odR}	-	1.1	1.35	1.6	V	V _A ,V _B ,V _C ,V _D
	Dark output difference voltage VodRS		VodRS	-	-25	0	25	mV	V _A ,V _B ,V _C ,V _D
	*7 Sensitivity		R_{pR}	-	1.3	2.8	4.9	mV/\muW	V_A, V_B, V_C, V_D
	Sensitivi	ity temperature coefficient	R _{pRt}	Ta=- 20to+70°C	-	$+ 7\ 000$	-	ppm/°C	V_A, V_B, V_C, V_D
	Response frequency		fcr	- 3dB	1.8	3.8	-	MHz	V _A ,V _B ,V _C ,V _D
μ <u>κ</u>	Output noise level 1		V_{nR1}	f=22kHz,BW=1kHz	-	- 100	- 90	dBm	V _A ,V _B ,V _C ,V _D
	Output noise level 2		V_{nR2}	f=720kHz,BW=10kHz	-	- 90	- 80	dBm	V_A, V_B, V_C, V_D
ŝ	Sensit	ivity	R_{pE}, R_{pF}	-	0.28	0.37	0.52	$\mu A/\mu W$	I_E, I_F
ode	Outpu	t current	Io	-	240	430	700	μΑ	V _A ,V _B ,V _C ,V _D
h m	Dark o	current	I_{dE}, I_{dF}	-	-	-	10	nA	I _E ,I _F
bot	Termi	nal capacitance	CAK	-	-	(20)	-	pF	I_E, I_F
1 to	Mode sv	vitching terminal voltage 1	V _{MR}	-	Vcc- 0.5	-	Vcc	V	MP/R
Common to both modes	Mode sv	vitching terminal voltage 2	V _{MP}	-	0	-	0.4	V	MP/R
om	Mode sv	vitching terminal current 1	I _{MR}	-	-	-	230	μΑ	MP/R
0	Mode switching terminal current 2		I_{MP}	-	-	-	- 0.5	μΑ	MP/R
Char	ac. after	Sensitivity response	R _{pRP}	*9	11.7	22.5	35.7	mV/\muW	V _A ,V _B ,V _C ,V _D
mode switching Sensitivity respo		Sensitivity response	R _{pRP}	*9	1.2	2.8	5.2	mV/\muW	V _A ,V _B ,V _C ,V _D

*6 $\,6\mu$ W DC light is radiated to the center of each photodiode at $50\mu m\,\phi$.

Assuming the then output voltage as V_{pP} and the dark output voltage as V_{odP}, sensitivity R _{pP} is defined according to the following formula.

 $R_{pP} = |V_{pP} - V_{odP}| / 6 \mu W$

*7 50 μ W DC light is radiated to the center of each photodiode at 50 μm $\phi.$

Assuming the then output voltage as V_{pR} and the dark output voltage as V_{odR} , sensitivity V_{pP} is defined according to the following formula.

 $R_{pR} = |V_{pR} - V_{odR}| / 50 \,\mu W$

*8 Take measurement assuming the mode switching terminal voltage on $V_{MP/R}=0V$ in the playback mode and $V_{MP/R}=Vcc$ in the recording mode.

*9 Sensitivity response characteristics after mode switching between the playback and recording modes is specified in the sensitivity in 20µs after change of the mode switching terminal voltage. Take measurement with 20µ W DC light radiated to the center of each photodiode at 50µmø.

Assuming the then output as Vp and dark output voltage as Vod, sensitivity Rp is defined according to the following formula.

 $R_p = |V_p - V_{od}| / 20 \,\mu W$