3361 AND 3362

2-WIRE, CHOPPER-STABILIZED, HALL-EFFECT SWITCHES

Suffix Code 'LH' Pinning

Pinning is shown viewed from branded side.

PRELIMINARY INFORMATION (subject to change without notice) May 28, 1999
at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Supply Voltage, V_{CC} 26.5 V
Reverse Battery Voltage, $\mathrm{V}_{\mathrm{RCC}}$.......... -16 V Magnetic Flux Density, B Unlimited Package Power Dissipation, P_{D}. See Graph Junction Temperature, $\mathrm{T}_{\mathrm{J}}+\mathbf{1 7 0}^{\circ} \mathbf{C}$ Operating Temperature Range,
T_{A}............................. $\mathbf{- 4 0}^{\circ} \mathrm{C}$ to $\mathbf{8 5}^{\circ} \mathrm{C}$
Storage Temperature Range,
$\mathrm{T}_{\mathrm{S}} . . . \ldots . . . \mathbf{- 6 5}^{\circ} \mathrm{C}$ to $+\mathbf{1 7 0}^{\circ} \mathrm{C}$

The A3361x and A3362x Hall-effect switches are extremely temperature-stable and stress-resistant sensors. Superior performance over temperature is made possible through dynamic offset cancellation, which reduces the residual offset voltage normally caused by device overmolding, temperature dependencies, and thermal stress. The two devices differ only in output polarity; the A3361x output current goes low in the presence of a south pole of sufficient strength; the A3362x output current goes high.

Each device includes on a single silicon chip a voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and a constant-current open-collector output. An on-board regulator permits operation with supply voltages of 3.5 to 24 volts. Noise radiation is limited by control of the output current slew rate.

Three package styles provide a magnetically optimized package for most applications. Suffix 'xLH' is a miniature low-profile surfacemount package, 'xLT' is a miniature SOT-89/TO-243AA transistor package for surface-mount applications; while suffix 'xUA' is a threelead ultra-mini-SIP for through-hole mounting.

FEATURES

- Internal Current Regulator for 2-Wire Operation
- Resistant to Physical Stress
- Superior Temperature Stability
- Operation From Unregulated Supply
- Solid-State Reliability
- Small Size

[^0]
FUNCTIONAL BLOCK DIAGRAM

Suffix Code 'UA' Pinning (SIP)

Dwg. PH-003-7

Suffix Code 'LT' Pinning (SOT-89/TO-243AA)

Pinning is shown viewed from branded side.

115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
Copyright © 1999, Allegro MicroSystems, Inc.

> 3361 AND 3362
> $2-W I R E$,
> CHOPPER-STABILIZED, HALL-EFFECT SWITCHES

ELECTRICAL CHARACTERISTICS over operating temperature range.

Characteristic			Limits			
	Symbol	Test Conditions	Min.	Typ.	Max.	Units
	V_{CC}	Operating	3.5	12	24	V
Output Current	$\mathrm{I}_{\mathrm{GND}(\mathrm{L})}$	Output Current Low	5.0	-	6.9	mA
	$\mathrm{I}_{\mathrm{GND}(\mathrm{H})}$	Output Current High	12	-	17	mA
Chopping Frequency	f_{C}		-	340	-	kHz
Output Settling Time	t_{sd}	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$	-	-	20	$\mu \mathrm{~s}$
Output Rise Time	t_{r}	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$	-	3.5	-	$\mu \mathrm{s}$
Output Fall Time	t_{f}	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$	-	3.5	-	$\mu \mathrm{s}$
Reverse Battery Current	I_{CC}	$\mathrm{V}_{\mathrm{RCC}}=-16 \mathrm{~V}$	-	-	-15	mA

NOTE: Typical Data is at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ and is for design information only.

MAGNETIC CHARACTERISTICS over operating supply voltage and temperature ranges.

Characteristic	Symbol	Test Conditions	Limits			
			Min.	Typ.	Max.	Units
Operate Point	$\mathrm{B}_{\text {op }}$	A3361 $\mathrm{I}_{\text {GND }}$ goes low, A3362 high	-	-	120	G
Release Point	B_{RP}	A3361 $\mathrm{I}_{\mathrm{GND}}$ goes high, A3362 low	50	-	-	G
Hysteresis	$\mathrm{B}_{\text {hys }}$	$\mathrm{B}_{\text {OP }}-\mathrm{B}_{\text {RP }}$	5.0	-	30	G

NOTE - Typical Data is at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ and is for design information only.

This page intentionally left blank

115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000

3361 AND 3362
 2-WIRE,
 CHOPPER-STABILIZED, HALL-EFFECT SWITCHES

SENSOR LOCATIONS

($\pm 0.005^{\prime \prime}$ [0.13 mm] die placement)

Package Designator "LH"

Package Designator "LT"

Dwg. MH-008-8
Package Designators "UA" and "UA-TL"

Dwg. MH-011-9A

Although sensor location is accurate to three sigma for a particular design, product improvements may result in small changes to sensor location.

CRITERIA FOR DEVICE QUALIFICATION

All Allegro sensors are subjected to stringent qualification requirements prior to being released to production. To become qualified, except for the destructive ESD tests, no failures are permitted.

Qualification Test	Test Method and Test Conditions	Test Length	Samples	Comments
Biased Humidity (HAST)	$T_{A}=130^{\circ} \mathrm{C}, \mathrm{RH}=85 \%$	50 hrs	77	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$
High-Temperature Operating Life (HTOL)	$\begin{aligned} & \text { JESD22-A108, } \\ & \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{J}}=165^{\circ} \mathrm{C} \end{aligned}$	408 hrs	77	$\begin{aligned} & V_{\mathrm{CC}}=24 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=20 \mathrm{~V} \end{aligned}$
Accelerated HTOL	$\begin{aligned} & \text { JESD22-A108, } \\ & \mathrm{T}_{\mathrm{A}}=175^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{J}}=190^{\circ} \mathrm{C} \end{aligned}$	504 hrs	77	$\begin{aligned} & V_{\text {CC }}=24 \mathrm{~V}, \\ & V_{\text {OUT }}=20 \mathrm{~V} \end{aligned}$
Autoclave, Unbiased	$\begin{aligned} & \text { JESD22-A102, Condition C, } \\ & \mathrm{T}_{\mathrm{A}}=121^{\circ} \mathrm{C}, 15 \mathrm{psig} \end{aligned}$	96 hrs	77	
High-Temperature (Bake) Storage Life	$\begin{aligned} & \text { MIL-STD-883, Method 1008, } \\ & \mathrm{T}_{\mathrm{A}}=170^{\circ} \mathrm{C} \end{aligned}$	1000 hrs	77	
Temperature Cycle	MIL-STD-883, Method 1010, $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	500 cycles	77	
Latch-Up	-	Pre/Post Reading	6	
Electro-Thermally Induced Gate Leakage	-	Pre/Post Reading	6	
ESD, Human Body Model	CDF-AEC-Q100-002	Pre/Post Reading	$\mathrm{x} \text { per }$ test	Test to failure, All leads > TBD
Electrical Distributions	Per Specification	-	30	

3361 AND 3362
 2-WIRE, CHOPPER-STABILIZED, HALL-EFFECT SWITCHES

FUNCTIONAL DESCRIPTION

Chopper-Stabilized Technique. These devices use a proprietary dynamic offset cancellation technique, with an internal high-frequency clock to reduce the residual offset voltage of the Hall element that is normally caused by device overmolding, temperature dependencies, and thermal stress. This technique produces devices that have an extremely stable quiescent Hall output voltage, are immune to thermal stress, and have precise recoverability after temperature cycling. This technique will also slightly degrade the device output repeatability.

The Hall element can be considered as a resistor array similar to a Wheatstone bridge. A large portion of the offset is a result of the mismatching of these resistors. The chopperstabilizing technique cancels the mismatching of the resistors by changing the direction of the current flowing through the Hall plate and Hall voltage measurement taps, while maintaining the Hall-voltage signal that is induced by the external magnetic flux. The signal is, then, captured by a sample-and-hold circuit. Operation. The output of these devices turns ON when a
 magnetic field (north pole) perpendicular to the Hall sensor exceeds the release point threshold (B_{RP}). After turn-ON, the output will source current equal to the device operating current plus a current source ($\mathrm{I}_{\mathrm{GND}(\mathrm{H})}$). When the magnetic field is increased (south pole) above the operate point (B_{OP}), the output will source current equal to the Hall-effect sensor operating current with the current source turned OFF ($\left.\mathrm{I}_{\mathrm{GND}(\mathrm{L})}\right)$. The difference in the magnetic operate and release points is the hysteresis ($\mathrm{B}_{\mathrm{hys}}$) of the device. The hysteresis allows clean switching of the output even in the presence of external mechanical vibration or electrical noise.
Applications. It is strongly recommended that an external bypass capacitor be connected (in close proximity to the Hall sensor) between the supply and ground of the device to reduce both external noise and noise generated by the chopperstabilization technique.

Extensive applications information on magnets and Halleffect sensors is also available in the Allegro Electronic Data
 Book AMS-702 or Application Note 27701 or
www.allegromicro.com
'UA' PACKAGE

PACKAGE DESIGNATOR 'LH'

(fits SC-74A solder-pad layout)

Dimensions in Inches

(for reference only)

Dwg. MA-011-3 in

Dimensions in Millimeters
(controlling dimensions)

Dwg. MA-011-3 mm

NOTES: 1. Tolerances on package height and width represent allowable mold offsets. Dimensions given are measured at the widest point (parting line).
2. Exact body and lead configuration at vendor's option within limits shown.
3. Height does not include mold gate flash.
4. Where no tolerance is specified, dimension is nominal.

3361 AND 3362
 2-WIRE,
 CHOPPER-STABILIZED, HALL-EFFECT SWITCHES

PACKAGE DESIGNATOR 'LT'

(SOT-89/TO-243AA)

Dimensions in Inches
(for reference only)

ds 1, 2, 3, and A - Standard SOT-89 Layout
ds 1, 2, 3, and B - Low-Stress Version
ds 1, 2, and 3 only - Lowest Stress, But Not Self Aligning
Dwg. MA-012-3 in

Dimensions in Millimeters
(controlling dimensions)

Dwg. MA-009-3 mm

Pads 1, 2, 3, and A - Standard SOT-89 Layout
Pads 1, 2, 3, and B - Low-Stress Version
Pads 1, 2, and 3 only - Lowest Stress, But Not Self Aligning

NOTE: Exact body and lead configuration at vendor's option within limits shown.

PACKAGE DESIGNATOR 'UA'

NOTES: 1. Tolerances on package height and width represent allowable mold offsets. Dimensions given are measured at the widest point (parting line).
2. Exact body and lead configuration at vendor's option within limits shown.
3. Height does not include mold gate flash.
4. Recommended minimum PWB hole diameter to clear transition area is $0.035 "(0.89 \mathrm{~mm})$.
5. Where no tolerance is specified, dimension is nominal.

3361 AND 3362
 2-WIRE,
 CHOPPER-STABILIZED, HALL-EFFECT SWITCHES

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

HALL-EFFECT SENSORS SELECTION GUIDE

Partial Part Number	Avail. Oper. Temp.	Characteristics at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				
		BOP(max)	BRP(min)	Bhys(typ)	Features	Notes
HALL-EFFECT UNIPOLAR SWITCHES in order of BOP and Bhys						
3240	E/L	+50	+5.0	10	chopper stabilized	1
3210	E	± 70	± 5.0	7.7	micropower, chopper stabilized	
3361	E	+120	+50	5.0*	2-wire, chopper stabilized	
3362	E	+120	+50	5.0*	2-wire, chopper stabilized	
3161	E	+160	+30	20	2-wire	
3141	E/L	+160	+10	55		
3235	S	+175	+25	15*	output 1	2
		-25	-175	15*	output 2	2
5140	E	+200	+50	55	300 mA output	1,3
3142	E/L	+230	+75	55		
3143	E/L	+340	+165	55		
3144	E/L	+350	+50	55		
3122	E/L	+400	+140	105		
3123	E/L	+440	+180	105		
3121	E/L	+450	+125	105		
3150	J	+40 to +850	-	20	programmable, chopper stabilized	1
HALL-EFFECT LATCHES \& BIPOLAR SWITCHES ${ }^{\dagger}$ in order of BOP and Bhys						
3260	E/L	+30	-30	20	bipolar, chopper stabilized	
3280	E/L	+40	-40	45	chopper stabilized	
3134	E/L	+50	-50	27	bipolar switch	
3133	K/L/S	+75	-75	52	bipolar switch	
3281	E/L	+90	-90	100	chopper stabilized	
3132	K/L/S	+95	-95	52	bipolar switch	
3187	E/L	+150	-150	100*		
3177	S	+150	-150	200		
3625	S	+150	-150	200	900 mA outputs	1,3, 5
3626	S	+150	-150	200	400 mA outputs	1,3,5
3195	E/L	+160	-160	220		1,4
3197	L	+160	-160	230		1
3175	S	+170	-170	200		
3188	E/L	+180	-180	200*		
3283	E/L	+180	-180	300	chopper stabilized	
3189	E/L	+230	-230	100^{*}		
3275	S	+250	-250	100*		5
3185	E/L	+270	-270	$340 *$		

Operating Temperature Ranges:
$\mathrm{S}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{E}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{J}=-40^{\circ} \mathrm{C}$ to $+115^{\circ} \mathrm{C}, \mathrm{K}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{L}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Notes 1.Protected.
2.Output 1 switches on south pole, output 2 switches on north pole for 2-phase, bifilar-wound, unipolar-driven brushless dc motor control.
3. Power driver output.
4.Active pull down.
5.Complementary outputs for 2-phase bifilar-wound, unipolar-driven brushless dc motor control.

* Minimum.
\dagger Latches will not switch on removal of magnetic field; bipolar switches may switch on removal of field but require field reversal for reliable operation over operating temperature range.

[^0]: Always order by complete part number: the prefix ' A ' + the basic four-digit part number + a suffix to indicate operating temperature range (E) + a two-letter suffix to indicate package style, e.g., A3361ELH.

