

VCSO BASED FEC CLOCK PLL

GENERAL DESCRIPTION

The M2006-12 is a VCSO (Voltage Controlled SAW

Oscillator) based clock generator PLL designed for clock frequency translation and jitter attenuation. Clock multiplication ratios (including forward and inverse FEC) are pin-selected from pre-programming look-up tables. Includes Hitless Switching and Phase Build-out to

enable SONET (GR-253) / SDH (G.813) MTIE and TDEV compliance during reference clock reselection. Hitless Switching (HS) engages when a 4ns or greater clock phase change is detected.

This phase-change triggered implementation of HS is not recommended when using an unstable reference (more than 1ns jitter pk-to-pk) or when the resulting phase detector frequency is less than 5MHz.

FEATURES

- ◆ Similar to the M2006-02 and pin-compatible but adds Hitless Switching and Phase Build-out functions
- Includes APC pin for Phase Build-out function (for absorption of the input phase change)
- Pin-selectable PLL divider ratios support forward and inverse FEC ratio translation
- Supports input reference and VCSO frequencies up to 700MHz (Specify VCSO frequency at time of order)
- Low phase jitter < 0.5 ps rms typical (12kHz to 20MHz or 50kHz to 80MHz)
- ◆ Commercial and Industrial temperature grades
- ♦ Single 3.3V power supply
- ◆ Small 9 x 9 mm SMT (surface mount) package

PIN ASSIGNMENT (9 x 9 mm SMT)

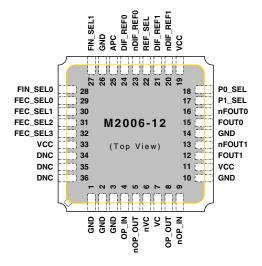


Figure 1: Pin Assignment

Example I/O Clock Frequency Combinations Using M2006-12-622.0800 and Inverse FEC Ratios

FEC PLL Ratio Mfec / Rfec	Base Input Rate ¹ (MHz)	Output Clock (either output) MHz
1/1	622.0800	622.08
238/255	666.5143	022.06 0r
237/255	669.3266	155.52
236/255	672.1627	100.02

Table 1: Example I/O Clock Frequency Combinations

Note 1: Input reference clock can be the base frequency shown divided by "Mfin" (as shown in Table 3 on pg. 3).

SIMPLIFIED BLOCK DIAGRAM

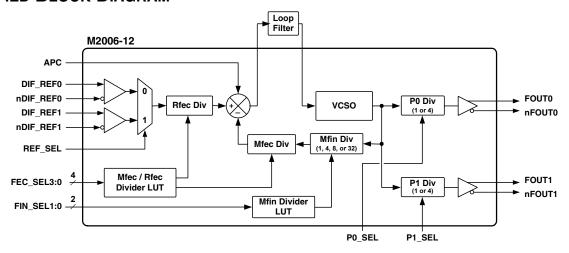
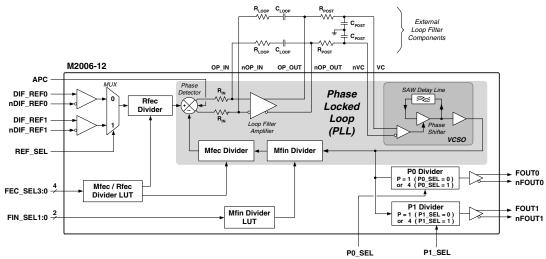



Figure 2: Simplified Block Diagram

M2006-12 Datasheet Rev 1.0 Revised 13Jul2004

DETAILED BLOCK DIAGRAM

PIN DESCRIPTIONS

Figure 3: Detailed Block Diagram

Number	Name	I/O	Configuration	Description
1, 2, 3, 10, 14, 26	GND	Ground		Power supply ground connections.
4 9	OP_IN nOP_IN	Input	_	
5 8	nOP_OUT OP_OUT	Output	_	External loop filter connections. See Figure 4.
6 7	nVC VC	Input		
11, 19, 33	VCC	Power		Power supply connection, connect to +3.3V.
12, 13 15, 16	FOUT1, nFOUT1 FOUT0, nFOUT0	Output	No internal terminator	Clock output pairs. Differential LVPECL.
17 18	P1_SEL P0_SEL	Input	Internal pull-down resistor ¹	P Divider controls. LVCMOS/LVTTL. (For P0_SEL, P1_SEL, see Table 5 on pg. 3.
20	nDIF_REF1	la a d	Internal pull-UP resistor ¹	Reference clock input pair 1.
21	DIF_REF1	Input	Internal pull-down resistor ¹	Differential LVPECL or LVDS.
22	REF_SEL	Input	Internal pull-down resistor ¹	Reference clock input selection. LVCMOS/LVTTL: Logic 1 selects DIF_REF1, nDIF_REF1. Logic 0 selects DIF_REF0, nDIF_REF0.
23	nDIF_REF0	11	Internal pull-UP resistor ¹	Reference clock input pair 0.
24	DIF_REF0	Input	Internal pull-down resistor ¹	Differential LVPECL or LVDS.
25	APC	Input	Internal pull-down resistor ¹	Automatic Phase Compensation (phase build-out). LVCMOS/LVTTL: Logic 1 - Device absorbs input phase transients. Logic 0 - Device doesn't absorb transients.
27 28	FIN_SEL1 FIN_SEL0	Input	Internal pull-down resistor ¹	Input clock frequency selection. LVCMOS/LVTTL. (For FIN_SEL1:0, see Table 3 on pg. 3.
29 30 31 32	FEC_SEL0 FEC_SEL1 FEC_SEL2 FEC_SEL3	Input	Internal pull-UP resistor ¹	FEC PLL divider ratio selection. LVCMOS/LVTTL. (For FEC_SEL3:0, see Table 4 on pg. 3.)
34, 35, 36	DNC		Do Not Connect.	Internal nodes. Connection to these pins can cause erratic device operation.

Table 2: Pin Descriptions

PLL DIVIDER LOOK-UP TABLES

Mfin (Frequency Input) Divider Look-Up Table (LUT)

The FIN_SEL1:0 pins select the feedback divider value ("Mfin").

	FIN_SEL1:0		Mfin Value	M2006-12-622.0800 Sample Ref. Freq. (MHz)				
	1	1	1	622.08 ²				
	1	0	4	155.52				
	0	1	8	77.76				
ĺ	0	0	32	19.44				

Table 3: Mfin (Frequency Input) Divider Look-Up Table (LUT)

Note 1: Example with M2006-12-622.0800 and "Non-FEC ratio" selection made from Table 4 (FEC_SEL2=1).

Note 2: Do not use with FEC_SEL3:0=1100 or 1101.

FEC PLL Ratio Dividers Look-up Table (LUT)

The FEC_SEL3:0 pins select the FEC feedback and reference divider values Mfec and Rfec.

FE	FEC_SEL3:0 Mfec Rfec ¹		Rfec ¹	Description			
0	0	0	0	236	255	Inverse FEC ratio	
0	0	0	1	79	85	Inverse FEC ratio, equivalent to 237/255	
0	0	1	0	14	15	Inverse FEC ratio, equivalent to 238/255	
0	0	1	1	239	255	Inverse FEC ratio	
0	1	0	0	236	236	Non-FEC ratio, complements 0000 or 1000 ²	
0	1	0	1	79	79	Non-FEC ratio, complements 0001 or 1001 ²	
0	1	1	0	14	14	Non-FEC ratio, complements 0010 or 1010 ²	
0	1	1	1	239	239	Non-FEC ratio, complements 0011 or 1011 ²	
1	0	0	0	255	236	FEC ratio (OTU3)	
1	0	0	1	85	79	FEC ratio, equivalent to 255/237 (OTU2)	
1	0	1	0	15	14	FEC ratio, equivalent to 255/238 (OTU1)	
1	0	1	1	255	239	FEC ratio	
1	1	0	0	1	1	Non-FEC ratio ³ Do not use these two settings	
1	1	0	1	2	2	with FIN_SEL1:0=11	
1	1	1	0	4	4	Non-FEC ratio ³	
1	1	1	1	8	8	NOITE CIANO	

Table 4: FEC PLL Ratio Dividers Look-up Table (LUT)

Note 1: The phase detector frequency (Fpd, which is calculated as Fref/Rfec) should be above 1.5 MHz to prevent spurs on the output clock. To ensure the PLL remains locked when using a recovered clock (such as in loop timing mode), the phase detector frequency should ideally be about 20MHz, or at least less than 50 MHz.

Note 2: These table selections use the same or similar Mfec divider values as the complementary selections noted. This allows the use of the same loop filter component values and resulting PLL loop bandwidth and damping factor values for complementary selections. Complementary selections can be actively switched in a given application.

Note 3: In non-FEC applications, these settings can be used optimize phase detector frequency or to actively change PLL loop bandwidth.

Post-PLL Dividers

The M2006-12 also features two post-PLL dividers, one for each output pair. The "P1" divider is for FOUT1 and nFOUT1; the "P0" divider is for FOUT0 and nFOUT0.

Each divides the VCSO frequency to produce one of two output frequencies (1/4 or 1/1 of the VCSO frequency). The P1_SEL and P0_SEL pins each select the value for their corresponding divider.

P1_SEL, P0_SEL	P Value	M2006-12-622.0800 Output Frequency (MHz)
1	4	155.52
0	1	622.08

Table 5: P Divider Selector, Values, and Frequencies

FUNCTIONAL DESCRIPTION

The M2006-12 is a PLL (Phase Locked Loop) based clock generator that generates output clocks synchronized to one of two selectable input reference clocks.

An internal high "Q" SAW filter provides low jitter signal performance and controls the output frequency of the VCSO (Voltage Controlled SAW Oscillator).

Configurable FEC feedback and reference dividers (the "Mfec Divider" and "Rfec Divider") provide the multiplication ratios necessary to accomodate clock translation for both forward and inverse Forward Error Correction.

In addition, a configurable feedback divider (labeled "Mfin Divider") provides the broader division options needed to accomodate various reference clock frequencies.

For example, the M2006-12-622.0800 (see "Ordering Information" on pg. 8) has a 622.08MHz VCSO frequency:

- The inverse FEC PLL ratios (at top of Table 4) enable the M2006-12-622.0800 to accept "base" input reference frequencies of: 663.7255, 666.5143, 669.3266, 672.1627, and 622.08MHz.
- The Mfin feedback divider enables the actual input reference clock to be the "base" input frequency divided by 1, 4, 8, or 32. Therefore, for the base input frequency of 622.08MHz, the actual input reference clock frequencies can be: 622.08, 155.52, 77.76, and 19.44MHz. (See Table 3 on pg. 3.)

The PLL

The PLL uses a phase detector and configurable dividers to synchronize the output of the VCSO with selected reference clock.

The "Mfin Divider" and "Mfec Divider" divide the VCSO frequency, feeding the result into the phase detector.

The selected input reference clock is divided by the "Rfec Divider". The result is fed into the other input of the phase detector.

The phase detector compares its two inputs. It then outputs pulses to the loop filter as needed to increase or decrease the VCSO frequency and thereby match and lock the divider output's frequency and phase to those of the input reference clock.

Due to the narrow tuning range of the VCSO (±200ppm), appropriate selection of all of the following are required for the PLL be able to lock: VCSO center frequency, input frequency, and divider selections.

Relationship Among Frequencies and Dividers

The VCSO center frequency must be specified at time of order. The relationship between the VCSO (Fvcso) frequency, the Mfin divider, the Mfec divider, the Rfec divider, and the input reference frequency (Fin) is:

$$Fvcso = Fin \times Mfin \times \frac{Mfec}{Rfec}$$

As an example, for the M2006-12-622.0800, the non-FEC and inverse-FEC PLL ratios in Table 4 enable use with these corresponding input reference frequencies:

M2006-12-622.0800 VCSO Clock Frequency (MHz) ÷	FEC	R	atio	M2006-12-622.0800 Base Input Ref. = Frequency (MHz) ¹
	1	/	1	622.0800
622.08	238	/	255	666.5143
022.00	237	/	255	669.3266
-	236	/	255	672.1627

Table 6: Example FEC PLL Rations and Input Reference Frequencies
Note 1: Input reference clock ("Fin") can be the base frequency
shown divided by "Mfin" (as shown in Table 3 on pg. 3).

Maintaining PLL Lock:

The narrow tuning range of the VCSO requires that the input reference frequency must remain suitable for the current look-up table selection. For example, when switching between "Inverse FEC ratio" and "Non-FEC ratio" look-up table selections (see Table 4 on pg. 3), the input reference frequency must change accordingly in order for the PLL to lock.

An out-of-lock condition due to an inappropriate configuration will typically result in the VCSO operating at its lower or upper frequency rail, which is approximately 200ppm above or below the nominal VCSO center frequency.

See also "Hitless Switching (HS)" (next) for an additional issue with regard to phase locking.

Hitless Switching (HS)

The M2006-12 includes a proprietary Hitless Switching (HS) feature that prevents excessive phase transients of the output clocks upon input reference rearrangement. Upon the occurance of an input reference phase change, or phase transient, PLL bandwidth is lowered by the HS function. This limits the rate of phase change in the output clocks. With proper configuration of the external loop filter, the output clocks will comply with MTIE (maximum time interval error) specifications for GR-253 (SONET) and ITU G.813 (SDH) during input reference clock changes.

The HS function uses a phase error detector at the phase detector to detect a clock phase change. During normal operation with a stable reference clock, the PLL will be frequency locked and phase locked, resulting in very little error at the phase detector (<1 ns). Upon the selection of a new input reference clock at a different clock phase, a phase error will occur at the phase detector. The HS function is triggered with a phase error greater than 4 ns, upon which a narrow PLL bandwidth is applied. When the PLL locks to within 2 ns error at the phase detector, wide bandwidth (normal) operation is resumed.

The HS function is not suitable for situations in which an unstable reference is used. Under normal conditions the reference clock jitter should not induce phase jitter at the phase detector beyond 2 ns. (This includes when subjecting the system to jitter tolerance compliance testing.) Because of this, the M2006-12 is not recommended for use with some Stratum DPLL clock sources, or with unstable recovered network clocks intended for loop timing configuration. It is also not recommended for complex FEC ratios where the phase detector is operated at less 1 MHz. For these applications the M2006-02 is suggested. The M2006-02 is identical to the M2006-12 except that it does not include the HS function (nor the APC pin and phase build-out function, which are discussed in the following section).

Automatic Phase Compensation (APC) Pin

The M2006-12 also includes a phase build-out function that can be selectively enabled by asserting the APC input (pin 25) to logic 1. The phase build-out function works in conjunction with the HS function. When the APC pin is asserted, the phase build-out function enables the PLL to absorb most of the phase change of the input clock which reduces re-lock time and the generation of wander. (Wander is created in this case by the generation of extra output clock cycles.)

When the APC pin is asserted, the phase build-out function is triggered by same >4 ns phase transient (at the phase detector) that triggers the HS function. Once triggered, a new VCSO clock edge is selected for the phase comparator feedback input. (The clock edge selected is the one closest in phase to the new input clock phase.) The residual phase detector phase error following reselection is approximately 3-to-4 ns. The narrow bandwidth selected by the HS function minimizes VCSO drifting and switch transients during the process.

It is recommended that the APC pin remain low when the phase detector frequency is less than 4 MHz. Otherwise, the M2006-12 may have difficulty locking to reference upon power-up.

Outputs

The M2006-12 provides a total of two differential LVPECL output pairs: FOUT1 and FOUT0. Because each output pair has its own P divider, the FOUT1 pair and the FOUT0 can output the two different frequencies at the same time. For example, FOUT1 can output 155.52MHz while FOUT0 outputs 622.08MHz.

Any unused output should be left unconnected (floating) in the system application. This will minimize output switching current and therefore minimize noise modulation of the VCSO.

External Loop Filter

To provide stable PLL operation, and thereby a low jitter output clock, the M2006-12 requires the use of an external loop filter. This is provided via the provided filter pins (see Figure 4).

Due to the differential signal path design, the implementation requires two identical complementary RC filters as shown here.

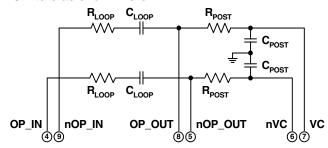


Figure 4: External Loop Filter

PLL bandwidth is affected by the "Mfec" value and the "Mfin" value, as well as the VCSO frequency.

The various "Non-FEC ratio" settings can be used to actively change PLL loop bandwidth in a given application. See "FEC PLL Ratio Dividers Look-up Table (LUT)" on pg. 3.

Consult factory for external loop filter component values.

PLL Simulator Tool Available

A free PC software utility is available on the ICS website (www.icst.com). The M2000 Timing Modules PLL Simulator is a downloadable application that simulates PLL jitter and wander transfer characteristics. This enables the user to set appropriate external loop component values in a given application.

Go to the SAW PLL Simulator Software web page at www.icst.com/products/calculators/m2000filterSWdesc.htm

ABSOLUTE MAXIMUM RATINGS¹

Symbol	Parameter	Rating	Unit
V _I	Inputs	-0.5 to $V_{\rm CC}$ +0.5	٧
V _O	Outputs	-0.5 to V _{CC} +0.5	V
V _{CC}	Power Supply Voltage	4.6	V
T _s	Storage Temperature	-45 to +100	°C

Table 7: Absolute Maximum Ratings

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in Recommended Conditions of Operation, DC Characteristics, or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

RECOMMENDED CONDITIONS OF OPERATION

Symbol	Parameter		Min	Тур	Max	Unit
V _{cc}	Positive Supply Voltage		3.135	3.3	3.465	٧
T _A	Ambient Operating Temperatur					0.0
		Commercial	0		+70	°C
		Industrial	-40		+85	°C

Table 8: Recommended Conditions of Operation

ELECTRICAL SPECIFICATIONS

DC Characteristics

Unless stated otherwise, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0$ °C to +70 °C (commercial), $T_A = -40$ °C to +85 °C (industrial), $F_{VCSO} = F_{OUT} = 622-675$ MHz, LVPECL outputs terminated with 50Ω to V_{CC} - 2V

	Symbol	Parameter		Min	Тур	Max	Unit	Conditions
Power Supply	V _{CC}	Positive Supply Voltage		3.135	3.3	3.465	٧	
	I _{cc}	Power Supply Current			175	225	mA	_
All	V _{P-P}	Peak to Peak Input Voltage	DIE DEEC DIE DEEC	0.15			٧	
Differential	$V_{\rm CMR}$	Common Mode Input	DIF_REF0, nDIF_REF0, DIF_REF1, nDIF_REF1	0.5		V _{cc} 85	٧	
Inputs	C _{IN}	Input Capacitance	_ , _			4	pF	
Differential	I _{IH}	Input High Current (Pull-down)				150	μΑ	$V_{CC} = V_{IN} =$
Inputs with Pull-down	I _{IL}	Input Low Current (Pull-down)	DIF_REF0, DIF_REF1	-5			μΑ	- 3.456V
Pull-down	R _{pulldown}	Internal Pull-down Resistance			50		$k\Omega$	-
Differential	I _{IH}	Input High Current (Pull-up)				5	μΑ	V _{IN} =
Inputs with Pull-up	I _{IL}	Input Low Current (Pull-up)	nDIF_REF0, nDIF_REF1	-150			μΑ	- 0 to 3.456V
i uli-up	R _{pullup}	Internal Pull-up Resistance			50		kΩ	_
All LVCMOS	V _{IH}	Input High Voltage	APC, REF_SEL, FIN_SEL1, FIN_SEL0, FEC_SEL3, FEC_SEL2, FEC_SEL1, FEC_SEL0, P1_SEL, P0_SEL	2		$V_{cc} + 0.3$	٧	
/ LVTTL	V _{IL}	Input Low Voltage		-0.3		0.8	٧	
Inputs	C _{IN}	Input Capacitance				4	pF	
LVCMOS /	I _{IH}	Input High Current (Pull-down)	DEE 051 51N 0514 51N 0510			150	μΑ	V _{CC} = V _{IN} = - 3.456V
LVTTL Inputs with	I _{IL}	Input Low Current (Pull-down)	REF_SEL, FIN_SEL1, FIN_SEL0, P1_SEL, P0_SEL	-5			μΑ	- 3.430V
Pull-down	R _{pulldown}	Internal Pull-down Resistance			50		kΩ	
LVCMOS /	I _{IH}	Input High Current (Pull-up)	FF0 0F10 FF0 0F10			5	μΑ	$V_{CC} = 3.456V$
LVTTL Inputs with	I _{IL}	Input Low Current (Pull-up)	FEC_SEL3, FEC_SEL2, FEC_SEL1, FEC_SEL0	-150			μΑ	$-V_{IN} = 0 V$
Pull-up	R _{pullup}	Internal Pull-up Resistance	_ , _		50		kΩ	
Differential	V_{OH}	Output High Voltage	FOUT0, nFOUT0,	V _{cc} - 1.4		V _{cc} - 1.0	٧	
Outputs	V _{OL}	Output Low Voltage	FOUT1, nFOUT1	V _{cc} - 2.0		V _{cc} - 1.7	٧	
	V _{P-P}	Peak to Peak Output Voltage 1	,	0.4		0.85	٧	

Note 1: Single-ended measurement. See Figure 5, Output Rise and Fall Time, on pg. 7.

Table 9: DC Characteristics

M2006-12 Datasheet Rev 1.0 6 of 8 Revised 13Jul2004

ELECTRICAL SPECIFICATIONS (CONTINUED)

AC Characteristics

Unless stated otherwise, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0$ °C to +70 °C (commercial), $T_A = -40$ °C to +85 °C (industrial), $F_{VCSO} = F_{OUT} = 622-675$ MHz, LVPECL outputs terminated with 50Ω to $V_{CC} - 2V$

	Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions
Input Frequency Range	F _{IN}	Input Frequency	DIF_REF0, nDIF_REF0, DIF_REF1, nDIF_REF1	10		700	MHz	
Output Frequency	F _{FOUT}	Output Frequency Range	FOUT0, nFOUT0, FOUT1, nFOUT1	100		700	MHz	
	APR	VCSO Pull-Range	Commercial	±120	±200		ppm	
	71111	VOOO I dii Hange	Industrial	±50	±150		ppm	
D	K_{VCO}	VCO Gain			800		kHz/V	
PLL Loop Constants ¹	R _{IN}	Internal Loop Resistor			50		kΩ	
Constants	BW _{VCSO}	VCSO Bandwidth			700		kHz	
	Φn	Single Side Band	1kHz Offset		-72		dBc/Hz	10 44 MH-
Phase Noise		Phase Noise	10kHz Offset		-94		dBc/Hz	Fin=19.44 MHz Mfin=32, Mfec=1, Rfec=1
and Jitter	,	@622.08MHz	100kHz Offset		-123		dBc/Hz	
G. 1 G. 1 G. 1	J(t)	Jitter (rms)	12kHz to 20MHz		0.5		ps rms	
		@622.08MHz	50kHz to 80MHz		0.5		ps rms	
	t _{PW}	Output Duty Cycle ² FOUT0, nFOUT0,	P0, P1 = 1	40	50	60	%	
		FOUT1, nFOUT1	P0, P1 = 4	45	50	55	%	
	t _R	Output Rise Time ²	FOUT0, nFOUT0,	200	450	500	ps	20% to 80%
	t _F	Output Fall Time ²	FOUT1, nFOUT1	200	450	500	ps	20% to 80%

Table 10: AC Characteristics

Note 1: Parameters needed for PLL Simulator software; see PLL Simulator Tool Available on pg. 5. Note 2: See Parameter Measurement Information on pg. 7.

PARAMETER MEASUREMENT INFORMATION

Output Rise and Fall Time

Clock Output $\frac{20\%}{t_{\rm B}}$

Figure 5: Output Rise and Fall Time

Output Duty Cycle

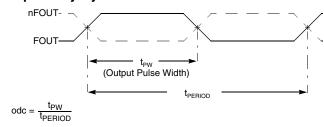
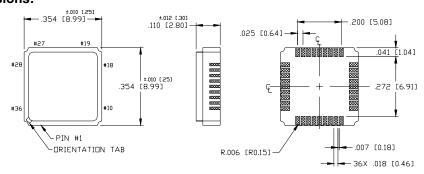



Figure 6: Output Duty Cycle

DEVICE PACKAGE - 9 x 9mm CERAMIC LEADLESS CHIP CARRIER Mechanical Dimensions:

Refer to the M2006-12 product web page at www.icst.com/products/summary/m2006-12.htm for application notes, including recommended PCB footprint, solder mask, and furnace profile.

NOTES:

- 1. DIMENSIONS ARE IN INCHES, DIMENSIONS
- IN [] ARE MM.
- 2. UNLESS OTHERWISE SPECIFIED ALL DIMENSIONS ARE $\pm .005$ [.13]

Figure 7: Device Package - 9 x 9mm Ceramic Leadless Chip Carrier

ORDERING INFORMATION

Part Numbering Scheme

Part Number: Device Number	M2006-12-xxx.	xxxx
Temperature		
VCSO Frequency (MHz) See Table 11, right. Consult ICS for c	ther frequencies.	

Figure 8: Part Numbering Scheme

Standard VCSO Output Frequencies (MHz)* Consult ICS for the availability of other VCSO frequencies

622.0800	669.3120
625.0000	669.3266
627.3296	669.6429
644.5313	670.8386
666.5143	672.1600
669.1281	690.5692

Table 11: Standard VCSO Output Frequencies (MHz)

Note *: Fout can equal Fvcso divided by: 1 or 4

Consult ICS for the availability of other PLL frequencies.

Example Part Numbers

PLL Frequency (MHz)	Temperature	Order Part Number
622.08	commercial	M2006-12- 622.0800
	industrial	M2006-12I 622.0800
625.00	commercial	M2006-12 - 625.0000
	industrial	M2006-12I 625.0000
669.3266	commercial	M2006-12 - 669.3266
	industrial	M2006-12I 669.3266
669.6429	commercial	M2006-12 - 669.6429
	industrial	M2006-12I 669.6429

Table 12: Example Part Numbers

Consult ICS for the availability of other PLL frequencies.

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.