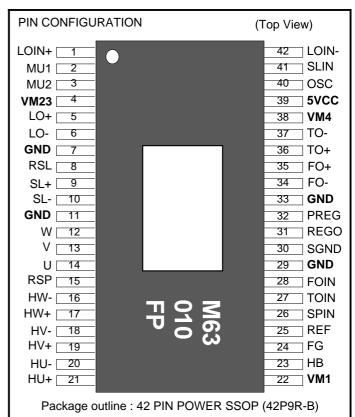
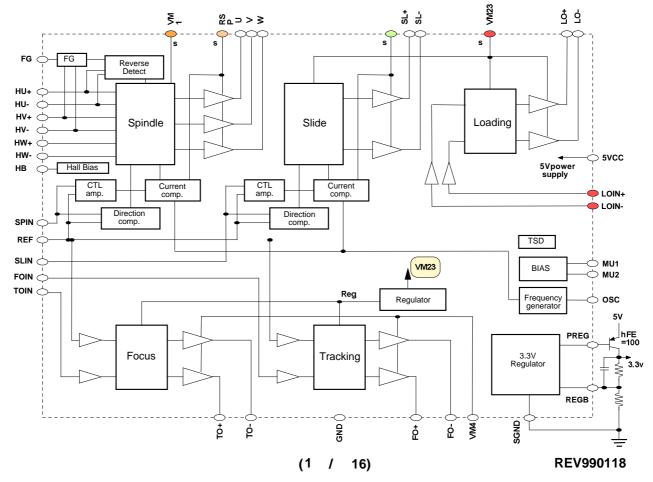
Preliminary

MITSUBISHI SEMICONDUCTORS M63010FP SPINDLE MOTOR AND 4CH ACTUATOR DRIVER


<FEATURES>


This IC is 1 chip driver IC for spindle motor and 4 channel actuators. All of the motor and actuator of optical disk drive system (CD-ROM etc.) can be drived by only this IC. This IC has a direct PWM control system for Spindle and Slide channels drive due to reducing IC power dissipation. This IC has three voltage supply terminals (for Spindle, Slide/Loading and Focus/Tracking), and these voltage supply can be set separately.

Further more this IC has FG amplifier, thermal shut down circuit, standby circuit, channel select function, reverse rotation detect circuit.

<APPLICATION>

CD-ROM, DVD, DVD-ROM, DVD-RAM , Optical disc related system,etc

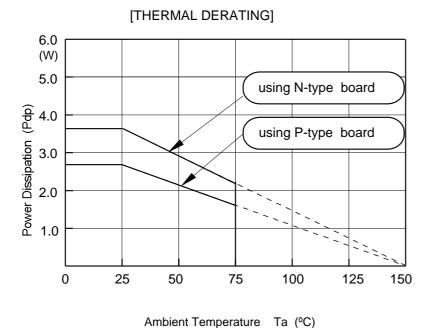
<BLOCK DIAGRAM>

<PIN FUNCTION>

TERMINAL	SYMBOL	TERMINAL FUNCTION	TERMINAL	SYMBOL	TERMINAL FUNCTION
1	LOIN+	Loading control input(+)	42	LOIN-	Loading control input(-)
2	MU1	mute 1	41	SLIN	Slide control voltage input
3	MU2	mute 2	40	OSC	PWM carrier oscilation set
4	VM23	Motor Power Suppry 3 (for Slide/Loading)	39	5VCC	5V Power Suppry
5	LO+	Loading non-inverted output	38	VM4	Motor Power Suppry 4 (for FS and TS)
6	LO-	Loading inverted output	37	TO-	Tracking inverted output
7	GND	GND	36	TO+	Tracking non-inverted output
8	RSL	Slide current sense	35	FO+	Focus non-inverted output
9	SL+	Slide non-inverted output	34	FO-	Focus inverted output
10	SL-	Slide inverted output	33	GND	GND
11	GND	GND	32	PREG	Regulator output
12	W	Motor drive output W	31	REGO	Regulator reference voltage output
13	V	Motor drive output V	30	SGND	Regulator GND
14	U	Motor drive output U	29	GND	GND
15	RSP	Spindle current sensie	28	FOIN	Focus control voltage input
16	HW-	HW- sensor amp. input	27	TOIN	Tracking control voltage input
17	HW+	HW+ sensor amp. input	26	SPIN	Spindle control voltage input
18	HV-	HV- sensor amp. input	25	REF	Reference voltage input
19	HV+	HV+ sensor amp. input	24	FG	Frequency generator output
20	HU-	HU- sensor amp. input	23	HB	Bias for Hall Sensor
21	HU+	HU+ sensor amp. input	22	VM1	Motor Power Suppry 1 (for Spindle)

<ABSOLUTE MAXIMUM RATING> (Ta=25°C)

SYMBOL	PARAMETER	CONDITIONS	RATING	Unit
5VCC	5V power supply		7	V
VM1	Motor power supply 1	Spindle power supply	15	V
VM23	Motor power supply 23	Slide and Loading power supply	15	V
VM4	Motor power supply 4	Focus and Tracking power supply	15	V
IoA	Motor Output Current A	Focus,Tracking and Loading output current *note 1	1.0	А
IoB	Motor Output Current B	Spindle and Slide output current *note 1	1.2	А
Vin	Maximum input voltage of terminals	MU1,MU2,Hw-,Hw+,Hv-,Hv+,Hu-,Hu+,REF, SPIN,TOIN,FOIN,OSC,SLIN,LOIN-,LOIN+	0 to 5VCC	V
Pt	Power dissipation	Free Air and on the grass epoxy board	2.6	W
К	Thermal derating	Free Air and on the grass epoxy board	20.8	mW / ºC
Tj	Junction temperature		150	٥C
Topr	Operating temperature		-20 to +75	°C
Tstg	Storage temperature		-40 to +150	°C


*note1 ; The ICs must be operated within the Pt (power dissipation) or the area of safety operation The spindle and slide output terminal is needed external shottky diode between each output and GND when it is used above 0.6A. Discription(IoA) is case of with external shottky diode.

<RECOMMENDED OPERATING CONDITIONS> (Ta=25°C)

SYMBOL	PARAMETER	minimum	typical	maximum	Unit
VM1	VM1 power supply(for Spindle)	6	12	13.2	V
VM23	VM23 power supply(for Slide and Loading)	6	12	13.2	V
VM4	VM4 power supply(for Focus and Tracking)	4.5	5	13.2	V
loA	Spindle and Slide Output Current *note2		0.5	1.0	А
loB	Focus, Tracking and Loading Output Current		0.5	0.8	А
Fosc	Motor power supply 2	30		120	KHz

*note2

The spindle and slide output terminal is needed external shottky diode between each output and GND when it is used above 0.6A. Discription(IoA) is case of with external shottky diode.

This IC's package is POWER-SSOP, so improving the board on which the IC is mounted enables a large power dissipation without a heat sink.

For example, using an 1 layer glass epoxy resin board, the IC's power dissipation is 2.6W at least. And it comes to 3.6W by using an improved 2 layer board.

The information of the N, P type board is shown in attached.

[ELECTRICAL CHARACTERISTICS]

Comm	ion	(Ta=25°C, 5VCC=VM4=5V,	/M1=VM2	3=12V unles	ss otherwis	e noted.)
SYMBOL	PARAMETER	CONDITIONS		LIMITS		Unit
01111D02		CONDITIONS	MIN	TYP	MAX	Unit
lcc1	Supply current	5VCC,VM1, VM23, VM4 current		60	78	mA
lcc2	Sleep current	5VCC,VM1, VM23, VM4 current under Sleep (MU1 = MU2 =0V).		0	30	μA
Fosc	PWM carrier frequency	OSC : with 180pF		110		KHz
Vreg	3.3V regulator output voltage	with -300mA load (Reference to application circuit)	3.2	3.3	3.4	V
VinREF	REF input voltage range		1.0		3.3	V
linREF	REF input voltage range	VREF=1.65V	-10	. <u> </u>	+10	μA
VMULO	MUTE terminal low voltage	MU1,MU2			0.8	V
VMUHI	MUTE terminal high voltage	MU1,MU2	3.0			V
IMU	Mute terminal input current	MU1,MU2 at 5V input voltage			500	μA

[ELECTRICAL CHARACTERISTICS]

-

Spindle |

(Ta=25°C, 5VCC=VM4=5V,VM1=VM23=12V unless otherwise noted.)

					L	IMITS	
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	Unit	
Vdyc1	Dynamic range of output	lo=0.5 [A]		10.3	10.8		V
Vdead1-		SPIN <ref< td=""><td>[REVERSE]</td><td>-80</td><td>-40</td><td>0</td><td>mV</td></ref<>	[REVERSE]	-80	-40	0	mV
Vdead1+	Control voltage dead zone 1	REF <spin< td=""><td>[FORWARD]</td><td>0</td><td>+40</td><td>+80</td><td>mV</td></spin<>	[FORWARD]	0	+40	+80	mV
Vin1	Control voltage input range 1	SPIN		0		5	V
Gvo1	Control gain 1	Gio1=Gvo1/ Rs [A/V]		0.85	1.0	1.15	V/V
Vlim1F	Control limit 1F	llim1F=Vlim1F/ Rs [A]	[FORWARD]	0.4	0.5	0.6	V
Vlim1R	Control limit 1R	llim1R=Vlim1R/ Rs [A]	[REVERSE]	0.27	0.34	0.41	V
VHcom	Hall sensor amp. common mode input range	Hu+,Hu-,Hv+,Hv-,Hw+ ,H	w-	1.3		3.7	V
VHmin	Hall sensor ampinput signal leve	Hu+,Hu-,Hv+,Hv-,Hw+ ,H	w-	60			mVp-p
VHB	HB output voltage	at Load current (IHB)=10n	nA	0.6	0.85	1.2	V
IHB	HB terminal sink current	MU1=MU2=0V or MU1=MU2 MU1=5V/MU2=0V	₽=5V or			30	mA

Slic	le		(Ta=25°C, 5VCC=VM4=5V,VM1=VM23=12V unless otherwise noted.)							
	D 4 D		CONDITIONS			LIMITS				
SYMBOL PARAMETER			DITIONS	MIN	TYP	MAX	- Unit			
Vdyc2			lo=0.5 [A]	at VM23=5[V]	3.3	3.8		V		
Dynamic range of output		10-0.3 [A]	at VM23=12[V]	10.3	10.8					
Vdead2-	Control voltage dead zone 2		SLIN < REF		-60	-30	0	mV		
Vdead2+			REF < SLIN		0	+30	+60	mV		
Vin2	Control volta	age input range 2	SLIN	0		5	V			
Gvo2	Control gai	n 2	Gio2=Gvo2/ Rs [A/V]		0.85	1.0	1.15	V/V		
Vlim2	Control lim	it 2	llim2=Vlim2/ Rs	s [A]	0.43	0.5	0.58	V		
Tdon	Output turr	n-on delay				1.0	2.0	µsec		
Tdoff	Output turr	o-off delay				2.0	3.5	µsec		
Tdsw	Output swi	tching delay				3.0	5.0	µsec		
lleak	Output leal	current	MU1=MU2=5v,M	MU1=MU2=5v,MU1=MU2=0v			100	μA		

(5 / 16)

[ELECTRICAL CHARACTERISTICS]

Loading

(Ta=25°C, 5VCC=VM4=5V,VM1=VM23=12V unless otherwise noted.)

				LIMITS			
SYMBOL	PARAMETER	CONDI	TIONS	MIN	TYP	MAX	Unit
Vdyc3			VM23=5[V]	3.3	3.8		V
	Dynamic range of output	lo=0.5[A]	VM23=12[V]	10.3	10.8		
Vin3	Control voltage input range3	LOIN+,LOIN-	LOIN+,LOIN-			5	V
Gvo3	Control gain 3	(LO+) – (LO-) (LOIN+) – (LOIN-)		16.6	18	19.3	dB
Voff1	Output offset voltage	(LO+) – (LO-) at LC			0	+60	mV

Focus / Tracking

(Ta=25°C, 5VCC=VM4=5V,VM1=VM23=12V unless otherwise noted.)

				LIMITS			
SYMBOL	PARAMETER	CONDI	TIONS	MIN	TYP	MAX	Unit
Vdvc4		lo=0.5[A]	VM4=5[V]	3.8	4.2		V
Vdyc4 Dynamic range of output		VM1=12[V]	VM4=12[V]	7.1	7.6		
Vin4	Control voltage input range4	FOIN,TOIN		0		5	V
Gvo4	Control gain 4	(FO+) –(FO-) FOIN–REF	(TO+) –(TO-) TOIN–REF	12.5	14	15.2	dB
Voff2	Output offset voltage	(FO+) –(FO-) at R (TO+) –(TO-) at R		-35	0	+35	mV

[THERMAL CHARACTERISTICS]

		FUNCTION S	TART TEMPER	ATURE OF IC	FUNCTION S		TURE OF IC	
SYMBOL	PARAMETER	MIN	TYP	MAX	MIN	TYP	MAX	Unit
TSD	Thermal Shut Down		160			130		°C

Channel select function

	Logic control				Drive	channel		
	MU1	MU2	Loading	Slide	Focus	Tracking	Spindle	Regulator-
SELECT4	Н	Н	On	On	On	On	On	On
SELECT3	L	Н	On	Off	Off	Off	Off	Off
SELECT2	Н	L	On	On	Off	Off	Off	On
SELECT1	L	L	Off	Off	Off	Off	Off	Off

This IC has two MUTE terminal (MU1 and MU2).

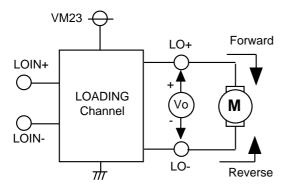
It is possible to control ON / OFF of each channel by external logic inputs.

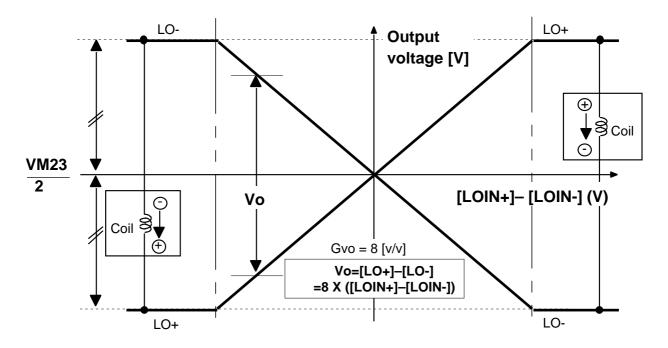
It has four kinds of function for channel select. In case of SELECT1, the bias of all circuit becomes OFF.

Therefore, this mode is available in order to reduce the power dissipation when the waiting mode.

In case of SELECT2, the bias of the loading, the slide and the regulator amplifier circuit becomes ON. In case of SELECT3, it is possible to make OFF the loading channel only.

In case of SELECT4, the bias of all channel becomes ON.

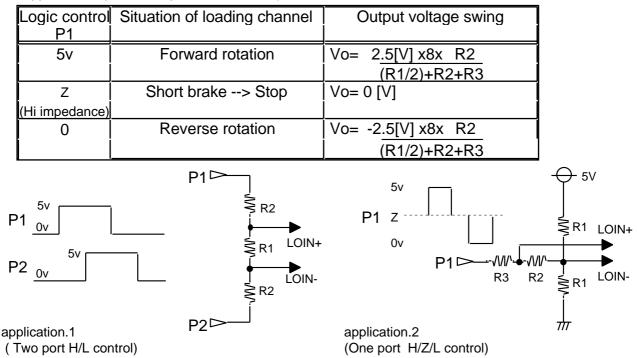

Regard with making OFF the loading channel in case of SELECT2, SELECT3 and SELECT4, please refer to [Loading channel].


Loading channel

The loading channel is the circuit of BTL voltage drive. This circuit has the referential input. Output swing is determined with Vin x 8. Also, it is possible for this channel to use for the slide motor, the focus coil and the tracking coil.

The input terminal is high impedance. It is possible to do variable a gain by external resistor.

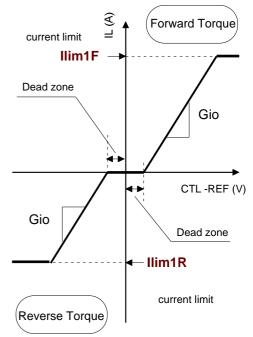
The output becomes high impedance in case of both input voltage becomes under 0.7 volts. It is possible for the input terminal to operate from 0 volts. The following table and diagram show an application in case of two MCU port and one MCU port for the loading motor. In case of one MCU port, if use three state port, it is possible for this channel to have the stop function.



application.1 (MCU:Two port H/L control)

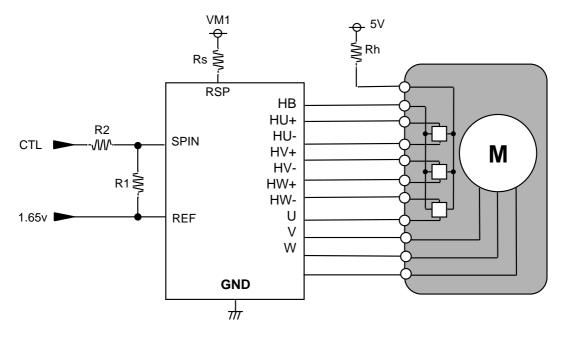
Logic	control	Situation of loading channel	Output voltage swing		
P1 P2					
5V	5V 5V Short brake> Stop		Vo= 0 [V]		
0	5V	Reverse rotation	Vo= - 8x5xR1/(R1+2xR2)		
5V	0	Forward rotation	Vo= 8x5xR1/(R1+2xR2)		
0	0	Off [High impedance output]	Off		

application.2 (MCU:One port H/Z/L control)


(8 / 16)

SPINDLE channel

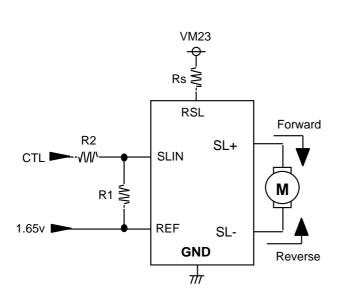
The relationship between the differential voltage between SPIN and REF and the torque is shown in right Figure. The voltage gain[Gvo] is 1.0 [V/V]. The current gain[Gio] is 2.0A/V (at sensing resistor : 0.5 ohm,and

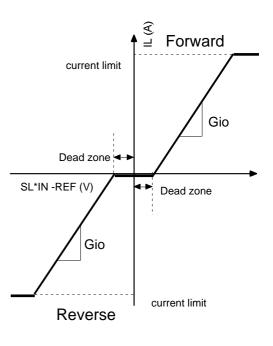

R1= ,R2=00hm) in forward torque directions, and the dead zone is from 0mV to 80mV (at R1= ,R2=00hm).

The coil current gain under the reverse torque is the same with in forward torque directions. And the limitation function gets on when the differential voltage of VM1(12V) to RSP is 0.5V at forward and 0.3V at reverse. Therefore current-gain-control and current-limit of this IC is determined with sensing resister value, and more detail control can be determined with setting a gain-resister outer this IC as below.

The example of current-gain and current-limit of SPINDLE.									
llim1E	llim1P		Gio* [A/V]						
[A]	[A]	R1= R2=0 ohm	R1=R2	R1=2•R2					
1.00	0.68	2.00	1.00	0.66					
0.66	0.45	1.33	0.66	0.44					
0.50	0.34	1.00	0.50	0.33					
	llim1F [A] 1.00 0.66	Ilim1F Ilim1R [A] 0.68 0.66 0.45	Ilim1F Ilim1R R1= [A] 0.68 2.00 0.66 0.45 1.33	$\begin{array}{c c} Ilim_{[A]} \\ Ilim_{[A]} \\ Ilim_{[A]} \\ Ilim_{[A]} \\ \hline R_{1} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{3} \\$					

 $Gio^* = R1 / [(R1+R2) \cdot Rs] [A/V]$

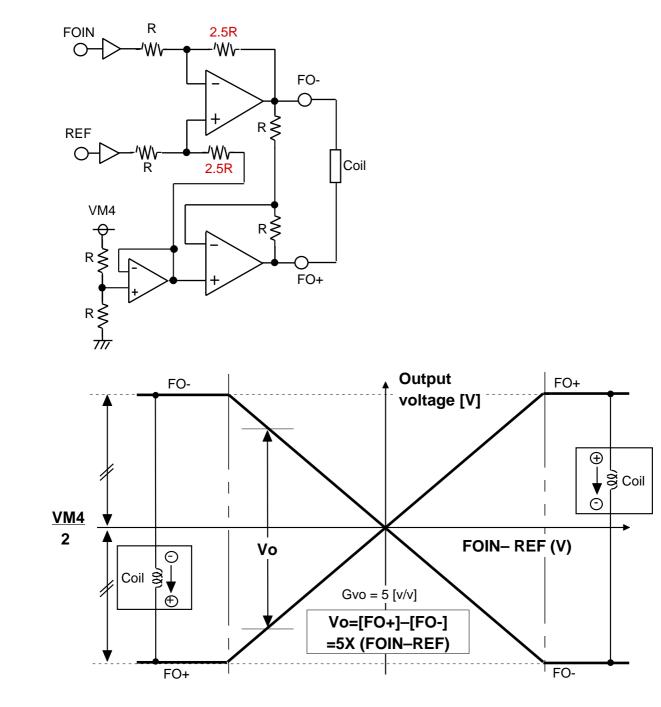

(9 / 16)


SLIDE channel

The relationship between the differential voltage between SLIN and REF and the torque is shown in right Figure. The voltage gain[Gvo] is 1.0 [V/V]. The current gain is 2.0[A/V] (at sensing resistor : 0.5 ohm and R1= ,R2=0ohm) in forward torque directions, and the dead zone is from 0mV to 60mV (at R1= ,R2=0ohm).

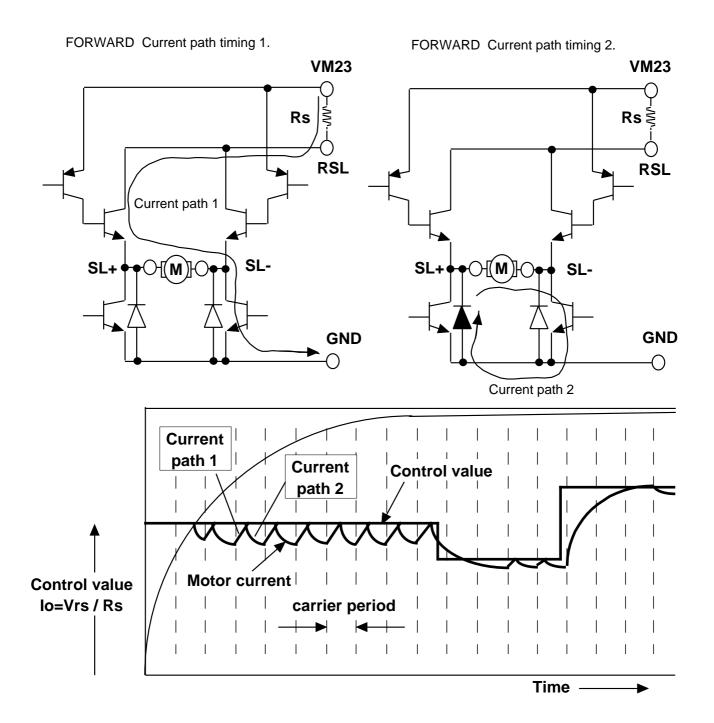
The coil current gain under the reverse torque is the same with in forward torque directions. And the limitation function gets on when the differential voltage of VM23(12V) to RSL is 0.5V.

Therefore current-gain-control and current-limit of this IC is determined with sensing resister value.


The example of current-gain and current-limit of SLIDE.

	llim [A]	Gio* [A/V]				
Rs []		R1= R2=0 ohm	R1=R2	R1=2•R2		
0.50	1.00	2.00	1.00	0.66		
0.75	0.66	1.33	0.66	0.44		
1.00	0.50	1.00	0.50	0.33		

Gio*= R1 / [(R1+R2)•Rs] [A/V]


FOCUS / TRACKING channel

The focus and tracking channel is the voltage control drive using BTL . The focus and tracking is the same composition. The relationship between the differential voltage between FOIN and REF and the output voltage is shown in below Figure. The voltage gain [Gvo] is 5.0 [V/V]. The maximum range of output swing is limited around 7.5 volts, in case of VM4 is above 10 volts.

Direct PWM operation

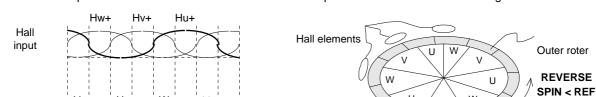
The spindle and the slide channel is controlled by the direct PWM control. Also,built-in the current limit circuit. This IC controls the motor current directly.

PWM carrier frequency setting

PWM carrier frequency is decided by charging and discharging the capacitor that is connected to OSC terminal outer IC. Examination of the relationship the capacitor connected to OSC terminal and PWM carrier frequency is given in following table.

Capacitor [pF]	330	220	180	130	110
Carrier Frequency [KHz]	65	90	110	140	160

*note) This PWM carrier frequency is TYP value.


U

W

ν

FORWARD SPIN > REF

The relationship between hall-amplifier-input and output-current-commutation at SPINDLE DRIVE

The relationship between the hall elements and the motor output current is shown in bellow Figure.

Phase delay circuit at SLIDE

FG function at SPINDLE DRIVE

+

0

Output

current

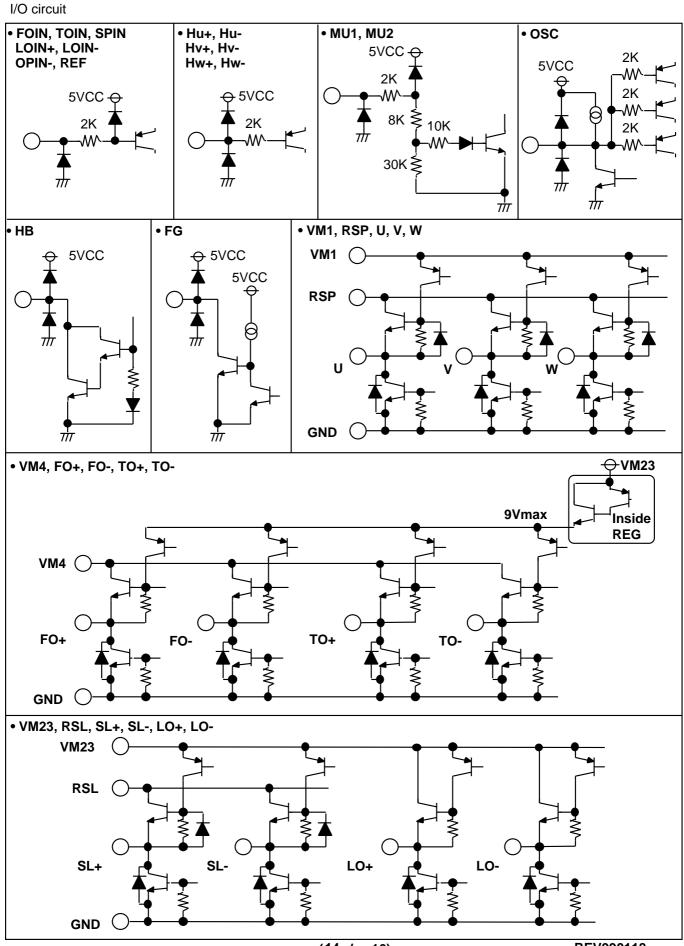
U

And, the FG terminal is open-collector output.

ν

W

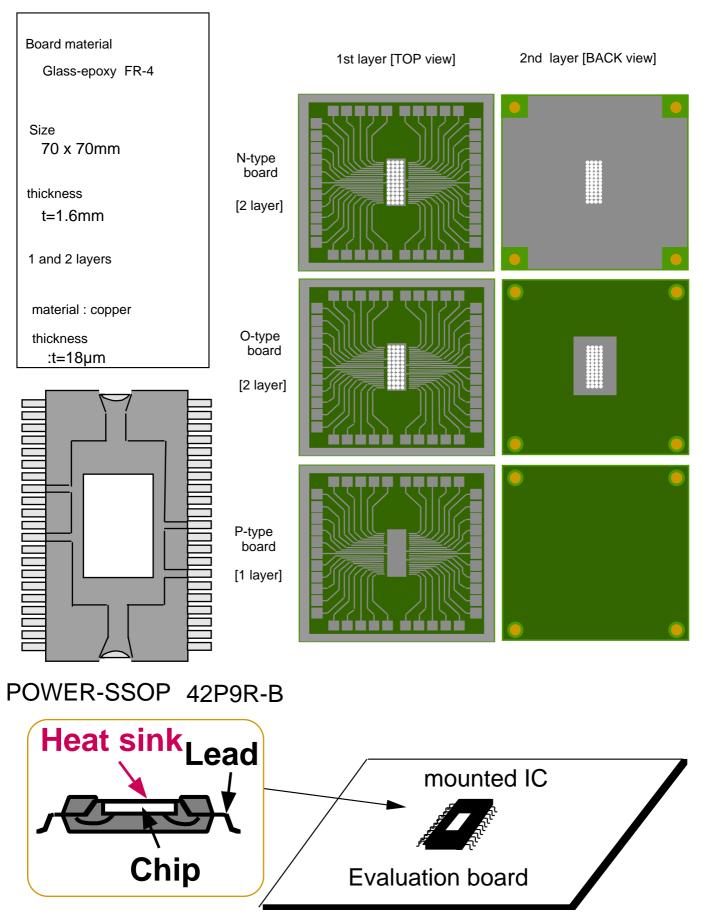
v


Phase delay circuit is built in the IC to detect an output spike current, when the motor current direction is switching.

The FG terminal outputs the square pulse signal synchronizing with the Hall inputs [Hv+, Hv-] timing.

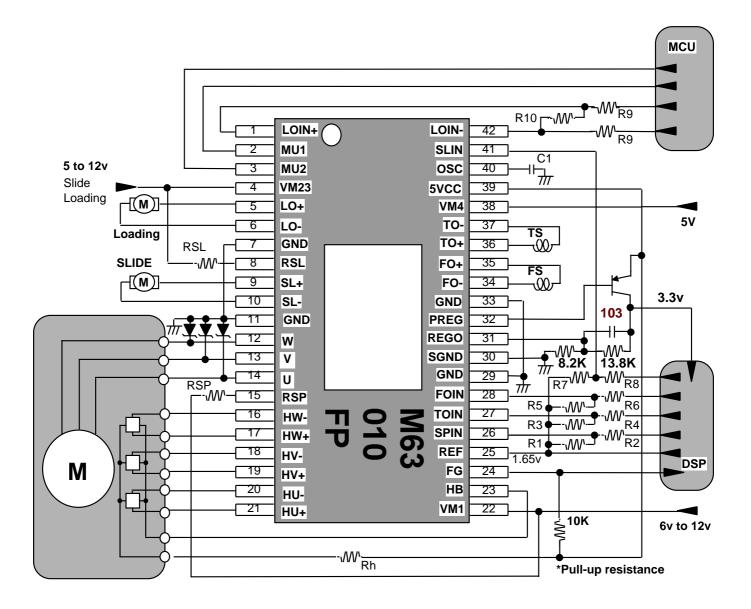
In switching the motor current direction, Phase delay circuit switch-off all output trangister of H-bridge for 3µsec.

Output current setting at SLIDE


In this IC, since output tranjister is NPN-type tranjister, motor coil current (Io) is larger than sensing resistance current about 20mA (TYP.) according to base current of output tranjister. Therefore please design output current with consisting these base current.

Preliminary

MITSUBISHI SEMICONDUCTORS M63010FP SPINDLE MOTOR AND 4CH ACTUATOR DRIVER


[The boards for thermal derating evaluation]

(15 / 16)

REV990118

[APPLICATION CIRCUIT no.1]

