1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

PM8315, PM5365, PM4328

TEMUX/TEMAP/TECT3

T1/E1 FRAMER, VT/TU MAPPER, M12/M13 Mux

DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL
RELEASE
IsSUE 2: AuGusT, 2001

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

ABOUT THIS MANUAL AND TEMUX/TEMAP/TECT3

This manual describes the device driver for the TEMUX/TEMAP/TECT3 devices. Since the
TEMAP and TECT?3 devices contain a subset of the features provided by the TEMUX device, the
same driver is used for all. Briefly the differences between the devices is as follows, please refer

to the devices respective data sheets for more information.

Table 1: Device Differences

Device 28T1,21E1 | VT1.5/VT2/T | M13 MUX Sonet/SDH
Framers U-11/TU-12 with DS3 DS3 Mapper
Sonet/SDH Framer
Mapping
TEMUX Yes Yes Yes Yes
TEMAP No Yes Yes Yes
TECT3 Yes No Yes No

This manual describes the driver’s functions, data structures, and architecture. It focuses on the
driver’s interfaces to your application, Real-Time Operating System, and to the
TEMUX/TEMAP/TECT3 device. It also describes in general terms how to modify and port the
driver to your software and hardware platform.

Audience

This manual is written for people who need to:

e Evaluate and test the TEMUX/TEMAP/TECT3 devices
e Modify and add to the TEMUX/TEMAP/TECT3 driver’s functions
e Port the TEMUX/TEMAP/TECT3 driver to a particular platform.

References

For more information about the TEMUX/TEMAP/TECT3 driver, see the driver’s release notes.
For more information about the TEMUX/TEMAP/TECT?3 device, see the documents listed in the
table below and any related errata documents.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 2
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Table 2: Related Documents

Document Number | Document Name

PMC-1981411 TEMAP High Density VT/TU Mapper and M 13 Multiplexer Short
Form Data Sheet

PMC-1981125 High Density T1/E1 Framer with Integrated VT/TU Mapper and M13
Multiplexer Telecom Standard Product Data Sheet

PMC-2011596 High Density T1/E1 Framer with Integrated M13 Multiplexer
Telecom Standard Product Datasheet

Note: Ensure that you use the document that PMC-Sierra issued for your version of the device
and driver.

Revision History

Issue No. | Issue Date Details of Change

Issue 1 February 2000 | Document created

Issue 2 July 2001 Added documentation to support TEMAP and TECT3 devices.
Added more detail to porting section.
Added init profile information and some missing APL

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 3
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Legal Issues

None of the information contained in this document constitutes an express or implied warranty by
PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular purpose of any such
information or the fitness, or suitability for a particular purpose, merchantability, performance,
compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any
portion thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all
representations and warranties of any kind regarding the contents or use of the information,
including, but not limited to, express and implied warranties of accuracy, completeness,
merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or
consequential damages, including, but not limited to, lost profits, lost business or lost data
resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has
been advised of the possibility of such damage.

The information is proprietary and confidential to PMC-Sierra, Inc., and for its customers’
internal use. In any event, you cannot reproduce any part of this document, in any form, without
the express written consent of PMC-Sierra, Inc.

© 2001 PMC-Sierra, Inc.

PMC-1991611 (P1), ref PMC-990551 (P1)

The technology discussed is protected by one or more of the following Patents:
U.S. Patent No. 5,835,545 5,973,977 5,343,482

Relevant patent applications and other patents may also exist.

Contacting PMC-Sierra

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmec-sierra.com
Technical Support: apps@pmc-sierra.com

Web Site: http://www.pmc-sierra.com

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 4
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

TABLE OF CONTENTS

About this Manual and TEMUX/TEMAP/TECT 3.ttt 2
F 0 Lo 1Y o T TP RPPPR 2
REFEIENCES ...ttt e e et e e s et e e s e nbe e e e enreeeeenee 2
RNV L= o I 15 (o] Y2 3
(=Y o =TI LT U =TSP 4
Contacting PMC-SIEITAuuuiiiiiee it e e e e e e e e e e s aeeaae s 4

Table of CoNtENtS ... 5

I A o] o U =T T TP PRI 9

LIST OFf TADIES ... e e e e e e e e e e e e e e e e e e e s e e e e e e e e e aaaaaaaeaesesasnsnnnsnnnnnns 10

L 1) £ (oY [UTex 1 To] o RO PPPPPPPP 12

2 Software ArChiteCtUIE ettt e e e e e e e eeaeanns 13

2.1 Driver External Interfaces ... 13
Application Programming INterface...........cccuviiiiie i 13
Real-Time RTOS INtEITACE......ccoiiiiie et eeee e 14
Driver Hardware INtErfaceccuuiiiiiiiiii et 14

2.2 MaIN COMPONENTES.....eeiiiieiiiiiiiitee e e e et e e et ee e e e e e e e e et eaeeeaeeesaassbareeeaaaesasasstsseeeeeeesesanrssnneaaaeans 14
Module and Device ManagemeEntuuuueieieieiiiiiiieieieieieieiererereeerereeereeeeererererererernrnne 15
TNV o I o = PSP 16
INEITUPE PrOCESSINGciiiiiiiie ittt 16

3 Software State DeSCHPON.......ooii e e e e e e 18

B Tt |V o T 01 L= = (= 3OS 18
Start: TMX _MOD _STARTeiiii ettt e e e e e s st e e e ssae e e s s sreeessnseeeeannaeens 19
Idle: TMX _MOD _IDLE ...ttt e e et e e et e e e e e e e e s 19
Ready: TMX_MOD_READY ...ttt ettt sttt e e e st e e e snaeee e sneeeeeanes 19

K B L= (oI - | (= USSP 19
StArt: TIMX S TART .ttt e e et e e e sttt e e e ensa e e e e s beeeeeanseeeeannneeeas 19
Present: TMX _PRESENToooiiii ettt e e e e e e e 20
ACHVE: TMX _ACTIVE ...ttt ettt e e e nte e e e et e e e e e 20
INACtive: TMX _INACTIVE. ...ttt e e et e e e 20

3.3 Processing FIOWSooiiiiiiiiiiiii ettt e e e e e 20
Module ManagemMENToueiiiiiiiie e 20
Device ManagemMENTcooiiiii e e e 21

3.4 INEEITUPE SEIVICING ..ttt e s et e e e e e e e e e 22
Calling tEMUXISR ...ttt e e 23
Calling tEMUXDPR ... 23

3.5 POIlING SEIVICING ..eeeiiieiiiiitie ettt e e e e e e e e e e e e e et eeaeaeeesenatsbeeeaeaeeeaneees 24

D = = 0o (1] Y RS TPRSRRIN 26

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 5

Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

B B O] g 1] v= o1 (= USROS 26
4.2 Data STUCIUMESeeei ettt ettt e ettt e e e sttt e e e ettt e e e e aateeeeeanteeeeesnteeeesanteeeans 26
4.3 Structures Passed by the AppliCationoooiiiiiiiiiie e 26
Module Initialization VECLOFoo e 26
Device Initialization VECIONooo e 27
Device Initialization Profileoo e 28
Preset Profiles e 29
Interrupt-Service Routine Mask VECIOro 30
Mask SUD-STIUCIUIESo e e e e 30
Device DiagnostiC StHUCIUIESc.euviiieiie e e e a e 36
4.4 Structures in the Driver's Allocated MEmMOIY............uviiiiiiiiiiiieee e 37
Module Data BIOCKcooueiiiiiii e 37
Module Status BIOCK.........coiueiiii e 38
DeVvice Data BIOCKcouuiiiieiie et 38
DeVvice SEatus BIOCKcoiiiiiiiie ettt e e sraee e 40
DSB SUD-STIUCIUIESt e e e e e e e e e e e e eeeaae s 41
4.5 GIObal Vari@bIEs. ettt e e e e e e e e e e e e e e e eeeaeaaa 43
4.6 Structures Passed through RTOS BUFfers.........oocuiiiiiiiiii e 43
INterrupt StAtUS VECTONo i et e e e e 43
ISV SUD-SIIUCIUIES ...t e e e e e e e e 44
Deferred-Processing RoUting VECIONc.uiiiiiiiiiiiiee e 48
5 Application Programming INtErfacCe...........c.coiiiiiiiiiiiiie ettt 49
5.1 Module INItIAalZAtIoN ... 49
Opening Modules: temUXMOAUIEOPENccviiiiiiiiiiieeeee e 49
Closing Modules: temuXMOdUIECIOSE.........ccceeiiiiiiiiiiiiie e 49
5.2 MOdUIE ACHIVALION ...ooiiiiiee e e e e e 50
Starting Modules: temuxModuleStartc..ooiiiiiii 50
Stopping Modules: temuXMOodUIESIOPeoriiiiiiiii e 50
5.3 Device INtialization 51
Adding Devices: teMUXAAG..........oiiiiiii e e 51
Deleting Devices: temuXDelete.........ooouiiiiiiiiiie e 52
Initializing Devices: temMUXINIt.........oooi i 52
Resetting Devices: teMUXRESEL..........oviiiiiiiiiiiiieeeeee e eeeeeeeeeeee 53
Deactivating Devices: temUXDEACHVALEoeviiiiiiiiiiiiiiieeeeeeeee e 53
Activating Devices: temuxActivate ... 54
Add Initialization Profile: temuxAddInitProfilecccooviiiiii e, 54
Get Initialization Profile: temuxGetInitProfile ..o, 55
Delete Initialization Profile: temuxDeletelnitProfilecccciiiiiiiiii e 55
Updating a device: temuxUpdate........ .o 56
5.4 Device Reading and WItINGoooiiiiiiiiiie e 57
Reading Registers: temuxReadcooiiiiiiiiiii 57
Writing Registers: temMUXWIILE........oouuiiiii e 57
Reading Framer Registers: temuxReadFR.............cooiiiiiiii e 58
Writing Framer Registers: temuxWriteFR ... 58
Reading DS2/MX12 Multiplexer Registers: temuxReadMXccccccevveeiiiiiiiiieeeeeeen, 59
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 6

Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Writing DS2/MX12 Multiplexer Registers: temuxWriteMXccccooviciiiieeieeeeecciinee, 60
Reading Indirect Registers: temuxReadIndoooviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeees 60
Writing Indirect Registers: temuxWritelnd...............ccc 61
Reading from Register Blocks: temuxReadBlocK ... 63
Writing to Register Blocks: temuxWriteBIlOcK...........ceeiiiiiiiiii e, 64
Reading Mapper Registers: temuxReadMapper (TEMUX/TEMAP only)cccccco...... 64
Writing Mapper Registers: temuxWriteMapper (TEMUX/TEMAP only).......cccccceeeennee. 65
DS3-HDLC Service: temuxLinkDataDS3 ... 66
T1-HDLC Service: temuxLinkDataT1 (TEMUX/TECT3 Only)......ccoocciiiniiiniiiiineee, 66
5.5 Interrupt SErvice FUNCHIONS.........ccii it e e e e e re e e e e e e e e eanes 67
Getting Mask Registers: temuxGetMaskcccovviiiiiiiiiicii e, 67
Setting Mask Registers: temuxSetMaskcooccuiiiiiiiiiiiiiee e 68
Clearing Mask Registers: temuxClearMask.............ccceeeeeiiiiiiiiieiie e 68
Polling Interrupt Registers: temuUXPOIl.............oeeiiiiiiiiiiiiieeee e 69
Interrupt Service: teMUXISRoiiiii e 69
Interrupt Processing: tEMUXDPRcoooiiiiiiiii e 70
Configure ISR: temUXISRCONTIGeviiiiiiiiii e 70
5.6 Alarms, Status and Statistics FUNCLONSooommieiiiiieeeee e 71
Retrieving Statistical Counts: temuxGetStats............ooouieiiiiiiii e 71
Clearing Statistical Counts: temuxClearStats............coooiiiiiiiiiii e, 71
5.7 DEVICE DIagNOSHCSeeiiiiiiiie it 72
Clearing/Setting Mapper Loopbacks: temuxLoopMapper (TEMUX/TEMAP only) 72
Clearing/Setting DS3 Devices Loopbacks: temuxLoopDS3...........cccccvviveviieiiiciiiieeenn. 73
Clearing/Setting DS3 Bert Tests: temuxBertDS3 ..o, 73
Clearing or Setting Bert Framer: temuxBertFramer (TEMUX/TECT3 only)................... 74
Clearing/Setting E1/T1 Framer Loopbacks: temuxLoopFramer (TEMUX/TECT3 only) 75
Clearing/Setting MX12 Devices Loopbacks: temuxLoopMX12cccciiiiiiiiiiiiiiieeen. 75
Clearing/Setting MX23 Devices Loopbacks: temuxLoopMX23ccooeiiiiiiiiiiineeen. 76
5.8 Callback FUNCHONS ...t e e e e e e e e e e e e 77
Reporting 10 Events: sysTemuxCBackIOcc.oooiiiiiiiiiii e 77
Reporting DS3 Events: sysTemuxCBackDS3...........cocoiiiiiiiiiiiiiiee e 77
Reporting Framer Events: sysTemuxCBackFramerccccccooiiiiiii e 78
Reporting Mapper Events: sysTemuxCBackMapper (TEMUX/TEMAP only)................. 78
6 Hardware INTEITACEoouiiiiiiie e et e e 79
6.1 Platform SpecCific MACROS..........cciiiiieeeee et e e e e e e e e e e e e reeeaaaeeeeaanes 79
Reading a Device Register: sysTemuxSafeReadccccceeeiiiiiciiiiiie e 79
Reading from Registers: sysTeMUXREadREGccccviiiiiiiiiiiei e 79
Writing Register Values: sysTemuxWriteReg...........ccooeee i 80
6.2 INTEITUPE SEIVICING ..ttt bttt e e e e e e e e e 80
General ISR ROULINES ..o 80
Installing Interrupt Handlers: sysTemuxISRHandlerInstall...........c.ccocoiiiiiiiiiniinn, 80
Invoking Interrupt Handlers: sysTemuxISRHandIercccooiiiiiiiiie e, 81
Removing Interrupt Handlers: sysTemuxISRHandlerRemove............ccccccooiieiiiiiienns 81
Installing DPRTask: sysTemuxDPRTaskInstallccccoooiii 81
DPR Task: SySTEMUXDPRTASKcuuuiiiiiiiiiiiiiiiiiiiieiieieitieeeeeeeeesesssesessssssseessesssssnsessrnnnnes 82
Removing DPRTask: sysTemuxDPRTaskREMOVEoovvvviiiiiiiiiiiiiiiiiieeeeeeieeieeeeeees 82
A S O 1S T 141 (=1 1 = o= SRR 83
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 7

Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

4% B 1Y/ 1Y g o V21T Yo=Y 83
Allocating Memory: sysTemuxMemAIIOC............cooviviiiiiiiii e, 83
Freeing Allocated Memory: sysTeMUXMEMFTEEe............oevviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeees 83

7.2 BUFfer ManagemeEnt ...t 84
Starting Buffers: sysTemuxBufferStart. ..., 84
Getting DPV Buffers: sysTemuxDPVBuUfferGet...........coceiiiiiiieec e 84
Getting ISV Buffers: sysTemuxISVBUfferGet ..., 85
Returning DPV Buffers: sysTemuxDPVBUFferRIN ... 85
Returning ISV Buffers: sysTemuxISVBUFferRIN ... 85
Sending an ISV buffer to the DPR task: sysTemuxBufferSendcccccccceeviinnnnneen. 85
Receiving an ISV buffer: sysTemuxBufferReceive.............ccccceeeviviiiieiiicc e, 86
Stopping ISV/DPV Buffers: sysTeMUXBUferStopcccoovvciiiieieiiiiiciiieeeee e 86

LS T o 1T o D Y=Y 87

8.1 DIiVEr SOUICE FilESeeiiiiiiiie ettt e e et e e et e e e e nree e e eeee 87

8.2 Driver Porting ProCEAUIES e ae s s e e e e e e an e e an s 88
Step 1: Porting Driver RTOS EXIENSIONSc.vviiiiiiiiiiciee e 88
Step 2: Porting Drivers to Hardware Platforms ..., 90
Step 3: Porting Driver Application-Specific Elements.............cccccoiiiiiiiiieeee 90
Step 4: BUilding the DIVEToiiiiiiie e 91

Appendix A: Coding CONVENLIONSooiiiiiiiieiei e e e e e e e e e e e e e e e e eeeaaeens 92
Variable Type DefinitioNS........cooouiiiiiii e e 92
NamMING CONVENTIONSuuiiiiiiie e e e e e e e e e e e e e e e s e e anaraeeeaaee s 93
= Lo o 1 PP P PPPR S RPPPPPPR 93
L070) 1 = o (=3P RPOUPSPORIN 94
S 1 0o (0] Y PP UURRRPPRRRN 94
FUNCHIONS ... e e e e e e e e e e e e aanr e e e e eeeas 94
APL FUNCHONS ..ttt e e e e e e e e e e e e e e e e e e nneneeeaaaeeaaans 94
POrting FUNCHONS ..ottt e e e e 94
Other FUNCLIONS ...ttt e e e e e e e e e e e e e e e e nnneees 95
Y22 E= o] L= SRR 95

Appendix B: TEMUX/TECT3/TEMARP Error COAES.........uuuiiiiieeiiiiiiieee e 96

Acronyms 98

LIS Of TOIMNS ...ttt s s nnnnsnnnnsnnnnnnnsnnnnssssssnnnnns 100
Index 101
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 8

Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

LIST OF FIGURES

Figure 1: Driver INTEITACES.ccoiciiiiiiieiee et e e e e e e 13
Figure 2: Driver ArChItECIUIEoviiiiiiiieieeeeeee ettt eeeeeseeaeeeeesesesnennnnes 15
Figure 3: State Diagram..........oooiiiiiiiiiieee e 18
Figure 4: Module Management FIow Diagram..............uuueviiiiiiiiiiiiiiiiiiieieeeeieeeeeeeeeeeeseeeenees 21
Figure 5: Device Management FIOW Diagramcoeueviiiiiiiiiiiiiieieiiieieeeeeeeeeeeeeesesenenenes 22
Figure 6: Interrupt Service MOAEL...........oooiiiiiiiiiiec e 23
Figure 7: Polling Service MOdelocuuiiiiiiiiii e 24
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 9

Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

LIST OF TABLES
Table 1: Device DIfferenCeS........ccoviiiiiiii e 2
Table 2: Related DOCUMENTSccoiiiiiiiiiiiee et 3
Table 4: Module Initialization Vector: STMX_MIV ..., 27
Table 5: Device Initialization Vector: STMX DIV ..., 27
Table 6: Device Initialization Profile: STMX_INIT_PROF.........ccccoviiiieiieee e, 28
Table 7: Preset Profiles: temuxXInit ..o 29
Table 8: ISR Mask Vector: STMX _MASK ... 30
Table 9: 10 Section Masks: struct tmx_mask_i0.........ccceeiiiiiiiiiii e, 30
Table 10: DS3 Section Masks: struct tmx_mask_ds3 ..., 31
Table 11: MUX Section Masks: struct tmx_mask_muxXcccooiiiiiiiiiii e, 31
Table 12: Framer Section Masks: struct tmx_mask_framercccoooioiiiiiiiie. 32
Table 13: Mapper Section Masks: struct tmx_mask_mapper (not

Valid in TECT3 ABVICE) ..ciiiiiiieiiiiiee ettt e e e e e e e e e e e e e e e e e e ennes 35
Table 14: PRGD configuration: STMX _PRGDccccviiiiiiiiiiiiieee e 36
Table 15: PRBS configuration: STMX _PRBS ... 36
Table 16: Module Data Block: STMX_MDB ..., 37
Table 17: Module Status BlIock: STMX _MSBocociiiiiiiiee e 38
Table 18: Device Data Block: STMX _DDB........cccooiiiiiiiieeeeee, 39
Table 19: Device Status Block: STMX DSB ... 40
Table 20: IO Section Status Block: struct tmx_dsb_i0.........oooiioiiiiii 41
Table 21: DS3 Section Status Block: struct tmx_dsb_ds3...........cccoiiiiiii 41
Table 22: MUX Section Status Block: struct tmx_dsb_mux..........ccccooiii 42
Table 23: Framer Section Status Block: struct tmx_dsb_framerccccccoi 42
Table 24: Mapper Section Status Block: struct tmx_dsb_mapper

(NOt Valid iN TECT3) c.ueeiiiiiieiiee ettt e ne e 42
Table 25: ISR Status Vector: STMX ISVouviiiiiiiee et 43
Table 26: 10 Section ISR Status Vector: struct tmx_isv_i0.......ccccoeeeveeeeiiiiciiiiieee e, 44

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991611, Issue 2

10

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Table 27: DS3 Section ISR Status Vector: struct tmx_isv_ds3ccoecciieevieeiiiiinneen. 45
Table 28: MUX Section ISR Status Vector: struct tmx_iSV_muxXcc..cceecvviieereeniicnnnee. 45

Table 29: Framer Section ISR Status Vector: struct
1000 D Y = 41T OSSR 45

Table 30: Mapper Section ISR Status Vector: struct

1000 DG YA 1 0 =T o] o =Y OSSR 47
Table 31: Deferred-Processing Vector: STMX_DPV ... 48
Table 32: Table of Parameters: temuxReadInd.............cooiiiiiiiiiiiii e 61
Table 33: Table of Parameters: temuxWriteINdcooiiiiiiiii e 63
Table 34: Driver SOUICe Filesociiiiiiiiiiic e 87
Table 35: Variable Type Definitionscc.vvviiiiii i 92
Table 36: Naming CONVENTIONS.........ciiiiiiiiiiieiee e e e e e e e e 93
Table 37: TEMUX/TECT3/TEMARP Error COAesccoiiiiiiiiiiiiiiiie e 96

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 1"

Document ID: PMC-1991611, Issue 2

Introduction

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

1

INTRODUCTION

The following sections of the TEMUX/TEMAP/TECT3 driver manual describe the
TEMUX/TEMAP/TECT3 device driver. The code provided throughout this document is written
in the ANSI C language. This has been done to promote greater driver portability to other
embedded hardware and Real-Time Operating System environments.

This driver can be used for the TEMUX/TEMAP/TECT3 devices. See Table 1 for a brief
description of the differences between these devices. To properly support the TEMAP device, use
the compile switch DEV IS TEMAP during compilation. To properly support the TECT3 device,
use the compile switch DEV_IS TECT3 during compilation.

Section 2 of this document, Software Architecture, defines the software architecture of the
TEMUX/TEMAP/TECTS3 device driver by including a discussion of the driver’s external
interfaces and its main components. The Data Structure information in Section 4 describes the
elements of the driver that either configure or control its behavior. Included here are the
constants, variables, and structures that the TEMUX/TEMAP/TECT?3 device driver uses to store
initialization, configuration, and status information. Section 5 provides a detailed description of
each function that is a member of the TEMUX/TEMAP/TECT3 driver Application Programming
Interface (API). This section outlines: (1) function calls that hide device-specific details and (2)
application callbacks that notify the user of significant device events.

For your convenience, this manual provides a brief guide to porting the TEMUX/TEMAP/TECT3
device driver to your hardware and RTOS platform (page 87). In addition, an Appendix
(beginning on page 92) and Index (page 101), provide you with useful reference information.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 12
Document ID: PMC-1991611, Issue 2

Software Architecture

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

2 SOFTWARE ARCHITECTURE

This section describes the software architecture of the TEMUX/TEMAP/TECT3 device driver.
This includes a discussion of the driver’s external interfaces and its main components.

2.1 Driver External Interfaces

Figure 1 illustrates the external interfaces defined for the TEMUX/TEMAP/TECT3 device driver.

Figure 1: Driver Interfaces

Application
A
Function Calls Application Callbacks
v Service Callbacks
TEMUX/TEMAP/TECT3

Device Driver

RTOS

A A Service Calls

Hardware Register
Interrupts Accesses

TEMUX/TEMAP/TECT3 Devices

Application Programming Interface

The driver’s APl is a collection of high level functions that can be called by application
programmers to configure, control, and monitor the TEMUX/TEMAP/TECT3 device, such as:

o Initializing the device
e Validating device configuration
e Retrieving device status and statistics information.

e Diagnosing the device

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID: PMC-1991611, Issue 2

13

Software Architecture

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

2.2

The driver API functions use the driver library functions as building blocks to provide this system
level functionality to the application programmer. The driver API also consists of callback
functions that notify the application of significant events that take place within the device.

Real-Time RTOS Interface

The driver’s RTOS interface module provides functions that let the driver use RTOS services. The
RTOS interface functions perform the following tasks for the TEMUX/TEMAP/TECT3 driver:

e Allocate and de-allocate memory

e Manage buffers for the ISR and DPR
e Timer management

e Synchronization management

e Task management

You must modify the RTOS interface code to suit your RTOS environment.

Driver Hardware Interface

The TEMUX/TEMAP/TECT3 hardware interface provides functions that read from and write to
device-registers. The hardware interface also provides a template for an ISR that the driver calls
when the device raises a hardware interrupt. You must modify this function based on the interrupt
configuration of your system.

Main Components

Figure 2 illustrates the top level architectural components of the TEMUX/TEMAP/TECT3 device
driver. This applies to both polled and interrupt driven operation. In polled operation the ISR is
called periodically. In interrupt operation the interrupt directly triggers the ISR.

The driver includes five main modules:
e Module and Device management

e Driver API

e Driver library

e Interrupt processing

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 14
Document ID: PMC-1991611, Issue 2

1 ﬁ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra Software Architecture

Figure 2: Driver Architecture

—> Application
Function
Calls
Indication A 4
Callbacks Driver API R
(R ST
(o) Service
s Callbacks
Deferred Driver |«]
Processing » Library ; <
Routine Functions n > T
A € Service @)
Interrupt l\[godtuleéri)ev:(c][Callbacks | S
Context ata bloc a
) c
<—T °
Interrupt
Servicing
Routine
A TEMUX/TEMAP/TECT3
DRIVER
Hardware Interface
Hardware Register
Interrupts v Access

TEMUX/TEMAP/TECT3 Device

Module and Device Management
Module Data Block (MDB)

The Module Data Block (MDB) and Module Status Block (MSB) are the top layer data
structures, created by the TEMUX/TEMAP/TECT3 device driver to keep track of its initialization
and operating parameters, modes and dynamic data. The MDB is allocated via an RTOS call,
when the driver is first initialized and contains the MSB and all the Device Structures.

Device Data Block (DDB)

The Device Data Block (DDB) is contained in the MDB and is allocated when the module is
opened. The DDB contains context and status information for each TEMUX/TEMAP/TECT?3
device that the driver manages. It is initialized when a device is added to the module.

The DDB stores context information about the TEMUX/TEMAP/TECT3 device, such as:

e Device state
e Control information

e Initialization vector

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 15
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Software Architecture

e (allback function pointers

e Statistical counts

Driver API

The driver API consists of functions used to configure and monitor the various subsystems in the
TEMUX/TEMAP/TECT3 device. The API functions are divided into following sections:

Alarms, Status, and Statistics Section

This section is responsible for monitoring alarms, tracking devices status information and
retrieving performance and error statistics for each device registered with (added to) the driver.

Diagnostics Section

This section is responsible for providing access to the diagnostic capabilities of the
TEMUX/TEMAP/TECT3 devices. Functions are provided to various loopback modes and to test
register accesses.

Device Read/Write Section

This section provides read/write access functions to the various sub-blocks of the
TEMUX/TEMAP/TECT3 devices. Functions are provided to write to the T1/E1 framer block,
SONET/SDH Mapper block, and the DS3 Mux/Demux block. Functions are also provided to read
a block of registers and access the indirect registers.

Driver Library

The driver library module is a collection of low-level utility functions that manipulate the device
registers and the contents of the driver’s DDB. The driver library functions serve as building
blocks for higher level functions that constitute the driver API module. Application software does
not normally call the driver library functions.

Interrupt Processing

The TEMUX/TEMAP/TECT3 driver provides an ISR called temuxISR that checks if there are
any valid interrupt conditions present for the device. This function can be used by a
system-specific interrupt-handler function to service interrupts raised by the device. Its main
purpose is to collect information about the current interrupt condition of the device and pass this
information along to the Deferred-Processing Routine for actual processing.

The low-level interrupt-handler function that traps the hardware interrupt and calls temuxISR is
system and RTOS dependent. Therefore, it is outside the scope of the driver. Example
implementations of an interrupt handler and functions that install and remove it are provided as a
reference on page 69. You can customize these example implementations to suit your specific
needs.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 16
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Software Architecture

Deferred-Processing Routine Module

The DPR provided by the driver (temuxDPR) clears and processes interrupt conditions for the
device. Typically, a system specific function, which runs as a separate task within the RTOS,
executes the DPR.

See page 22 for a detailed explanation of the DPR and interrupt-servicing model.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 17
Document ID: PMC-1991611, Issue 2

Software State Description

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

3 SOFTWARE STATE DESCRIPTION

Figure 3 shows the software state diagrams for the TEMUX/TEMAP/TECT3 module and
device(s) as maintained by the driver

Figure 3: State Diagram

temuxModuleOpen 7

Start

temuxModuIeCIosﬂ

temuxModuleStop

temuxModuleStart temuxModuleClose

MODULE STATES \

temuxAdd

temuxDelete

temuxReset

temuxReset

temuxInit

temuxActivate

temuxDeActivate

PER-DEVICE STATES

State transitions are made on the successful execution of the corresponding transition routines
shown. State information helps maintain the integrity of the MDB and the DDB(s) by controlling
the set of operations that are allowed in each state.

3.1 Module States

The following is a description of the TEMUX/TEMAP/TECT3 driver module states.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 18
Document ID: PMC-1991611, Issue 2

Software State Description

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Start: TMX_MOD_START

The TEMUX/TEMAP/TECT3 driver module has not been initialized. The only API function that
will be accepted in this state is temuxModuleOpen. In this state the driver does not hold any
RTOS resources (memory, timers, etc), has no running tasks, and performs no actions.

Idle: TMX_MOD_IDLE

The TEMUX/TEMAP/TECT3 driver module has been initialized successfully via the API
function temuxModuleOpen. The Module Initialization Vector (MIV) has been validated, the
Module Data Block (MDB) has been allocated and loaded with current data, the per-device data
structures have been allocated, and the RTOS has responded without error to all the requests sent
to it by the driver. The only API functions that will be accepted in this state are
temuxModuleStart and temuxModuleClose.

Ready: TMX_MOD_READY

This is the normal operating state for the driver module. This means that the RTOS resources
have been allocated and the driver is ready for devices to be added. In order to get to this state,
the API function temuxModuleStart is called (this function is responsible for creating and/or
allocating all of the RTOS resources necessary for the proper operation of the module and the
devices). The API functions accepted here for module control are temuxModuleStop and
temuxModuleClose. The driver module remains in this state while devices are in operation.
Devices can be added via temuxAdd.

3.2 Device States
Once the driver module has progressed into the READY state, the user can begin to add
individual devices into operation. The driver module remains in the READY state while devices
are in operation. Devices can be added via temuxAdd. The module functions temuxModuleStop
and temuxModuleClose are always available in this state (and therefore not mentioned below)
and if used, will cause each and every device (that is not in the START state) to be deleted, before
that module function is fully executed.
The following is a description of the TEMUX/TEMAP/TECT3 driver device states:
Start: TMX_START
The TEMUX/TEMAP/TECT3 driver device has not been initialized. The only API function that
will be accepted in this state is temuxAdd. In this state, the device is unknown by the driver and
performs no actions. There is a separate flow for each device that can be added and they all start
here.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 19

Document ID: PMC-1991611, Issue 2

Software State Description

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

3.3

Present: TMX_PRESENT

This device state is a quiet state for the device. In order to get to this state, the API needs to be
called by one of two functions:

e temuxAdd: Responsible for verifying the presence of the device and for initializing the data
structures associated with this device.

e temuxReset: De-activates the device and restores the device’s data structures to the
initialized condition.

In this state, devices can be initialized via temuxInit or deleted via temuxDelete.

Active: TMX_ACTIVE

This is the normal operating state for the device(s). State changes can be initiated from the active
state via temuxDelete, temuxDeActivate and temuxReset.

Inactive: TMX_INACTIVE

This state is entered via the temuxDeActivate or temuxInit function calls. In this state the
device remains configured but all data functions are de-activated including interrupts and status,
alarms, and counter functions. temuxActivate will return the device to the active state, while
temuxReset or temuxDelete will de-configure the device.

Processing Flows

The flow diagrams presented here illustrate the sequence of operations that take place for
different driver functions. The diagrams also serve as a guide to the application programmer by
illustrating the sequence in which the application must invoke the driver APL

Module Management

The following flow diagram illustrates the typical function call sequences that occur when
initializing or shutting down the TEMUX/TEMAP/TECT3 driver module.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 20
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Software State Description

Figure 4: Module Management Flow Diagram

START
+ Perfors module level initialization of the TEMUX driver. Validates the
- Module Initialization Vector (MV). Allocates menrory for the MDB and all
‘ t u ‘ its commponents (i.. all the mermory needed by the driver) and then
* initializes the contents of the VDB with the validated MV.
Perforrs nodule level startup of the driver. This involves allocating RTOS
‘ t ModuleS ‘ resources such as semaphores and timers.

Performall device leve! functions here (add, init, activate,
de-activate, reset, delete)

Y

‘ temudVoduleStop

deleting all devices currently installed and de-allocating all timers and
sermephores as well as renoving the ISR hander and DPRtask.

‘ Perforrrs Module level shutdown of the TEMUX driver. This involves

Perforrrs nmodule level shutdown of the driver. Deletes all devices currently
registered with the driver and de-allocates all the driver's memory.

(termudVbduleClose

\

END

Device Management

The following figure shows the functions and process that the driver uses to add, initialize, re-
initialize, or delete devices.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 21
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Software State Description

Figure 5: Device Management Flow Diagram

START

\

performs a register readback test,

temuxAdd allocates memory for storing device context
information, and applies a software reset to the device (using
* temuxReset).
Initializes the device based on an initialization vector provided by the
—- temuxInit application. The initialization vector is validated by the application and
stored by the driver as part of device context information. The device
* registers are then configured accordingly.

Prepares the device for normal operation by enabling interrupts and other
temuxActivate global enables. The device is now operational and all other APIs
* can be invoked.

‘ Deactivates the device; and resets the device’s context, which enables the

‘ temuxReset application to once again initialize the device.
De-activates the device and removes it from normal operation. This
temuxDeactivate involves disabling the device interrupts and other global enables, such as

links.

\

temuxReset

Removes the device from the list of devices being controlled by the
temuxDelete TEMUX driver. This function clears the device context information
* for the device being deleted.

END

Applies a software reset to the device to put it in its default startup state.

3.4 Interrupt Servicing

The TEMUX/TEMAP/TECTS3 driver services device interrupts using an Interrupt-Service
Routine (ISR) that traps interrupts and a deferred interrupt-processing routine (DPR) that actually
processes the interrupt conditions. This lets the ISR execute quickly and exit. Most of the
time-consuming processing of the interrupt conditions is deferred to the DPR by queuing the
necessary interrupt-context information to the DPR task. The DPR function runs in the context of
a separate task within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you should set the
DPR task’s priority higher than the application task interacting with the
TEMUX/TEMAP/TECT3 driver.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 22
Document ID: PMC-1991611, Issue 2

Software State Description

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

The driver provides system-independent functions, temuxISR and temuxDPR. You must fill in
the corresponding system-specific functions, sysTemuxISRHandler and sysTemuxDPRTask.
The system-specific functions isolate the system-specific communication mechanism (between
the ISR and DPR) from the system-independent functions, temuxISR and temuxDPR.

Figure 6 illustrates the interrupt service model used in the TEMUX/TEMAP/TECT3 driver
design.

Figure 6: Interrupt Service Model

sysTemuxISRHandler Interrupt sysTemuxDPRTask Indication
Status Callbacks

Note: Instead of using an interrupt service model, you can use a polling service model in the
TEMUX/TEMAP/TECT3 driver to process the device’s event-indication registers.

Calling temuxISR

An interrupt handler function, which is system dependent, must call temuxISR. But first, the
low-level interrupt-handler function must trap the device interrupts. You must implement this
function for your system.

The interrupt handler that you implement (sysTemuxISRHandler) is installed in the interrupt
vector table of the system processor. Then it is called when one or more
TEMUX/TEMAP/TECT3 devices interrupt the processor. The interrupt handler then calls

temuxISR for each device in the active state that requires service.

The temuxISR function reads from the master interrupt-status registers and the miscellancous
interrupt-status registers of the TEMUX/TEMAP/TECT3. Then temuxISR returns with this
status information if valid status bits are set. The temuxISR also clears those status bits, which in
turn clears the initial cause of the interrupt. The sysTemuxISRHandler function then sends a
message to the DPR task (for each device that requested service) which contains the valid
interrupt status bits and the device’s context handle.

Note: Normally you should pass the status information for deferred interrupt processing by
implementing a message queue.

Calling temuxDPR

The sysTemuxDPRTask function is a system specific function that runs as a separate task within
the RTOS. You should set the DPR task’s priority higher than the application task(s) interacting
with the TEMUX/TEMAP/TECTS3 driver. In the message-queue implementation model, this task
has an associated message queue. The task waits for messages from the ISR on this message
queue. When a message arrives, sysTemuxDPRTask calls the DPR (temuxDPR).

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 23
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Software State Description

3.5

Then temuxDPR processes the status information and takes appropriate action based on the
specific interrupt condition detected. The nature of this processing can differ from system to
system. Therefore, temuxDPR calls different indication callbacks for different interrupt
conditions.

Typically, you should implement these callback functions as simple message posting functions
that post messages to an application task. However, you can implement the indication callback to
perform processing within the DPR task context and return without sending any messages. In this
case, ensure that the indication function does not call any API functions that change the driver’s
state, such as temuxDelete. Also, ensure that the indication function is non-blocking. You can
customize these callbacks to suit your system.

Note: Since the temuxISR and temuxDPR routines themselves do not specify a communication
mechanism, you have full flexibility in choosing a communication mechanism between the two.
A convenient way to implement this communication mechanism is to use a message queue, which
is a service that most RTOSs provide.

You must implement the two system specific functions, sysTemuxISRHandler and
sysTemuxDPRTask. When the driver calls sysTemuxISRHandlerInstall for the first time,
the driver installs sysTemuxISRHandler in the interrupt vector table of the processor. The
sysTemuxDPRTask function is spawned as a task when sysTemuxDPRTaskInstall is called.

The sysTemuxISRHandlerInstall function also creates the communication channel between
sysTemuxISRHandler and sysTemuxDPRTask. This communication channel is most
commonly a message queue associated with the sysTemuxDPRTask.

Similarly, during removal of interrupts, the driver removes sysTemuxISRHandler from the
microprocessor’s interrupt vector table when sysTemuxDPRTaskRemove is called.

As a reference, this manual provides example implementations of the interrupt installation and
removal functions on page 81. You can customize these prototypes to suit your specific needs.

Polling Servicing

Instead of using an interrupt service model, you can use a polling service model in the
TEMUX/TEMAP/TECT3 driver to process the device’s event-indication registers.

Figure 7 illustrates the polling service model used in the TEMUX/TEMAP/TECT3 driver design.

Figure 7: Polling Service Model

Indication
Callbacks

temuxDPR Application

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 24
Document ID: PMC-1991611, Issue 2

Software State Description

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

The polling service code includes some system specific code (prefixed by “sysTemux”), which
typically you must implement for your application. The polling service code also includes some
system independent code (prefixed by “temux”) provided by the driver that does not change from
system to system.

In polling mode, sysTemuxISRHandler and temuxISR are not used. When temuxPoll is
called, the message normally sent to the DPR is now passed internally.

The nature of this processing can differ from system to system. Therefore, the DPR calls different
indication callbacks for different interrupt conditions. You can customize these callbacks to fit
your application’s specific requirements. See page 75 for a description of these callback
functions.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 25
Document ID: PMC-1991611, Issue 2

Data Structures

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

4

4.1

4.2

4.3

DATA STRUCTURES

Constants

The file temux.h defines the lowest level (compile time) items, generally those that are needed
by any application code in order to interface with the driver. All source and header files include
this file. The compile constants are defined in the file temux.h as UINT1, UINT2, UINT4,
etc.

The file tmx_api.h defines the set of (run time) items needed to interface directly with the core
API functions. The following constants are defined in the file tmx_api.h.

e TMX MAX DEVICES: defines the maximum number of devices that can be supported by this
driver. This constant must not be changed without a thorough analysis of the consequences to
the driver code

e <TEMUX ERROR CODES>: error codes used throughout the driver code, returned by the API
functions and (when TMx FAIL is returned to a function’s caller) used in the global error
number field of the MDB or DDB

e STMX MIV: structure passed by the application into the temuxModuleOpen function call.

e sTMX DIV: structure passed by the application into the temux2dd function call.

The remaining files should only be needed for extended interfaces that make use of the internal
structures or functions of the driver.

Data Structures

The following are the main data structures employed by the TEMUX/TEMAP/TECT3 driver.

Structures Passed by the Application

These structures are defined for use by the application and are passed by reference to functions
within the driver.

Module Initialization Vector

Passed via the temuxModuleOpen call, this structure contains all the information needed by the
driver to initialize the module. Special or unusual fields are described first:

e pMDB: can be used by the application to pass the address of a pre-allocated MDB. If pMDB is
NULL, the driver will allocate sufficient memory to hold the MDB and return its address in
the pMDB field.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 26
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Data Structures

maxDevs: is used to inform the driver how many devices will be operating concurrently
during this session. The number is used to calculate the amount of memory that will be
allocated to the driver. The maximum value that can be passed is TMX MAX DEVICES.

Table 3: Module Initialization Vector: sSTMX _MIV

Field Name | Field Type | Field Description

autoStart UINT2 indicates to driver to start the module when opened
PMDB void * (pointer to) pre-allocated or (if NULL) returned MDB
maxDevs UINT2 number of devices that must be supported for this session

Device Initialization Vector

Passed via the temuxadd call, this structure contains all the information needed by the driver to
initialize a TEMUX/TEMAP/TECT3 device. Special or unusual fields are described first:

pDDB can be used by the application to pass the address of a pre-allocated DDB. If pDDB is
NULL, the driver will allocate sufficient memory to hold the DDB and return its address in
the pDDB field.

baseAddress: must contain the hardware base address of the device.

usrCtxt: this field is strictly a user field. The value passed into the function via this element
will be stored in the DDB and passed back to the application during DPR processing. The
user might use it to identify ‘this’ device or point to some data related to this device.

autoInit:is a flag that tells the driver to automatically initialize the device being added
(calling temuxInit internally does this). If the flag is zero, the DDB will be initialized and
the device left uninitialized, and the application will have to call temuxlInit at a later time.

profileNum: is used only when autolnit is set and indicates which mode the device should
be initialized into. The function of this element is the same as the profileNum argument to the
function temuxlInit. A value of zero indicates that during initialization, after the device is
reset, all registers should remain unchanged (in their initial state).

cbackIO, cbackDS3, cbackFramer, cbackMapper: Passes the addresses of
application functions used by the DPR to inform the application code of pending events. If
the user sets the element to NULL, then any events that might cause the DPR to ‘call back’ to
the application will be processed during ISR processing but ignored by the DPR.

Table 4: Device Initialization Vector: sTMX DIV

Field Name Field Type Field Description
pDDB void * (pointer to) pre-allocated or (if NULL) returned DDB
baseAddress | UINT1 * device base address

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 27

Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Data Structures

Field Name Field Type Field Description

usrCtxt void * a user-supplied value that is returned in callback
functions

autoInit UINT2 if non-zero, temuxInit is called internally

profileNum UINTZ2 profile number to be used for initialization. A profile
number of zero indicates that the driver should leave all
the device registers unchanged after reset

modeISR TMX_ISR_MODE | indicates the type of ISR/polling to do

cbackIO void * address of the callback function for IO Events

cbackDS3 void * address of the callback function for DS3 Events

cbackFramer | void * address of the callback function for Framer Events

cbackMapper | void * address of the callback function for Mapper Events (not
valid in TECT?3)

Device Initialization Profile

The device initialization profile is used to initialize the TEMUX/TEMAP/TECT3 device to a
specific operating mode. It is used by the profile manipulation functions
(temuxGetInitProfile, etc.) and temuxInit. Important fields are given below.

Table 5: Device Initialization Profile: sTMX INIT PROF

Field Name Field Type Field Description

lineopt UINT2 Line side configuration options
sysopt UINT2 System side configuration options
opmode UINT2 Operation mode

elMode BOOLEAN Set device to E1 mode
autoActivate BOOLEAN Activates the device for operation

lineopt can be one of the following:

e TMX LINEOPT LIU DS3:DS3 Mux with serial LIU interface
e TMX LINEOPT SDH DsS3: DS3 Mux with DS3 SONET/SDH Mapper (Not valid in TECT3)

e TMX LINEOPT SDH E1T1:E1/T1 Mapper

sysopt can be one of the following:

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 28
Document ID: PMC-1991611, Issue 2

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
Data Structures

PB A c PMC-Sierra

e TMX SYSOPT CDATA: Serial Clock/Data Interface

e TMX SYSOPT MvIP: H-MVIP interface (not valid in TEMAP)

e TMX SYSOPT SBI: SBIInterface

e TMX SYSOPT SBI_ ccCs: SBI with CAS or CCS H-MVIP (not valid in TEMAP)

e TMX SYSOPT CDATA ccs: Serial Clock/Data with CCS H-MVIP (not valid in TEMAP)

opmode can be one of the following:

e TMX OPMODE FRAMER: High Density Framer Mode (not valid in TEMAP)
e TMX OPMODE MAPPER: Mapper/Multiplexor Mode (not valid in TECT3)
e TMX OPMODE TRANSMUX: TransMux mode (not valid in TECT3)

e TMX OPMODE DS3 ONLY: DS3 Framer Only

Preset Profiles

There are 8 preset profiles (indexed 0-7) that can be used to initialize the device during the call to
temuxInit. They are set to the values shown in Table 6.

Table 6: Preset Profiles: temuxlInit

Profile lineopt sysopt opmode e1Mode

Number

0 TMX_LINEOPT LIU | TMX SYSOPT | TMX OPMODE FRAMER FALSE
DS3 SBI

1 TMX_LINEOPT SDH | TMX SYSOPT | TMX OPMODE FRAMER TRUE
E1T1 CDATA

2 TMX_LINEOPT SDH | TMX SYSOPT | TMX OPMODE FRAMER FALSE
E1T1 MVIP

3 TMX_LINEOPT SDH | TMX SYSOPT | TMX OPMODE_ FRAMER FALSE
E1T1 SBI

4 TMX_LINEOPT LIU | TMX SYSOPT | TMX OPMODE FRAMER FALSE
DS3 CDATA

5 TMX_LINEOPT LIU | TMX SYSOPT | TMX OPMODE MAPPER FALSE
DS3 CDATA

6 TMX_LINEOPT LIU | TMX SYSOPT | TMX OPMODE DS3 ONLY FALSE
DS3 CDATA

7 TMX_LINEOPT LIU | TMX SYSOPT | TMX OPMODE TRANSMUX FALSE
DS3 CDATA

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 29

Document ID: PMC-1991611, Issue 2

Data Structures

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Profiles 0-4 are not valid with the TEMAP device. Profiles 1-3, 5, 7 are not valid in the TECT3
device.

Interrupt-Service Routine Mask Vector
Passed via the temuxClearMask, temuxGetMask and the temuxSetMask calls, this structure

contains all the information needed by the driver to enable and disable any of the interrupts in the
TEMUX/TEMAP/TECTS3.

Table 7: ISR Mask Vector: sTMX MASK

Field Name Field Type Sets / Clears Interrupt Condition

sdetOe UINT1 SBI collision detect (register 0)

sdetle UINT1 SBI collision detect (register 1)

io struct tmx mask io 10 Section interrupts

ds3 struct tmx mask ds3 DS3 Section interrupts

mux [7] struct tmx_mask_mux MUX/MX12/DS2 Section interrupts

framer[28] struct tmx mask framer FRAMER Section interrupts

mapper struct tmx_mask_mapper MAPPER Section interrupts (not valid in
TECT3)

Mask Sub-structures

These structures also appear in sSTMX MASK (above).

Table 8: 10 Section Masks: struct tmx_mask_io

Field Name Field Type Field Description
exsbi.ovre UINT1 SBI bus egress overrun
exsbi.unde UINT1 SBI bus egress underrun
insbi.ovre UINT1 SBI bus ingress overrun
insbi.unde UINT1 SBI bus ingress underrun
exsbi.pare UINT1 SBI bus parity
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 30

Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Data Structures

Table 9: DS3 Section Masks: struct tmx_mask _ds3

Field Name Field Type Field Description

pmon.inte UINT1 DS3 PMON Accumulation Transfer

rdlc.inte UINT1 DS3 Receive DLC State Transition

rboc.idle UINT1 DS3 Receive BOC FEAC Removed (not valid in
TEMAP)

rboc.feace UINT1 DS3 Receive BOC FEAC Detected

frmr.cofae UINT1 DS3 Framer Change of Frame Alignment

frmr.rede UINT1 DS3 Framer RED Alarm Transition

frmr.cbite UINT1 DS3 Framer C-Bit Transition

frmr.ferfe UINT1 DS3 Framer Far End Receive Failure Transition

frmr.idle UINT1 DS3 Framer Idle Signal Transition

frmr.aise UINT1 DS3 Framer AIS Signal Transition

frmr.oofe UINT1 DS3 Framer Out of Frame Transition

frmr.lose UINT1 DS3 Framer Loss of Signal Transition

tdpr.fulle UINT1 DS3 Transmit DLC Fifo Full

tdpr.ovre UINT1 DS3 Transmit DLC Fifo Overrun

tdpr.unde UINT1 DS3 Transmit DLC Fifo Underrun

tdpr.1lfille UINT1 DS3 Transmit DLC Empty (or Low Water Mark)

mx23.inte UINT1 MX23 Loopback Request Detected

prgd.synce UINT1 DS3 PRGD Synchronization Transition

prgd.bee UINTI DS3 PRGD Bit Error Detected

prgd.xfere UINT1 DS3 PRGD Accumulation Transfer

Table 10: MUX Section Masks: struct tmx_mask _mux

Field Name Field Type Field Description
ds2.inte.cofae UINT1 DS2 Change of Frame Alignment Detected
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 31

Document ID: PMC-1991611, Issue 2

Data Structures

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Field Name Field Type Field Description
ds2.inte.rede UINT1 DS2 Red Alarm Transition
ds2.inte.ferfe UINT1 DS2 Far End Receive Failure Transition
ds2.inte.aise UINT1 DS2 AIS Signal Transition
ds2.inte.oofe UINT1 DS2 Out of Frame Transition
ds2.intr.inte UINT1 DS2 Error Counter Transfer
mx1l2.inte UINT1 MX12 Loopback Request Detected
Table 11: Framer Section Masks: struct tmx_mask_framer
Field Name Field Type | Field Description
rjat.ovre UINT1 T1/E1 Framer RJAT Overrun
rjat.unde UINT1 T1/E1 Framer RJAT Underrun
tjat.ovre UINT1 T1/E1 Framer TJAT Overrun
tjat.unde UINT1 T1/E1 Framer TJAT Underrun
tx_elst.slipe UINT1 T1/E1 Framer Tx_ELST Slip (not valid in TEMAP)
sig _elst.slipe UINT1 T1/E1 Framer Signaling ELST Slip (not valid in
TEMAP)
rx_elst.slipe UINT1 T1/E1 Framer Rx_ELST Slip (not valid in TEMAP)
sigx.sige UINT1 Change of signaling state (COS) (not valid in TEMAP)
tl_frmr.cofae UINT1 T1 Framer Change of Frame Alignment Detected
tl frmr.fere UINT1 T1 Framer Framing Bit Error Detected
tl_frmr.beee UINT1 T1 Framer Bit Error Detected
tl frmr.sfee UINT1 T1 Framer Severely Errored Framing Event Detected
tl_frmr.mfpe UINT1 T1 Framer Framing Bit Mimic Detected
tl frmr.infre UINTI1 T1 Framer is Inframe
el _frmr.c2nciwe | UINTI E1 Framer CRC to Non-CRC Interworking Mode
Transition
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 32

Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r I‘ /I N PMC-Sierra

Data Structures

Field Name Field Type | Field Description

el frmr.oofe UINT1 E1 Framer Out of Frame Transition

el frmr.oosmfe UINT1 E1 Framer Out of Signaling Multiframe Transition

el frmr.oocmfe UINT1 E1 Framer Out of CRC Multiframe Transition

el frmr.cofae UINT1 E1 Framer Change of Frame Alignment Detected

el frmr.fere UINT1 E1 Framer Framing Bit Error Detected

el frmr.smfere UINT1 E1 Framer Signaling Multiframe Framing Bit Error
Detected

el frmr.cmfere UINT1 E1 Framer CRC Multiframe Framing Bit Error
Detected

el frmr.raie UINT1 E1 Framer Remote Alarm Indication Transition

el frmr.rmaie UINT1 E1 Framer Remote Multiframe Alarm Indication
Transition

el frmr.aisde UINT1 E1 Framer Alarm Indication

el _frmr.rede UINT1 E1 Framer Red Alarm Transition

el frmr.aise UINTL E1 Framer AIS

el frmr.febee UINT1 E1 Framer Far End Bit Error Detected

el frmr.crcee UINT1 E1 Framer CRC Error Detected

el frmr.sade UINT1 E1 Framer National Use Bit Sa4 Transition

el frmr.sabe UINT1 E1 Framer National Use Bit Sa5 Transition

el frmr.sabe UINT1 E1 Framer National Use Bit Sa6 Transition

el frmr.sa7e UINT1 E1 Framer National Use Bit Sa7 Transition

el frmr.sa8e UINT1 E1 Framer National Use Bit Sa8 Transition

el frmr.ooofe UINT1 E1 Framer Out of Offline Frame

el_frmr.raiccrce | UINT1 E1 Framer RAI & CRC Detected

el frmr.cfebee UINT1 E1 Framer Continuous FEBE Detected

el _frmr.v52linke | UINT1 E1 Framer V52 Link Detected

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 33

Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Data Structures

Field Name Field Type | Field Description

el _frmr.ifpe UINT1 E1 Framer Input Frame Pulse Asserted

el frmr.icsmfpe UINTI E1 Framer Input CRC Sub-Multiframe Pulse Asserted

el frmr.icmfpe UINTI E1 Framer Input CRC Multiframe Pulse Asserted

el frmr.ismfpe UINT1 E1 Framer (Rx) Input Signaling Multiframe Pulse
Asserted

el_tran.sigmfe UINT1 E1 Framer (Tx) Signaling Multiframe Boundry
Detected (not valid in TEMAP)

el _tran.nfase UINT1 E1 Framer (Tx) NFAS Frame Boundary Detected (not
valid in TEMAP)

el_tran.mfe UINT1 E1 Framer (Tx) CRC-4 Multiframe Boundary Detected
(not valid in TEMAP)

el tran.smfe UINT1 E1 Framer (Tx) CRC-4 Sub-Multiframe Boundary
Detected (not valid in TEMAP)

el _tran.frme UINT1 E1 Framer (Tx) Frame Boundary Detected (not valid in
TEMAP)

pmon.inte UINT1 E1/T1 Framer PMON Counter Transfer

aprm.inte UINT1 T1 Framer APRM 1 Second Data Available (not valid
in TEMAP)

prbs.synce UINT1 T1 Framer PRBS Synchronization Transition

prbs.bee UINT1 T1 Framer PRBS Bit Error Detected

prbs.xfere UINT1 T1 Framer PRMS Accumulation Transfer (not valid in
TEMAP)

tdpr.printe UINT1 E1/T1 Framer Performance Report Ready (not valid in
TEMAP)

tdpr.fulle UINT1 E1/T1 Framer Fifo Full (not valid in TEMAP)

tdpr.ovre UINT1 E1/T1 Framer Fifo Overrun (not valid in TEMAP)

tdpr.unde UINT1 E1/T1 Framer Fifo Underrun (not valid in TEMAP)

tdpr.lfille UINT1 E1/T1 Framer Fifo Empty (or Low Water Mark) (not
valid in TEMAP)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 34

Document ID: PMC-1991611, Issue 2

Data Structures

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Field Name Field Type | Field Description

rdlc.inte UINT1 E1/T1 Framer Receive DLC (not valid in TEMAP)

almi.yele UINTI E1/T1 Framer ALMI Yellow Alarm Detected

almi.rede UINT1 E1/T1 Framer ALMI RED Alarm Detected

almi.aise UINT1 E1/T1 Framer ALMI AIS Detected

rboc.idlee UINT1 T1 Framer Receive BOC FEAC Removed (not valid in
TEMAP)

rboc.boce UINT1 T1 Framer Receive BOC FEAC Detected (not valid in
TEMAP)

Table 12: Mapper Section Masks: struct tmx_mask _mapper (not valid in TECT3 device)

Field Name Field Type | Field Description

icfg.ldpe UINT1 Line Side Drop Parity Error

d3ma.oflie UINT1 D3MA elastic store overflow

d3ma.uflie UINT1 D3MA elastic store underflow

d3md.oflie UINT1 D3MD elastic store overflow

d3md.uflie UINT1 D3MD elastic store underflow

etpp [TUGZ] .pee[TU]* UINT1 Egress Tributary Payload Processor pointer
event

etpp[TUG2] .alarme [TU]* | UINT1 Egress Tributary Payload Processor loss of
pointer and path AIS

itpp [TUGZ] .pee[TU]* UINT1 Ingress Tributary Payload Processor pointer
event

itpp[TUG2] .alarme [TU]* | UINT1 Ingress Tributary Payload Processor loss of
pointer and path AIS

rtop[TUG2] .pslue[TU]* | UINT1 Receive Tributary Path Overhead Processor
path signal label unstable

rtop[TUG2] .pslme[TU]* | UINTI Receive Tributary Path Overhead Processor
path signal label mismatch

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 35
Document ID: PMC-1991611, Issue 2

Data Structures

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Field Name Field Type | Field Description

rtop[TUG2] .copsle[TU]* | UINT1 Receive Tributary Path Overhead Processor
change of path signal label

rtop[TUG2] .rfie[TU]* UINT1 Receive Tributary Path Overhead Processor
remote failure indication

rtop[TUG2] .rdie[TU]* UINT1 Receive Tributary Path Overhead Processor
remote defect indication

Note
1. TUG2 refers to a range from 1 to 7 corresponding to TUG2 #1 to TUG2 #7 and TU refers to a
range from 1 to 4 corresponding TU #1 to TU #4

Device Diagnostic Structures

Table 13: PRGD configuration: sTMX PRGD

Field Name Field Type Field Description

enable BOOLEAN enable DS3 pseudo random number generator
control UINT1 PRGD control register

ienable UINT1 PRGD interrupt enable register

length UINT1 PRGD Iength register

tap UINT1 PRGD tap register

error UINT1 PRGD error insertion register

pattern UINT4 PRGD pattern insertion registers #1-4

Table 14: PRBS configuration: sTMX PRBS

Field Name Field Type Field Description
enable UINT1 Enable Framer PRBS generation
control UINT1 PRBS generator/checker control register
ienable UINT1 PRBS checker interrupt enable register
pattern UINT1 PRBS pattern select register
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 36

Document ID: PMC-1991611, Issue 2

Data Structures

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

4.4 Structures in the Driver’s Allocated Memory

These structures are defined and used by the driver and are part of the context memory allocated

when the driver is opened.

Module Data Block

The MDB is the top level structure for the module. It contains configuration data about the

module level code and pointers to configuration data about the device level codes. Special or

unusual elements in the MDB are described first, followed by the complete list of elements in
table form.

e errModule: most of the module functions return a specific error code directly. When the
returned code is TMX FATIL, that indicates that the top level function was not able to carry the
specific error code back to the application. Under those circumstances, the proper error code
is recorded in this element. The element is the first in the structure so that the user can cast
the MDB pointer to a INT4 pointer and retrieve the local error code (this eliminates the need
to include the MDB template into the application code).

e modvalid: indicates that this structure has been properly initialized and may be read by the
user.

e modState: contains the current state of the module and could be set to: TMX MOD START,
TMX_ MOD IDLE, or TMX MOD READY.

e user[]:space is set aside for the user scratch area. The size of the space is controlled by the
constant TMX USR_SIZE and cannot be less than one UINT4 element. This element can be
used by the user for any type of storage, but only when the MDB field modvalid is set.

Table 15: Module Data Block: sTMX MDB

Field Name Field Type | Field Description

errModule INT4 Global error indicator for module calls

maxDevs UINTZ Maximum number of devices supported

autosStart BOOLEAN Indication that temuxModuleStart will be called internally

ModState UINT2 Module state (TMX MOD START, TMX MOD_ IDLE,
TMX MOD READY)

ModValid UINT2 Indication that this structure has been initialized (contains
0xCAFE)

NumDevs UINT2 Number of devices currently registered

numProfiles | UINT2 Number of profiles currently registered

semModule void * Semaphore object

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 37

Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
Data Structures

Field Name Field Type | Field Description

bufOK BOOLEAN Indicates that the call sysTemuxBufferStart succeeded

isrOK BOOLEAN Indicates that the ISR is installed

appMDB BOOLEAN Indication that the MDB was pre-allocated by the application

user [] UINT4 Extra space for use by the application. The array is sized by
the constant value: TMX USR SIZE

timerModule | void * Timer object

modMSB sTMX_MSB Module Status Block

pDDB[] sTMX_DDB | Array of (pointers to) DDBs — maxDevs determines how
many in the array

Module Status Block

The MSB contains dynamic information about the health of the module.

Table 16: Module Status Block: sTMX MSB

Field Name | Field Type | Field Description
statModule | INT4 General health of the module
valid BOOLEAN Indication that this structure is valid

Device Data Block

The DDB is the top level structure for each device. It contains configuration data about the device
level code and pointers to configuration data about device level sub-blocks. Special or unusual
elements in the DDB are described first, followed by the complete list of elements in table form.

e ecrrDevice: most of the device functions return a specific error code directly. When the
returned code is TMX FAIL, that indicates that the top level function was not able to carry the
specific error code back to the application. In addition, some device functions do not return
an error code. Under those circumstances, the proper error code is recorded in this element.
The element is the first in the structure so that the user can cast the DDB pointer to a INT4
pointer and retrieve the local error code (this eliminates the need to include the DDB template
into the application code).

e usrCtxt: this value can be used by the user to identify this device during the execution of
callback functions. It is passed to the driver in the DIV when temuxadd is called and
returned to the user in the DPV when a callback function is called. The element is unused by
the driver itself and may contain any value.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991611, Issue 2

38

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Data Structures

e DevState: contains the current state of the device and could be set to: TMX START,
TMX PRESENT, TMX ACTIVE, or TMX INACTIVE.

e devValid: indicates that this structure has been properly initialized and may be read by the
user.

e user[]:space is set aside for the user scratch area. The size of the space is controlled by the
constant TMX_ USR_SIZE and cannot be less than one UINT4 element. This element can be
used by the user for any type of storage while the MDB is ‘valid’, even if the DDB is not
‘valid’.

Table 17: Device Data Block: sTMX DDB

Field Name Field Type Field Description

errDevice INT4 Global error indicator for device calls
baseAddress | UINT1 * Device base address

usrCtxt void * Information provided by the user and returned in

callback functions

autoInit BOOLEAN Indication that the driver will invoke temuxInit
internally

profileNum UINT?2 Current profile (mode) that is in use

modeISR TMX ISR _MODE Indication of the ISR mode

cbackIO void * Address of the callback function for IO Events

cbackDS3 void * Address of the callback function for DS3 Events

cbackFramer |void * Address of the callback function for Framer Events

cbackMapper | void * Address of the callback function for Mapper Events.
(not valid in TECT3)

DevState UINTZ Device state (TMX START, TMX PRESENT,

TMX ACTIVE, TMX INACT IVE)

devVvalid UINT2 Indication that this structure has been initialized
(contains 0xBEEF)

isTemap BOOLEAN Indicates if device is TEMAP

isTect3 BOOLEAN Indicates if device is TECT3

index UINT2 Index of this DDB in the table of DDBs

revision UINTZ Device type and version (from device registers)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 39

Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Data Structures

Field Name Field Type Field Description

hwFail BOOLEAN Indicates if device cannot be found

maskSaved BOOLEAN Indicates if the current isr mask has been saved into
the member savedMask

user [] UINT4 Extra space for use by the application. The array is
sized by the constant value: TMX USR_SIZE

devIPV sTMX_IPV Initialization profile

devMASK sTMX MASK Interrupt mask

savedMask sTMX_MASK Saved copy of the interrupt mask

devDSB sTMX_DSB Device Status Block

Device Status Block

DSB Top-level Structure

Table 18: Device Status Block: sTMX DSB

Field Name Field Type Field Description

statDevice INT4 A flag derived from periodic checks that
verify that the device is OK

sbi_monitor UINT1 SBI clock monitor register

clock 1 monitor | UINT1

Master clock monitor #1

clock 2 monitor | UINT1

Master clock monitor #2

clock 3 monitor | UINT1

Master clock monitor #3

clock 4 monitor | UINT1

Master clock monitor #4

clock 5 monitor | UINT1

Master clock monitor #5

io struct tmx dsb io Alarms, status and counters from the 10
section(s)
ds3 struct tmx dsb ds3 Alarms, status and counters from the
DS3 section(s)
mux [7] struct tmx_dsb_mux Alarms, status and counters from the
MUX/MX12/DS2 section(s)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 40

Document ID: PMC-1991611, Issue 2

Data Structures

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Field Name Field Type Field Description

framer[28] struct tmx_dsb_framer | Alarms, status and counters from the
FRAMER section(s)

mapper struct tmx_dsb_mapper | Alarms, status and counters from the
MAPPER section(s) (not valid in
TECT3)

valid BOOLEAN Indication that this structure is valid

DSB Sub-structures

These structures also appear in the DSB (above).

Table 19: 10 Section Status Block: struct tmx_dsb_io

Field Name Field Type Field Description
sbidet0 UINT2 SBI bus collision detect count
sbidetl UINT2 SBI bus collision detect count

Table 20: DS3 Section Status Block: struct tmx_dsb_ds3

Field Name Field Type Field Description
frmr.stat UINT1 DS3 framer status (and alarms)
pmon.stat UINT1 DS3 framer PMON status
pmon.lcv UINT2 Line code violation event count
pmon. ferr UINT2 F-bit / M-bit error event count
pmon.exzs UINT2 Excess zeros error event count
pmon.perr UINT2 Parity error event count
pmom. cper UINT2 Path parity error event count
pmon. febe UINTZ2 FEBE event count
rdlc.stat UINTI DS3 framer PMON status
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 41

Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
Data Structures

Field Name

Field Type

Field Description

prgd.pdr

UINT4

Pattern detector error count

Table 21: MUX Section Status Block: struct tmx_dsb_mux

Field Name Field Type Field Description
frmr.stat UINT1 DS2 framer status
frmr.ferr UINT1 DS2 framing bit-error event count

Table 22: Framer Section Status Block: struct tmx_dsb_framer

Field Name Field Type Field Description

pmon. fer UINT1 FAS / Fe-bit / framing bit error event count
pmon.oof UINT2 OOF / COFA / far end block error event count
pmon.bee UINT2 CRC / bit error count

prbs.ecnt UINT4 PRBS error count

el.stat UINT1 E1 framer status

el.alarm UINT1 E1 framer alarm bits

el.crc UINT2 E1 framer crc error count

Table 23: Mapper Section Status Block: struct tmx_dsb_mapper (Not valid in TECT3)

Field Name Field Type | Field Description
telecom UINT1 SONET/SDH Telecom Bus Signal Monitor
Accumulation Trigger register contents
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 42

Document ID: PMC-1991611, Issue 2

Data Structures

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

4.5

4.6

Global Variables

Although most of the variables and structure elements within the driver are supposed to be hidden
from the application code, there are several that provide information that might come in handy for
debugging. They are to be considered read-only by the application.

e temuxMDB: A global pointer to the Module Data Block (MDB). The address of the MDB is
also returned to the application via the MIV (passed with the temuxModuleOpen function
call), in order make available the error code field. The user is cautioned that the MDB is only
valid if the ‘modvalid’ flag is set.

° errModule: this structure element is used to store an error code that specifies the reason
for a module API function’s failure. The field is only valid when the function in question
returns a TMX_FAIL value.

° modvalid: a flag that indicates when the MDB has been properly initialized and can be
read by the user.

° modState: this element stores the state of the module (see Figure 3: State Diagram).

e temuxDDBI]: An array of pointers to the individual Device Data Blocks. The address of each
DDB is also returned to the application via the DIV (passed with the temuxadd function
call), in order to make available the error code field. The user is cautioned that a DDB is only
valid if the ‘devvalid’ flag is set and that the array of DDBs is in no particular order.

° errDevice: this structure element is used to store an error code that specifies the reason
for a device API function’s failure. The field is only valid when the function in question
returns a TMX_ FAIL value.

° devValid: a flag that indicates when the DDB has been properly initialized and can be
read by the user.

° devstate: this element stores the state of the device (see Figure 3: State Diagram).

Structures Passed through RTOS Buffers

Interrupt Status Vector

This block captures the state of the device (during a POLL or during ISR processing) for use by
the Deferred-Processing Routine (DPR). It is the template for all device registers that are
involved in exception processing. It is the application’s responsibility to create a pool of ISV
buffers (using this template to determine the buffer’s size) when the driver calls the user-supplied
sysTemuxBufferStart function call. An individual ISV buffer is then obtained by the driver
via the sysTemuxISVBufferGet macro and returned to the ‘pool’ via the
sysTemuxISVBufferRtn macro.

Table 24: ISR Status Vector: sTMX ISV

Field Name Field Type Field Description

devId STMX HNDL Device handle

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 43
Document ID: PMC-1991611, Issue 2

Data Structures

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Field Name Field Type Field Description

usrCtxt void * The user context

master UINT1 Copy of the master ISR register

intsSDH UINT1 SDH master interrupt source (not valid in
TECT3)

intsSBI UINT1 SBI master interrupt source

intsDS3 UINT1 DS3 master interrupt source

intsDS2 UINT1 DS2 master interrupt source

intsMx12 UINT1 MX12 master interrupt source

channels UINT4 Bitmask indicating which T1/E1 framer (of

the 28) slice has generated an interrupt

sbiDetO UINT2 Master SBIDETO collision detect interrupt
source

sbiDetl UINT2 Master SBIDET 1 collision detect interrupt
source

io struct tmx isv io 10 Section interrupts

ds3 struct tmx isv ds3 DS3 Section interrupts

mux [7] struct tmx_isv_mux MUX/MX12/DS2 Section interrupts

framer[28] struct tmx_isv_framer | FRAMER Section interrupts

mapper struct tmx_isv_mapper | MAPPER Section interrupts (not valid in
TECT3)

ISV Sub-structures

These structures also appear in the ISV (above).

Table 25: 10 Section ISR Status Vector: struct tmx_isv_io

Field Name Field Type Field Description
exsbi.und UINT1 SBI bus egress underrun interrupt bits
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 44

Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Data Structures

Field Name Field Type Field Description

exsbi.ovr UINT1 SBI bus egress overrun interrupt bits
exsbi.ints UINT1 SBI bus parity error interrupt bits
insbi.und UINT1 SBI bus ingress underrun interrupt bits
insbi.ovr UINT1 SBI bus ingress overrun interrupt bits

Table 26: DS3 Section ISR Status Vector: struct tmx_isv_ds3

Field Name Field Type Field Description

pmon. ints UINT1 DS3 PMON interrupt bits
rdlc.ints UINT1 DS3 RDLC interrupt bits
rboc.ints UINT1 DS3 RBOC interrupt bits
frmr.ints UINT1 DS3 FRMR interrupt bits
tdpr.ints UINT1 DS3 TDPR interrupt bits
mx23.1ints UINT1 DS3 MX23 interrupt bits
prgd.intr UINT1 DS3 PRGD interrupt bits

Table 27: MUX Section ISR Status Vector: struct tmx_isv_mux

Field Name Field Type Field Description

ds2.ints UINT1 DS2 per-channel interrupt bits

ds2.intr UINT1 DS2 per-channel interrupt bits (additional)
mx12.ints UINT1 MX12 per-channel interrupt bits

Table 28: Framer Section ISR Status Vector: struct tmx_isv_framer

Field Name

Field Type

Field Description

frintsl

UINT1

E1/T1 Interrupt Source #1 interrupt bits

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991611, Issue 2

45

Data Structures

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Field Name Field Type Field Description

frints2 UINT1 E1/T1 Interrupt Source #2 interrupt bits

rjat.ints UINT1 E1/T1 receive jitter attenuator interrupt bits

tjat.ints UINT1 E1/T1 transmit jitter attenuator interrupt bits

tx_elst.intr UINT1 E1/T1 transmit elastic store interrupt bits (not valid
in TEMAP)

sig elst.intr UINT1 E1/T1 receive signaling elastic store interrupt bits
(not valid in TEMAP)

rx_elst.intr UINT1 E1/T1 receive elastic store interrupt bits (not valid
in TEMAP)

sigx.coss UINT1 E1/T1 Signaling Extractor interrupt bits (not valid in
TEMAP)

tl_frmr.ints UINT1 T1 framer interrupt bits

el frmr.sints UINT1 E1 framer status interrupt bits

el frmr.mints UINT1 E1 framer maintenance interrupt bits

el frmr.nints UINT1 E1 framer National Codeword interrupt bits

el frmr.lints UINT1 E1l framer V52 Link interrupt bits

el tran.ints UINT1 E1 transmit interrupts (not valid in TEMAP)

pmon.intr UINT1 T1 performance monitor interrupt bits

aprm.ints UINT1 T1 APRM interrupt bits (not valid in TEMAP)

rdlc.stat UINTI E1/T1 receive HDLC interrupt bits (not valid in
TEMAP)

prbs.intr UINT1 E1/T1 pattern generator interrupt bits

tdpr.ints UINT1 E1/T1 transmit HDLC interrupt bits (not valid in
TEMAP)

almi.ints UINT1 E1/T1 alarm integrator interrupt bits

rboc.ints UINT1 T1 receive bit oriented code interrupts (not valid in
TEMAP)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 46

Document ID: PMC-1991611, Issue 2

Data Structures

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Table 29: Mapper Section ISR Status Vector: struct tmx_isv_mapper

Field Name Field Type | Field Description

etpp [TUGZ2] .ais UINTI1 Egress Tributary Payload Processor AIS interrupt
bits

etpp [TUG2] . lop UINT1 Egress Tributary Payload Processor LOP

interrupt bits

etpp[TUGZ] .stat [TU]* | UINT1 Egress Tributary Payload Processor alarm status
interrupt bits

itpp[TUG2] .ais UINT1 Ingress Tributary Payload Processor AIS
interrupt bits

itpp[TUGZ] . lop UINT1 Ingress Tributary Payload Processor LOP
interrupt bits

itpp[TUG2] .stat[TU]* | UINT1 Ingress Tributary Payload Processor alarm status
interrupt bits

rtop[TUG2] .copsl UINT1 Receive Tributary Path Overhead Processor
Change of Path Signal Label interrupt bits

rtop[TUG2] .pslm UINT1 Receive Tributary Path Overhead Processor Path
Signal Label Mismatch interrupt bits

rtop[TUGZ] .pslu UINT1 Receive Tributary Path Overhead Processor Path
Signal Label Unstable interrupt bits

rtop[TUG2] .rdi UINT1 Receive Tributary Path Overhead Processor
Remote Defect Indication interrupt bits

rtop[TUG2] .rfi UINT1 Receive Tributary Path Overhead Processor
Remote Failure Indication interrupt bits

d3md.ints UINT1 DS3 Drop Side Mapper interrupt bits
d3ma.ints UINT1 DS3 Add Side Mapper interrupt bits
Note

1. TUG2 refers to a range from 1 to 7 corresponding to TUG2 #1 to TUG2 #7 and TU refers to a
range from 1 to 4 corresponding TU #1 to TU #4

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 47
Document ID: PMC-1991611, Issue 2

1 ﬁ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra Data Structures

Deferred-Processing Routine Vector

The DPV block is the template for data that is assembled by the DPR and sent to the application
code as a parameter in a callback routine. The callback routine itself identifies the Section of the
device that caused the DPR processing. Arguments passed via the callback routine identify the
source device (via the usrContext) and the event that triggered the processing. For some
events, that is all the information that the user needs. For others, additional information is needed.
The size of the DPV is kept under sixteen (16) bytes to accommodate the simpler message
passing schemes used by some Operating Systems. The DPV structure definition shown below
defines the format for sSTMX DPV 10, sTMX DPV DS3, sTMX DPV FRAMER, and

sTMX DPV_MAPPER.

Note: The application code is responsible for returning this buffer to the RTOS buffer pool.

Table 30: Deferred-Processing Vector: sSTMX DPV

Field Name | Field Type | Field Description

channels UINT4 Framer# or mx# of channel that triggered the event (if needed)
data UINT4 Pointer to HDLC receive data or transmit buffers
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 48

Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Application Programming Interface

5 APPLICATION PROGRAMMING INTERFACE

This section provides a detailed description of each function that is a member of the
TEMUX/TEMAP/TECT3 driver Application Programming Interface (API).

5.1 Module Initialization

Opening Modules: temuxModuleOpen

This function performs module level initialization of the driver. This involves allocating all of the
memory needed by the driver and initializing the internal structures. It is also possible for the user
to pre-allocate the memory needed by the driver. The user can also set a flag in the MIV that will
cause this function to invoke temuxModuleStart before returning.

Prototype INT4 temuxModuleOpen (sTMX MIV *pMIV)

Inputs pMIV : (pointer to) the MIV

Outputs Places the address of the MDB into the MIV passed by the
application

Returns Success = TMX OK

Failure = TMX ERR ARG
TMX_ERR_ISOPEN
TMX ERR ALLOC

Valid States MOD_START

Side Effects changes the STATE of the MODULE to IDLE

Closing Modules: temuxModuleClose

This function performs module level shutdown of the driver. If the driver is in the READY state,
then temuxModuleStop will be called. All RTOS resources will be returned to the RTOS and the
MDB de-allocated.

Prototype INT4 temuxModuleClose (void)

Inputs None
Outputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 49

Document ID: PMC-1991611, Issue 2

Application Programming Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

5.2

Returns Success = TMX OK
Failure = TMX ERR CLOSED

TMX_ERR_INVALID
TMX_ERR_STOP
TMX_ERR NOTIDLE

Valid States ALL STATES

Side Effects Changes the STATE of the MODULE to START

Module Activation

Starting Modules: temuxModuleStart

This function connects the RTOS resources to the driver. This involves allocating semaphores,
initializing buffers and installing the ISRs and the Deferred-Processing Routine (DPR) Task.
Upon successful return from this function, the driver is ready to add active devices.

Prototype INT4 temuxModuleStart (void)
Inputs None
Outputs None
Returns Success = TMX OK
Failure = TMX ERR CLOSED
TMX ERR INVALID
TMX ERR ISREADY
TMX_ERR NOTIDLE

Valid States IDLE

Side Effects changes the STATE of the MODULE to READY

Stopping Modules: temuxModuleStop

This function disconnects the RTOS resources from the driver. This involves deallocating
semaphores, freeing-up buffers and uninstalling the ISRs and the Deferred-Processing Routine
(DPR) Task. If there are any registered devices, temuxDelete is called for each.

Prototype INT4 temuxModuleStop (void)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 50
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Application Programming Interface

Inputs
Outputs

Returns

Valid States

Side Effects

None

None

Success = TMX OK

Failure = TMX ERR CLOSED
TMX_ERR_INVALID
TMX_ERR_ISIDLE
TMX ERR NOTREADY

READY

Changes the STATE of the MODULE to IDLE

5.3 Device Initialization
Adding Devices: temuxAdd
This function verifies the presence of a new device in the hardware, configures a Device Data
Block (DDB), stores the contents of the passed Device Initialization Vector (DIV) and passes a
handle back to the application. The handle is used as a parameter to most of the device API
functions. Caution: It is the user’s responsibility to ensure enough space has been allocated for the
MDB and DDBs if the user decides to handle this task (indicated by passing NULL for the pDIV
parameter).
Prototype STMX_ HNDL temuxAdd (sTMX DIV *pDIV)
Inputs pDIV : (pointer to) the DIV
Outputs Places the address of the DDB into the DIV passed by the
application. Places any error codes into the MDB.
Returns Success = Handle that must be used with most other device calls
Failure = NULL with temuxMdb->errModule set to either

TMX ERR ARG,

TMX_ ERR CLOSED,

TMX ERR INVALID,

TMX ERR NOTREADY,

TMX ERR MAXDEVICE,

TMX ERR ADD,

TMX ERR HNDL,

TMX ERR HWFAIL
Valid States START
Side Effects changes the STATE of the DEVICE to PRESENT

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 51

Document ID: PMC-1991611, Issue 2

Application Programming Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Deleting Devices: temuxDelete

This function removes the specified device from the group of devices being controlled by the
TEMUX/TEMAP/TECT3 driver. Deleting a device involves invalidating the DDB for that

device.
Prototype
Inputs
Outputs

Returns

Valid States

Side Effects

INT4 temuxDelete (sTMX HNDL devId)

devId : device handle (from temuxAdd)
None

Success = TMX OK

Failure = TMX ERR CLOSED
TMX_ERR_INVALID
TMX_ERR_NOTREADY
TMX_ERR_DEACTIVATE
TMX_ERR_NOTINACTIVE
TMX ERR RESET
TMX ERR NOTPRESENT
TMX_ERR_ISSTART

ACTIVE, INACTIVE, PRESENT

Changes the STATE of the device to START

Initializing Devices: temuxinit

This function initializes the device from the information stored in both the DDB and in profiles
that are hard coded into the driver. The device is reset before the initialization is carried out.

Prounype INT4 temuxInit (sTMX HNDL devId, sTMX DIV
*pDIV, UINT2 profileNum)
Inputs devid : device handle (from temuxAdd)
pDIV : pointer to the Device Initialization
Vector
profileNum : identifies the MODE profile to use
Outputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 52

Document ID: PMC-1991611, Issue 2

Application Programming Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Returns Success = TMX OK

Failure = TMX ERR_HNDL
TMX ERR ARG
TMX_ERR_NOTREADY
TMX_ERR_INVALID
TMX_ERR_NOTPRESENT
TMX ERR _CLOSED

Valid States PRESENT

Side Effects Changes the STATE of the DEVICE to INACTIVE

Resetting Devices: temuxReset

This function applies a software reset to the TEMUX/TEMAP/TECT3 device and in doing so
reinitializes the DDB for this device. This function is typically called before reinitializing the
device (via temuxInit).

Prototype INT4 temuxReset (sTMX HNDL devId)

Inputs devId : device handle (from temuxAdd)
Outputs None
Returns Success = TMX OK

Failure = TMX ERR_HNDL
TMX_ERR_CLOSED
TMX_ERR_NOTREADY
TMX ERR DEACTIVATE
TMX_ERR_INVALID
TMX ERR NOTINACTIVE

Valid States ACTIVE, INACTIVE

Side Effects Changes the STATE of the DEVICE to PRESENT

Deactivating Devices: temuxDeActivate

This function deactivates the device from operation. Interrupts are masked and the device is put
into a quiet state via section enable bits.

Prototype INT4 temuxDeActivate (sTMX HNDL devId)

Inputs devId : device handle (from temuxAdd)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 53
Document ID: PMC-1991611, Issue 2

Application Programming Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Outputs None
Returns Success = TMX OK
Failure = TMX ERR HNDL
TMX ERR INVALID
TMX ERR NOTREADY

TMX_ERR_CLOSED
TMX_ERR_NOTACTIVE

Valid States ACTIVE

Side Effects Changes the STATE of the DEVICE to INACTIVE

Activating Devices: temuxActivate

This function restores the state of a device after deactivation. Interrupts may be re-enabled.

Prototype INT4 temuxActivate (sTMX HNDL devId)

Inputs devid : device handle (from temuxAdd)
Outputs None
Returns Success = TMX OK

Failure = TMX ERR HNDL
TMX ERR CLOSED
TMX_ERR_INVALID
TMX_ERR_NOTREADY
TMX_ERR_NOTINACTIVE

Valid States INACTIVE

Side Effects Changes the STATE of the DEVICE to ACTIVE

Add Initialization Profile: temuxAddInitProfile

This function is used to add a profile to a vector of profiles. Note that the first 8 profiles (0-7) are
preset and can not be altered or deleted. Profiles between 8 and TMX MAX IPROFILES can be
added.

Prototype INT4 temuxAddInitProfile (sTMX INIT PROF
*pProf, UINT2 *pprofileNum)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 54
Document ID: PMC-1991611, Issue 2

Application Programming Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Inputs pProf : pointer to a vector of profiles
pprofileNum : pointer to the profile number, assigned
by temuxAddInitProfile

Outputs profile number assigned by the driver
Returns Success = TMX OK
Failure = TMX ERR ARG
TMX ERR CLOSED

TMX_ERR_INVALID
TMX_ERR_MAXPROF

Valid States ALL STATES except MOD_START

Side Effects None

Get Initialization Profile: temuxGetInitProfile

This function is used to get a profile from a vector of profiles. Note that the first 8 profiles (0-7)
are preset and profiles between 8 and TMX MAX IPROFILES are user defined.

Prototype INT4 temuxGetInitProfile (UINT2 profileNum,
STMX_INIT PROF *pProf)

Inputs profileNum : the profile to return

pProf : pointer to a vector of profiles
Outputs contents of the referenced Profile
Returns Success = TMX OK

Failure = TMX ERR ARG
TMX ERR CLOSED
TMX_ERR_INVALID

Valid States ALL STATES except MOD_START

Side Effects None

Delete Initialization Profile: temuxDeletelnitProfile

This function is used to delete an added profile from a vector of profiles. Note that the first 8
profiles are preset and can not be deleted and profiles between 8 and TMX MAX IPROFILES are
user defined and may be removed.

Prototype INT4 temuxDeleteInitProfile (UINT2 profileNum)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 55
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Application Programming Interface

Inputs profileNum : the profile to delete
Outputs None
Returns Success = TMX OK

Failure = TMX ERR ARG
TMX ERR CLOSED
TMX_ERR_INVALID
TMX_ERR_RANGE

Valid States ALL STATES except MOD_START

Side Effects None

Updating a device: temuxUpdate

This function is used to update a device that has been already been added and initialized with
temuxAdd. A new device initialization vector and profile number can be passed in to configure
the device with a different configuration.

Prototype INT4 temuxUpdate (sTMX HNDL devId, sTMX DIV
*pDIV, UINT2 profileNum)

Inputs devId : handle from temuxAdd ()
pDIV : (pointer) to Device
Initialization Vector
profileNum : profile number to use when

initializing device
Outputs None

Returns Success = TMX OK

Failure = TMX ERR HNDL
TMX_ERR_ARG
TMX ERR CLOSED
TMX_ERR_INVALID
TMX_ERR_NOTREADY
TMX_ERR_ISPRESENT

Valid States ACTIVE, INACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 56
Document ID: PMC-1991611, Issue 2

1 ﬁ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra Application Programming Interface

5.4 Device Reading and Writing
Reading Registers: temuxRead
This function reads the registers of specific TEMUX/TEMAP/TECT3 devices by providing the
register number.
Prototype UINT1 temuxRead (sTMX HNDL devId, UINT2 regNum)
Inputs devId : device handle (from temuxAdd)
regNum : register number
Outputs Error Code written to MDB:
TMX ERR HNDL
Error Code written to DDB:
Success = TMX OK
Failure = TMX ERR RANGE
TMX ERR ADDR
TMX ERR HWFAIL
Returns Data read from the register
Valid States PRESENT, ACTIVE, INACTIVE
Side Effects MAY affect registers that change after a read operation
Writing Registers: temuxWrite
This function writes to the registers of specific TEMUX/TEMAP/TECT?3 devices by providing
the register number.
Prototype UINT1 temuxWrite (sTMX HNDL devId, UINT2
regNum, UINT1 wdata)
Inputs devId : device handle (from temuxAdd)
regNum : register number
wdata : data to be written
Outputs Error Code written to MDB:
TMX ERR HNDL
Error Code written to DDB:
Success = TMX OK
Failure = TMX ERR RANGE
TMX ERR ADDR
TMX ERR HWFAIL
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 57

Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Application Programming Interface

Returns Previous register value
Valid States PRESENT, ACTIVE, INACTIVE

Side Effects May change the configuration of the device

Reading Framer Registers: temuxReadFR

This function reads the E1/T1 framer registers of specific TEMUX/TEMAP/TECT3 devices by
providing the framer number and register number.

Prototype UINT1 temuxReadFR (sTMX HNDL devId, UINT2
frNum, UINT2 regNum)

Inputs devid : device handle (from temuxAdd)
frNum : framer number (1-28 T1, 1-21 E1)
regNum : register number

Outputs Error Code written to MDB:

TMX ERR HNDL
Error Code written to DDB:

Success = TMX OK

Failure = TMX ERR RANGE
TMX_ERR_ADDR
TMX_ERR_HWFAIL

Returns data read from framer register

Valid States PRESENT, ACTIVE, INACTIVE

Side Effects MAY affect registers that change after a read operation

Writing Framer Registers: temuxWriteFR

This function writes to the framer registers of specific TEMUX/TEMAP/TECT3 devices by
providing the framer number and register number. If the framer number passed is zero, all the
framers will be written to with the same value.

Note: A failure to write forces a return of zero and any specific error indication is written to the
associated DDB

Prototype UINT1 temuxWriteFR (sTMX HNDL devId, UINT2
frNum, UINT2 regNum, UINT1 wdata)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 58
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Application Programming Interface

Inputs devid : device handle (from temuxAdd)
frNum : framer number (1-28 T1, 1-21 E1)
regNum : register number
wdata : data to be written

Outputs Error Code written to MDB:

TMX ERR HNDL
Error Code written to DDB:

Success = TMX OK

Failure = TMX ERR RANGE
TMX_ERR_ADDR
TMX_ERR_HWFAIL

Returns previous register value

Valid States PRESENT, ACTIVE, INACTIVE

Side Effects May change the configuration of the device

Reading DS2/MX12 Multiplexer Registers: temuxReadMX

This function reads the DS2/MX12 multiplexer registers of specific TEMUX/TEMAP/TECT3
devices by providing the slice number and register number.

Prototype UINT1 temuxReadMX (sTMX HNDL devId, UINT2
mxNum, UINT2 regNum)

Inputs devId : device handle (from temuxAdd)
mxNum : framer number (1-7)
regNum : register number

Outputs Error Code written to MDB:

TMX_ERR_HNDL

Error Code written to DDB:
Success = TMX OK

Failure = TMX ERR RANGE

TMX ERR ADDR
TMX ERR HWFAIL
Returns data read from framer register

Valid States PRESENT, ACTIVE, INACTIVE

Side Effects MAY affect registers that change after a read operation

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 59
Document ID: PMC-1991611, Issue 2

Application Programming Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Writing DS2/MX12 Multiplexer Registers: temuxWriteMX

This function writes to a DS2/MX12 multiplexer register of a specific TEMUX/TEMAP/TECT3
device by providing the framer number and register number. If the multiplexer number passed is

zero, all multiplexers will be written with the same value.

Note: A failure to write forces a return of zero and any specific error indication is written to the

associated DDB

Prototype UINT1 temuxWriteMX (sTMX HNDL devId, UINT2
mxNum, UINT2 regNum, UINT1 wdata)

Inputs devId : device handle (from temuxAdd)
mxNum : framer number (1-7)
regNum : register number
wdata : data to be written

Outputs Error Code written to MDB:

TMX ERR HNDL
Error Code written to DDB:
Success = TMX OK

Failure = TMX ERR RANGE
TMX_ERR_ADDR
TMX_ERR_HWFAIL

Returns Previous register value
Valid States PRESENT, ACTIVE, INACTIVE

Side Effects May change the configuration of the device

Reading Indirect Registers: temuxReadInd

This function reads an indirect register of a specific TEMUX/TEMAP/TECT3 device by

providing the section number and other arguments.

Prounype UINT1 temuxReadInd (sTMX HNDL devId,
TMX SECTION section, UINT2 argl, UINT2 arg2,
UINT2 arg3, UINT2 arg4)

Inputs devId : device handle (from temuxadd)
section : section (RPSC, TPSC, SIGX, INSBI
EXSBI, RTDM, TRAP, TTOP, TTMP)
argl : see parameter table below
arg2 : see parameter table below
arg3 : see parameter table below
argd : see parameter table below

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991611, Issue 2

60

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
Application Programming Interface

Outputs

Returns

Valid States

Side Effects

Error Code written to MDB:

TMX_ERR_HNDL

Error Code written to DDB:
Success = TMX OK

Failure = TMX ERR RANGE
TMX_ERR_ADDR
TMX_ERR_HWFAIL

Success = data read from indirect register

PRESENT, ACTIVE, INACTIVE

MAY affect registers that change after a read operation

Table 31: Table of Parameters: temuxReadlInd

section | arg1 arg2 arg3 arg4

RPSC Framer Number | Indirect Register n/u n/u

TPSC Framer Number | Indirect Register n/u n/u

SIGX Framer Number | Indirect Register n/u n/u

INSBI SPE Number Tributary Number n/u n/u

EXSBI SPE Number Tributary Number n/u n/u

RTDM Page Number SPE Number Stream Number | n/u

TRAP Page Number TUG3 Number TUG2 Number | TU Number

TTOP TUG3 Number TUG2 Number TU Number Register Number

TTMP Page Number TUG3 Number TUG2 Number | TU Number
RPSC, TPSC, SIGX are not valid for the TEMAP. RTDM, TRAP, TTOP, TTMP are not valid
in the TECTS3.

Writing Indirect Registers: temuxWritelnd

This function writes to an indirect register of a specific TEMUX/TEMAP/TECT3 device by
providing the section number and other arguments. This function derives the actual address
location based on the device handle, section number, and other argument inputs. It then writes the
contents of the data parameter to this address location using the system specific macro,
sysTemuxWriteReq.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991611, Issue 2

61

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Application Programming Interface

Prototype

Inputs

Outputs

Returns
Valid States

Side Effects

UINT1 temuxWriteInd (sTMX HNDL devId,
TMX SECTION section, UINT2 argl, UINT2 argz,
UINT2 arg3, UINT2 arg4, UINT1 wdata)

devId : device handle (from temuxAdd)

section : section (RPSC, TPSC, SIGX, INSBI
EXSBI,RTDM, TRAP, TTOP, TTMP)

argl : see parameter table below

arg2 : see parameter table below

arg3 : see parameter table below

argd : see parameter table below

wdata : data to be written

Error Code written to MDB:

TMX_ERR_HNDL

Error Code written to DDB:
Success = TMX OK

Failure = TMX ERR RANGE

TMX_ERR_ADDR
TMX_ERR_HWFAIL
Success = last previous value found

PRESENT, ACTIVE, INACTIVE

May change the configuration of the device

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 62
Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Application Programming Interface

Table 32: Table of Parameters: temuxWritelnd

section arg1 arg2 arg3 arg4

RPSC Framer Number | Indirect Register n/u n/u

TPSC Framer Number | Indirect Register n/u n/u

SIGX Framer Number | Indirect Register n/u n/u

INSBI SPE Number Tributary Number | n/u n/u

EXSBI SPE Number Tributary Number | n/u n/u

RTDM Page Number SPE Number Stream Number | n/u

TRAP Page Number TUG3 Number TUG2 Number TU Number

TTOP TUG3 Number | TUG2 Number TU Number Register Number

TTMP Page Number TUG3 Number TUG2 Number TU Number
RPSC, TPSC, SIGX are notvalid for the TEMAP. RTDM, TRAP, TTOP, TTMP are not valid
in the TECTS3.

Reading from Register Blocks: temuxReadBlock

This function reads the block registers of a specific TEMUX/TEMAP/TECT3 device by

providing the starting register number and the length.

Document ID: PMC-1991611, Issue 2

Prototype UINT1 temuxReadBlock (sTMX HNDL devId, UINT2
regNum, UINT2 length, UINT1 *pBlock)
Inputs devid : device handle (from temuxAdd)
regNum : register number
length : number of registers to read
pBlock : (pointer to) block read area
Outputs Error Code written to MDB:
Success = TMX OK
Failure = TMX ERR HNDL
Error Code written to DDB:
Success = TMX OK
Failure = TMX ERR RANGE
TMX ERR ADDR
TMX ERR HWFAIL
Returns Last register value read
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 63

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Application Programming Interface

Valid States

Side Effects

PRESENT, ACTIVE, INACTIVE

MAY affect registers that change after a read operation

Writing to Register Blocks: temuxWriteBlock

This function writes to the block registers of a specific TEMUX/TEMAP/TECT3 device by
providing the starting register number and length.

Note: A failure to write forces a return of zero and any specific error indication is written to the

associated DDB
Prototype UINT1 temuxWriteBlock (sTMX HNDL devId, UINT2
regNum, UINT2 length, UINT1 *pBlock)
Inputs devid : device handle (from temuxAdd)
regNum : register number
length : number of register to write
pBlock : (pointer to) the block of data to write
Outputs Error Code written to MDB:
TMX ERR HNDL
Error Code written to DDB:
Success = TMX OK
Failure = TMX ERR RANGE
TMX ERR ADDR
TMX ERR HWFAIL
Returns last previous value found
Valid States PRESENT, ACTIVE, INACTIVE
Side Effects May change the configuration of the device

Reading Mapper Registers: temuxReadMapper (TEMUX/TEMAP only)

This function reads the mapper registers of a specific TEMUX/TEMAP device by providing the
base register, TUG3, TUG2 and TU number.

Prototype UINT1 temuxReadMapper (sTMX HNDL devId, UINT2
regNum, UINT2 tug3, UINT2 tug2, UINT2 tu)

Inputs devid : device handle (from temuxAdd)
regNum : register number
tug3 : tributary unit 3 group number (1-3)
tug?2 : tributary unit 2 group number (1-7)
tu : tributary unit number (1-4)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 64

Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Application Programming Interface

Outputs Error Code written to MDB:
TMX ERR HNDL

Error Code written to DDB:
Success = TMX OK

Failure = TMX ERR RANGE
TMX_ERR_ADDR
TMX_ERR_HWFAIL

Returns data read from mapper register

Valid States PRESENT, ACTIVE, INACTIVE

Side Effects MAY affect registers that change after a read operation

Writing Mapper Registers: temuxWriteMapper (TEMUX/TEMAP only)

This function writes to the mapper register of a specific TEMUX/TEMAP device by providing
the register, TUG3, TUG2 and TU number. This function derives the actual address location
based on the device handle, register, TUG3, TUG2, and TU number inputs. It then writes the
contents of this address location using the system specific macro, sysTemuxWriteReg.

Note: A failure to write forces a return of zero and any specific error indication is written to the
associated DDB

Prototype UINT1 temuxWriteMapper (sTMX HNDL devId, UINT2
regNum, UINT2 tug3, UINT2 tug2, UINT2 tu, UINTL

wdata)

Inputs devId : device handle (from temuxAdd)
regNum : register number
tug3 : tributary unit 3 group number (1-3)
tug?2 : tributary unit 2 group number (1-7)
tu : tributary unit number (1-4)
wdata : data to be written

Outputs Error Code written to MDB:
TMX ERR HNDL
Error Code written to DDB:

Success = TMX OK
Failure = TMX ERR RANGE

TMX_ERR ADDR
TMX_ERR_HWFAIL
Returns Previous register value

Valid States PRESENT, ACTIVE, INACTIVE

Side Effects May change the configuration of the device

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 65
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Application Programming Interface

DS3-HDLC Service: temuxLinkDataDS3

This function is normally called after a callback by indicating that the DS3-TxHDLC register fifo
is nearing empty or that the DS3-RxHDLC register fifo is nearing full.

Prototype INT4 temuxLinkDataDS3 (sTMX HNDL devId, UINT1
*data, UINT2 length, BOOLEAN read)

Inputs devId : device handle (from temuxAdd)
data : (pointer to) HDLC data
length : size of HDLC data
read : if set, read link data

Outputs None

Returns Success = TMX OK

Failure = TMX ERR HNDL
TMX_ERR_CLOSED
TMX_ERR_INVALID
TMX_ERR_NOTREADY
TMX ERR_ISSTART
TMX ERR_ISPRESENT
TMX ERR_ADDR

Valid States ACTIVE

Side Effects None

T1-HDLC Service: temuxLinkDataT1 (TEMUX/TECT3 Only)

This function is normally called after a callback when it indicates that the T1-TxHDLC register
fifo is nearing empty or that the T1-RxHDLC register fifo is nearing full.

Prototype INT4 temuxLinkDataTl (sTMX HNDL devId, UINT2
frNum, UINT1 *data, UINT2 length, BOOLEAN read)

Inputs devid : device handle (from temuxAdd)
frNum : framer number (1-28)
data : (pointer to) HDLC data
length : size of HDLC data
read : if set, read link data
Outputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 66

Document ID: PMC-1991611, Issue 2

1 ﬁ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra Application Programming Interface

Returns Success = TMX OK

Failure = TMX ERR_HNDL
TMX_ERR CLOSED
TMX ERR_INVALID
TMX ERR_NOTREADY
TMX ERR_ISSTART
TMX ERR ISPRESENT
TMX ERR ADDR
TMX ERR ARG

Valid States ACTIVE

Side Effects None
5.5 Interrupt Service Functions

Getting Mask Registers: temuxGetMask

This function returns the contents of the interrupt mask registers of the TEMUX/TEMAP/TECT3

device.
Prototype INT4 temuxGetMask (sTMX HNDL devId, void *pMASK)
Inputs devid : device handle (from temuxAdd)
PMASK : (pointer to) mask structure
(sTMX_MASK *) cast to void *
Outputs None
Returns Success = TMX OK

Failure = TMX ERR_HNDL
TMX_ERR_CLOSED
TMX_ERR_INVALID
TMX ERR _NOTREADY
TMX ERR_ISSTART
TMX_ERR_ARG

Valid States PRESENT, ACTIVE, INACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 67

Document ID: PMC-1991611, Issue 2

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

r: BA \ PMC-Sierra Application Programming Interface

Setting Mask Registers: temuxSetMask

This function sets individual interrupt bits and registers in the TEMUX/TEMAP/TECT3 device.
Any bits that are set in the passed structure are set in the associated TEMUX/TEMAP/TECT?3

registers.

Prototype INT4 temuxSetMask (sTMX HNDL devId, void

*pPMASK)
Inputs devid : device handle (from temuxAdd)
PMASK : (pointer to) mask structure
(sTMX MASK *) cast to void *
Outputs None
Returns Success = TMX OK

Failure = TMX ERR_HNDL
TMX_ERR_CLOSED
TMX_ERR_INVALID
TMX ERR _NOTREADY
TMX_ERR_ISSTART
TMX_ERR_ARG

Valid States PRESENT, ACTIVE, INACTIVE

Side Effects May change the operation of the ISR/DPR

Clearing Mask Registers: temuxClearMask

This function clears individual interrupt bits and registers in the TEMUX/TEMAP/TECT3
device. Any bits that are set in the passed structure are cleared in the associated
TEMUX/TEMAP/TECT3 registers.

INT4 temuxClearMask (sTMX HNDL devId, void

Prototype
*pPMASK)
Inputs devId : device handle (from temuxAdd)
PMASK : (pointer to) mask structure
(sTMX MASK *) cast to void *
Outputs None
Returns Success = TMX OK

Failure = TMX ERR_HNDL
TMX ERR CLOSED
TMX_ERR_INVALID
TMX_ERR_NOTREADY
TMX_ERR_ISSTART
TMX ERR ARG

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

68

Document ID: PMC-1991611, Issue 2

1 ﬁ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra Application Programming Interface

Valid States PRESENT, ACTIVE, INACTIVE

Side Effects May change the operation of the ISR/DPR

Polling Interrupt Registers: temuxPoll

This function commands the driver to poll the interrupt registers in the device. The call will fail
unless the device was initialized into polling mode. The output of the poll is the same as it would
be if interrupts were enabled: the data gathered is passed to the DPR for disposition.

Prototype INT4 temuxPoll (sTMX HNDL devId, void *pBuf)

Inputs devId : device handle (from temuxAdd)
pBuf : (pointer to) an ISV ((sTMx_ ISV *)
cast to void ¥)

Outputs None

Returns Success = TMX OK
Failure = TMX ERR_HNDL
TMX_ERR CLOSED
TMX ERR_INVALID
TMX ERR_NOTREADY
TMX ERR_ISSTART
TMX_ERR MODE

Valid States ACTIVE, INACTIVE

Side Effects None

Interrupt Service: temuxISR

This function reads the state of the interrupt registers in the TEMUX/TEMAP/TECT3 and stores
them into an ISV. Performs whatever functions are needed to clear the interrupt, from simply
clearing bits to complex functions. This routine is called by the application code, from within

sysTemuxISRHandler.

Prototype void *temuxISR (sTMX HNDL devId)

Inputs devId : device Handle (from temuxAdd)
Outputs None
Returns (pointer to) an ISV or NULL on error
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 69

Document ID: PMC-1991611, Issue 2

1 ﬁ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra Application Programming Interface

Valid States ACTIVE, INACTIVE, PRESENT

Side Effects None

Interrupt Processing: temuxDPR

This function acts on data contained in an ISV, creates a DPV, invoking application code
callbacks (if defined and enabled) and possibly performing linked actions. This function is called
from within the application function sysTemuxDPRTask.

Prototype void *temuxDPR (void *pBuf)

Inputs pBuf : (pointer to) an ISV ((sTMX_ISV *)castto void *)
Outputs None
Returns (pointer to) an ISV or NULL on error

Valid States ACTIVE, INACTIVE, PRESENT

Side Effects None

Configure ISR: temuxISRConfig
This function sets the mode of operations for the ISR/DPR functions.

Prounype INT4 temuxISRConfig (sTMX HNDL devId,
TMX ISR MODE mode)

Inputs devId : device handle (from temuxAdd)
mode : ISR/polling mode:
TMX ISR HDWR - hardware ISR mode
TMX ISR MANUAL - polling mode

Outputs None

Returns Success = TMX OK
Failure = TMX ERR_HNDL
TMX_ERR_CLOSED
TMX_ERR_INVALID
TMX ERR _NOTREADY
TMX_ERR_ISSTART
TMX_ERR_ARG

Valid States PRESENT, INACTIVE, ACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 70
Document ID: PMC-1991611, Issue 2

1 ﬁ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra Application Programming Interface

5.6 Alarms, Status and Statistics Functions
The TEMUX/TEMAP/TECT3 device provides alarm, simple status and statistical counts of
errors via the following functions.
Retrieving Statistical Counts: temuxGetStats
This function retrieves the statistical counts that are kept by the TEMUX/TEMAP/TECT3 device.
Prototype INT4 temuxGetStats (sTMX HNDL devId, void
*pBlock)
Inputs devid : device handle (from temuxAdd)
pBlock : (pointer to) device status block
((sTMX_DSB *) cast to void *)
Outputs None
Returns Success = TMX OK
Failure = TMX ERR_HNDL
TMX ERR CLOSED
TMX ERR INVALID
TMX ERR NOTREADY
TMX ERR ISSTART
TMX ERR ADDR
Valid States ACTIVE, INACTIVE
Side Effects None
Clearing Statistical Counts: temuxClearStats
This function clears the statistical counts that are kept by the TEMUX/TEMAP/TECT3 device.
Prototype INT4 temuxClearStats (sTMX HNDL devId)
Inputs devid : device handle (from temuxAdd)
Outputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 71

Document ID: PMC-1991611, Issue 2

1 ﬁ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra Application Programming Interface

Returns Success = TMX OK
Failure = TMX ERR_HNDL
TMX_ERR CLOSED
TMX ERR_INVALID
TMX ERR_NOTREADY
TMX ERR_ISSTART
TMX ERR_ADDR

Valid States ACTIVE, INACTIVE

Side Effects None

5.7 Device Diagnostics

Clearing/Setting Mapper Loopbacks: temuxLoopMapper (TEMUX/TEMAP
only)

This function clears or sets loopbacks within the Mapper section of the device. It is up to the user
to perform any tests on the looped data.

Prototype INT4 temuxLoopMapper (sTMX HNDL devId,
TMX LOOP TYPE loop, BOOLEAN enable)

Inputs devId : device handle (from temuxAdd)
enable : clears loop if clear, else sets loop
loop : loop type: TMX NOLOOP

TMX_DLOOP
TMX_LLOOP
TMX_PLOOP
Outputs None
Returns Success = TMX OK

Failure = TMX ERR_HNDL
TMX ERR CLOSED
TMX_ERR_INVALID
TMX ERR _NOTREADY
TMX_ERR_ISPRESENT
TMX_ERR_ADDR
TMX ERR ARG

Valid States ACTIVE, INACTIVE

Side Effects May inhibit the flow of active data

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 72

Document ID: PMC-1991611, Issue 2

1 ﬁ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra Application Programming Interface

Clearing/Setting DS3 Devices Loopbacks: temuxLoopDS3

This function clears or sets loopbacks within the DS3 section of the device. It is up to the user to
perform any tests on the looped data.

Prototype INT4 temuxLoopDS3 (sTMX HNDL devId,
TMX LOOP TYPE loop, BOOLEAN enable)

Inputs devId : device handle (from temuxAdd)
enable : clears loop if clear, else sets loop
loop : loop type: TMX NOLOOP

TMX_DLOOP
TMX_LLOOP
TMX_PLOOP
Outputs None
Returns Success = TMX OK

Failure = TMX ERR_HNDL
TMX_ERR_CLOSED
TMX_ERR_INVALID
TMX_ERR_NOTREADY
TMX ERR_ISPRESENT
TMX_ERR_ADDR
TMX_ERR_ARG

Valid States ACTIVE, INACTIVE

Side Effects May inhibit the flow of active data

Clearing/Setting DS3 Bert Tests: temuxBertDS3

This function clears or sets the Pseudo Random Pattern generation and detection hardware within
the DS3 section of the device. The results can be returned to the application code via normal ISR
processing or by calling temuxGetStats. It is up to the user to interpret any results from the

test.

Prounype INT4 temuxBertDS3 (sTMX HNDL devId, sTMX PRGD
*pPRGD)

Inputs devid : device handle (from temuxAdd)
PPRGD : (pointer to) BERT test block

Outputs Error Code written to the MDB on failure

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 73

Document ID: PMC-1991611, Issue 2

1 ﬁ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra Application Programming Interface

Returns

Valid States

Side Effects

Success = TMX OK

Failure = TMX ERR_HNDL
TMX ERR CLOSED
TMX_ERR_INVALID
TMX_ERR_NOTREADY
TMX_ERR_ISPRESENT
TMX_ERR_ADDR

ACTIVE, INACTIVE

May inhibit the flow of active data

Clearing or Setting Bert Framer: temuxBertFramer (TEMUX/TECT3 only)

This function clears or sets the Pseudo Random Pattern generation and detection hardware within
the E1/T1 section of the device. The results can be returned to the application code via normal
ISR processing or by calling temuxGetStats. It is up to the user to interpret any results from

the test.

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

INT4 temuxBertFramer (sTMX HNDL devId, UINT2
frNum, sTMX PRBS *pPRBS)

devId : device handle (from temuxAdd)
frNum : framer number (1-28 T1), (1-21 E1)
PPRBS : (pointer to) PRBS structure

None

Success = TMX OK

Failure = TMX ERR_HNDL
TMX_ ERR_RANGE
TMX ERR ARG
TMX ERR CLOSED
TMX_ERR_INVALID
TMX_ERR_NOTREADY
TMX_ERR_ISPRESENT
TMX ERR_ISTEMAP
TMX_ERR_ADDR

INACTIVE, ACTIVE

Will inhibit the flow of active data

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

74

Document ID: PMC-1991611, Issue 2

Application Programming Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Clearing/Setting E1/T1 Framer Loopbacks: temuxLoopFramer
(TEMUX/TECTS3 only)

This function clears or sets loopbacks within the E1/T1 framer section of the device. It is up to
the user to perform any tests on the looped data.

Prototype INT4 temuxLoopFramer (sTMX HNDL devId, UINT2
frNum, TMX LOOP TYPE loop, BOOLEAN enable)

Inputs devid : device handle (from temuxAdd)
enable : clears loop if clear, else sets loop
frNum : framer number (1-28 T1), (1-21 E1)
loop : loop type: TMX_ NOLOOP

TMX_DLOOP
TMX LLOOP
TMX_PLOOP
Outputs None
Returns Success = TMX OK

Failure = TMX ERR_HNDL
TMX ERR RANGE
TMX_ERR_CLOSED
TMX_ERR_INVALID
TMX_ERR_NOTREADY
TMX ERR_ISPRESENT
TMX ERR_ISTEMAP
TMX ERR_ADDR

Valid States ACTIVE, INACTIVE

Side Effects May inhibit the flow of active data

Clearing/Setting MX12 Devices Loopbacks: temuxLoopMX12

This function clears or sets loopbacks within the MX12 section of the device. It is up to the user
to perform any tests on the looped data.

Prototype INT4 temuxLoopMx12 (sTMX HNDL devId, UINT2
mxNum, UINT2 dsONum, UINT2 up, BOOLEAN ais)

Inputs devId : device handle (from temuxAdd)
mxNum : framer number (1-7)
dsONum : channel number (1-4)
up : up/down flag
ais : add AIS when looping up flag
Outputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 75

Document ID: PMC-1991611, Issue 2

1 ﬁ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra Application Programming Interface

Returns Success = TMX OK

Failure = TMX ERR_HNDL
TMX_ERR CLOSED
TMX ERR_INVALID
TMX ERR_NOTREADY
TMX ERR_ISPRESENT
TMX_ERR ISSTART
TMX ERR ADDR
TMX ERR ARG

Valid States ACTIVE, INACTIVE

Side Effects May inhibit the flow of active data

Clearing/Setting MX23 Devices Loopbacks: temuxLoopMX23

This function clears or sets loopbacks within the MX23 section of the device. It is up to the user
to perform any tests on the looped data.

Prototype INT4 temuxLoopMx23 (sTMX HNDL devId, UINT2
mxNum, UINT2 up, BOOLEAN ais)

Inputs devId : device handle (from temuxAdd)
mxNum : framer number (1-7)
up : up/down flag
ais : add AIS when looping up flag
Outputs None
Returns Success = TMX OK

Failure = TMX ERR_HNDL
TMX_ERR_CLOSED
TMX_ERR_INVALID
TMX ERR _NOTREADY
TMX ERR_ISPRESENT
TMX ERR_ISSTART
TMX ERR_ADDR
TMX_ERR_ARG

Valid States ACTIVE, INACTIVE

Side Effects May inhibit the flow of active data

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 76
Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
Application Programming Interface

5.8 Callback Functions

The TEMUX/TEMAP/TECT?3 driver has the capability to callback functions within the user code
when certain events occur. These events and their associated callback routine declarations are
detailed below. There is no user code action that is required by the driver for these callbacks - the
user is free to implement these callbacks in any manner or else they can be deleted from the

driver.

Reporting 10 Events: sysTemuxCBacklO

The sysTemuxCBackIO callback function is provided by the user and is used by the DPR to
report significant IO Section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event identifier
and other context information. The task that receives this message can then process this
information according to the system requirements. The user should free the DPV buffer.

Prototype void sysTemuxCBackIO (void *usrCtxt
TMX_ DPR_EVENT event, sTMX DPV_IO *pDPV)

Inputs usrCtxt
event
PDPV

Outputs None

Returns None

: user context (passed in temuxAdd)
: event that triggered the callback
: formatted event buffer

Reporting DS3 Events: sysTemuxCBackDS3

This callback function is provided by the user and is used by the DPR to report significant DS3
Section events back to the application. This function should be non-blocking. Typically, the
callback routine sends a message to another task with the event identifier and other context
information. The task that receives this message can then process this information according to
the system requirements. The user should free the DPV buffer.

Prototype void sysTemuxCBackDS3 (void *usrCtxt
TMX_DPR _EVENT event, sTMX DPV_DS3 *pDPV)

Inputs event : event that triggered the callback
pDPV : formatted event buffer
usrCtxt : user context (passed in temuxAdd)
Outputs None
Returns None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 77

Document ID: PMC-1991611, Issue 2

Application Programming Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Reporting Framer Events: sysTemuxCBackFramer

This callback function is provided by the user and is used by the DPR to report significant Framer
Section events back to the application. This function should be non-blocking. Typically, the
callback routine sends a message to another task with the event identifier and other context
information. The task that receives this message can then process this information according to
the system requirements. The user should free the DPV buffer.

Prototype void sysTemuxCBackFramer (void *usrCtxt
TMX DPR_EVENT event, sTMX DPV_FRAMER *pDPV)

Inputs event : event that triggered the callback
pDPV : formatted event buffer
usrCtxt : user context (passed in temuxAdd)
Outputs None
Returns None

Reporting Mapper Events: sysTemuxCBackMapper (TEMUX/TEMAP only)

This callback function is provided by the user and is used by the DPR to report significant
Mapper Section events back to the application. This function should be non-blocking. Typically,
the callback routine sends a message to another task with the event identifier and other context
information. The task that receives this message can then process this information according to
the system requirements. The user should free the DPV buffer.

Prototype void sysTemuxCBackMapper (void *usrCtxt
TMX DPR_EVENT event, sTMX DPV_MAPPER *pDPV)

Inputs event : event that triggered the callback
pDPV : formatted event buffer
usrCtxt : user context (passed in temuxAdd)
Outputs None
Returns None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 78

Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Hardware Interface

6

HARDWARE INTERFACE

The TEMUX/TEMAP/TECT3 driver interfaces directly with the user’s hardware. In this section,
a listing of each point of interface is shown, along with a declaration and any specific porting
instructions. It is the responsibility of the user to connect these requirements into the hardware,
either by defining a macro or writing a function for each item listed. Care should be taken when
matching parameters and return values.

6.1 Platform Specific MACROs

Reading a Device Register: sysTemuxSafeRead
The first read the driver makes to a newly added device allows the driver to check on the presence
of that device via a ‘safe’ read. If the read fails, the driver will not continue to add the device and
will return an error to the application. This macro should be UINT1 oriented and should be
defined by the user to reflect the target system’s addressing logic.
Prototype sysTemuxSafeRead (address, pData)
Inputs address : register location to be read

pDhata : (pointer to) user’s variable
Outputs None
Returns Success = 0x00

Failure = <any other value>
Reading from Registers: sysTemuxReadReg
This macro reads the contents of a specific register location. This macro should be UINT1
oriented and should be defined by the user to reflect the target system’s addressing logic. There is
no need for error recovery in this function.
Prototype s ysTemuxReadReg (address)
Inputs address : register location to be read
Outputs None
Returns value read from the addressed register location

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 79

Document ID: PMC-1991611, Issue 2

Hardware Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

6.2

Writing Register Values: sysTemuxWriteReg

This macro writes the supplied value to the specific register location. This macro should be
UINT1 oriented and should be defined by the user to reflect the target system’s addressing logic.
There is no need for error recovery in this function.

Prototype sysTemuxWriteReg (address, data)

Inputs address : register location to be written
data : data to be written

Outputs None

Returns value written to the addressed register location

Interrupt Servicing

General ISR Routines

The porting of an ISR routine between platforms is a rather difficult task. There are so many
different implementations of the hardware level routines that creating a universal routine is
impossible.

In this driver, the user is responsible for creating a ‘shell’ (sysTemuxISRHandler) handler that
in turn calls an API function, temuxISR, once for EACH device requesting service, to perform
the ISR related housekeeping that is required by the device. This method was chosen because it
places the burden of determining which device(s) is(are) requesting service on the user, rather
than attempting to incorporate the many possible hardware scenarios into the driver.

During execution of the API function temuxModuleStart (temuxModuleStop), the driver
informs the application that it is time to install (uninstall) this ‘shell’ via the user supplied

function: sysTemuxISRHandlerInstall (sysTemuxISRHandlerRemove).

Note: A device can be initialized with interrupts disabled. In that mode, a polling routine can be
invoked independently that in-turn processes the interrupt status in the device.

Installing Interrupt Handlers: sysTemuxISRHandlerInstall

This function installs the user-supplied Interrupt-Service Routine, sysTemuxISRHandler, into
the processor’s interrupt vector table.

Prototype sysTemuxISRHandlerInstall (temuxISR)
Inputs temuxISR : (pointer to) the function temuxISR

Outputs None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 80
Document ID: PMC-1991611, Issue 2

Hardware Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Returns Success = 0x00
Failure = <any other value>

Invoking Interrupt Handlers: sysTemuxISRHandler

This routine is invoked when one or more TEMUX/TEMAP/TECT3 devices raise the interrupt
line to the microprocessor. This routine invokes the driver-provided routine, temux ISR, for each
device registered with the driver.

Prototype sysTemuxISRHandler (void)
Inputs None
Outputs None

Returns None

Removing Interrupt Handlers: sysTemuxISRHandlerRemove

This function removes the user-supplied Interrupt-Service Routine, sysTemuxISRHandler,
from the processor’s interrupt vector table.

Prototype sysTemuxISRHandlerRemove (void)
Inputs None
Outputs None

Returns None

Installing DPRTask: sysTemuxDPRTaskInstall

The driver calls this user-supplied function to inform the application that it is time to initialize
and/or install the user-supplied function sysTemuxDPRTask. Note: In most cases, the user will
install sysTemuxDPRTask as a task but that is not required.

Prototype sysTemuxDPRTaskInstall (temuxDPR)

Inputs temuxDPR : (pointer to) the function
temuxDPR

Outputs None

Returns Success = 0x00
Failure = <any other value>

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 81
Document ID: PMC-1991611, Issue 2

Hardware Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

DPR Task: sysTemuxDPRTask

This user-supplied function is installed (generally as a separate task within the RTOS) when the
driver invokes the sysTemuxDPRTaskInstall call. It runs periodically and is responsible for
calling the API function temuxDPR. The user may choose to have this task perform the
sysTemuxBufferReceive and sysTemuxISVBufferRtn functions (passing the ISV as a
parameter to temuxDPR) or the user may pass a NULL to temuxDPR, in which case temuxDPR
will receive and deallocate the ISV buffer.

Prototype sysTemuxDPRTask (void)
Inputs None
Outputs None

Returns None

Removing DPRTask: sysTemuxDPRTaskRemove

This function informs the application that it is time to remove (suspend) the user-supplied task
sysTemuxDPRTask.

Prototype sysTemuxDPRTaskRemove (void)
Inputs None
Outputs None

Returns None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 82
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

RTOS Interface
7 RTOS INTERFACE

The TEMUX/TEMAP/TECT3 driver requires the use of some RTOS resources. In this section, a
listing of each required resource is shown, along with a declaration and any specific porting
instructions. It is the responsibility of the user to connect these requirements into the RTOS,
either by defining a macro or writing a function for each item listed. Care should be taken when
matching parameters and return values.

7.1 Memory Allocation

Allocating Memory: sysTemuxMemAlloc

This macro allocates a specified number of bytes of memory.
Format sysTemuxMemAlloc (number)

Inputs number : number of bytes to be allocated
Outputs None

Returns Success = (pointer to) first byte of allocated memory
Failure = NULL (pointer)

Freeing Allocated Memory: sysTemuxMemFree
This macro frees memory allocated using sysTemuxMemAlloc.

Format sysTemuxMemFree (address)

Inputs address : (pointer to) first byte of the memory region
being de-allocated

Outputs None

Returns None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 83
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

RTOS Interface

7.2 Buffer Management

All operating systems provide some sort of buffer system, particularly for use in sending and
receiving messages. Most operating systems provide both an internal set of buffers (usually small
in size) and functions that allow the user to create additional buffer pools (especially when the
buffer size needs to be large). It is the intention of this driver to use both types of buffers, the ISV
being the large buffer that carries the entire exception state of the device and the DPV being the
small buffer that carries individual block event flags and other simple bits of information.

The following calls, provided by the user, allow the driver to get and return these buffers from/to
the RTOS. It is the user’s responsibility to create any special resources or pools to handle buffers

of these sizes. This creation is done by the application when the driver calls the user-supplied
function sysTemuxBufferStart.

Starting Buffers: sysTemuxBufferStart

This function alerts the RTOS that the time has come to make sure ISV buffers and DPV buffers
are available and sized correctly. This may involve the creation of new buffer pools and it may
involve nothing, depending on the RTOS.

Prototype sysTemuxBufferStart (void)

Inputs None

Outputs None

Returns Success = 0x00
Failure = <any other value>

Getting DPV Buffers: sysTemuxDPVBufferGet

This function gets a buffer from the RTOS that will be used by the DPR code to create a DPR
Vector (DPV). The DPV consists of information about the state of the device that is to be passed
to the user via a callback function.

Prototype sysTemuxDPVBufferGet (void)

Inputs None

Outputs None

Returns Success = (pointer to) a DPV buffer
Failure = NULL (pointer)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 84
Document ID: PMC-1991611, Issue 2

RTOS Interface

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Getting ISV Buffers: sysTemuxISVBufferGet

This function gets a buffer from the RTOS that will be used by the ISR code to create a Interrupt
Status Vector (ISV). The ISV consists of data read from the device’s interrupt status registers.

Prototype sysTemuxISVBufferGet (void)
Inputs None
Outputs None

Returns Success = (pointer to) a ISV buffer
Failure = NULL (pointer)

Returning DPV Buffers: sysTemuxDPVBufferRtn
This function returns a DPV buffer to the RTOS when the information in the block is no longer

needed. This buffer is usually returned to the buffer pool by the application, during the processing
of a callback function.

Prototype s ysTemuxDPVBufferRtn (sTMX DPV *pDPV)
Inputs pDPV : (pointer to) a DPV Buffer
Outputs None

Returns None

Returning ISV Buffers: sysTemuxISVBufferRtn

This function returns an ISV buffer to the RTOS when the information in the block is no longer
needed. This buffer is usually returned to the buffer pool by the DPR processing code.

Prototype sysTemuxISVBufferRtn (sTMX_ISV *pISV)
Inputs pISV : (pointer to) a ISV Buffer
Outputs None

Returns None

Sending an ISV buffer to the DPR task: sysTemuxBufferSend

This function sends an ISV message to the DPR task with the device handle and interrupt statuses
for that device.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 85
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

RTOS Interface

Prototype sysTemuxBufferSend (sTMX_ISV *pISV)
Inputs pISV : (pointer to) a ISV Buffer
Outputs None

Returns Success =0
Failure = any non-zero value

Receiving an ISV buffer: sysTemuxBufferReceive

This function receives an ISV buffer from the RTOS. It is meant to be used by the DPR task to
receive ISV messages from the ISR.

Prototype sysTemuxBufferReceive (void)
Inputs None
Outputs None

Returns Success = pointer to an ISV
Failure = NULL

Stopping ISV/IDPV Buffers: sysTemuxBufferStop

This function alerts the RTOS that the driver no longer needs any of the ISV buffers or DPV
buffers and that if any special resources were created to handle these buffers, they can be deleted
now.

Prototype sysTemuxBufferStop (void)

Inputs None

Outputs None

Returns None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 86
Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

8

8.1

PORTING DRIVERS

This section outlines how to port the TEMUX/TEMAP/TECT3 device driver to your hardware
and RTOS platform. However, this manual can offer only guidelines for porting the driver
because each platform and application is unique.

Driver Source Files

The C source files listed in Table 33 contain the code for the TEMUX/TEMAP/TECTS3 driver.
You may need to modify the code or develop additional code. The code is in the form of
constants, macros, and functions. For the ease of porting, the code is grouped into source files
(src) and include files (inc). The src files contain the functions and the inc files contain the
constants and macros.

Table 33: Driver Source Files

src

tmx_api .c (contains all API functions)

tmx_util.c (contains driver internal functions)

tmx diag.c (contains diagnostic functions)

tmx_hw.c (contains hardware interface functions)

tmx_ stat.c (alarms status and statistics functions)

tmx_rtos.c (contains RTOS interface functions)

tmx_app.c (contains sample driver callback functions and sample code)

tmx_isr.c (ISR functions)

tmx_dpr.c (DPR functions)

inc

tmx_ api.h (contains data-structure definitions and prototypes)

tmx_hw.h (contains hardware-interface macro and constant definitions)

tmx_rtos.h (contains RTOS-interface macro and constant definitions)

tmx_ app.h (contains data structure definitions and prototypes of sample
code)

tmx_dev.h (the device register mapping)

tmx_mdb.h (the layout of the MDB)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 87
Document ID: PMC-1991611, Issue 2

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
Porting Drivers

Porting Drivers

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

8.2

temux.h (contains general defines for compiling)

tmx_ isr.h (contains ISR definitions and prototypes)

tmx_dpr.h (contains DPR definitions and prototypes)

tmx_util.h (contains driver internal function definitions and prototypes)

example app - ¢ (simple example code for starting up the driver)

app.h (declarations for the sample code)

hw pci.h (example hardware porting file for an Intel x86 Compact PCI
based system)

rtos vxw.h (example RTOS porting file for the vk Works RTOS)

Driver Porting Procedures

The following procedures summarize how to port the TEMUX/TEMAP/TECT3 driver to your
platform. The subsequent sections describe these procedures in more detail.

To port the TEMUX/TEMAP/TECT3 driver to your platform:
Step 1: Port the driver’s RTOS extensions (below):

Step 2: Port the driver to your hardware platform (on page 90):
Step 3: Port the driver’s application-specific elements (on page 90):

Step 4: Build the driver (on page 91).

Step 1: Porting Driver RTOS Extensions

The RTOS extensions encapsulate RTOS specific services and data types used by the driver. The
temux.h file contains data types and compiler-specific data-type definitions. The file

tmx rtos.h contains macros for RTOS specific services used by the RTOS extensions. These
RTOS extensions include:

e Task management
e Message queues

e Memory Management

In addition, you may need to modify functions that use RTOS specific services, such as utility and
interrupt-event handling functions. The tmx util.c and tmx_isr.c files contain the utility and
interrupt-event handler functions that use RTOS specific services.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 88
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Porting Drivers

To port the driver’s RTOS extensions:

1. Modify the data types in temux.h. The number after the type identifies the data-type size.
For example, UINT4 defines a 4-byte (32-bit) unsigned integer. Substitute the compiler types
that yield the desired types as defined in this file.

2. Modify the RTOS specific services in tmx_rtos.h. Redefine the following macros to the
corresponding system calls that your target system supports:

Service Type | Macro Name Description

Memory sysTemuxMemAlloc Allocates the memory block
sysTemuxMemFree Frees the memory block

Task sysTemuxDPRTaskInstall | Installs the DPR task in the RTOS
sysTemuxDPRTaskRemove | Removes the DPR task from the RTOS

3. Modify the following RTOS specific function in tmx_rtos.c:

Service Type | Function Name Description

Buffer sysTemuxBufferStart Starts buffer management
sysTemuxBufferStop Stops buffer management
sysTemuxBufferSend Sends a buffer to the DPR task

sysTemuxBufferReceiv | Receives a buffer from the RTOS
e

sysTemuxISVBufferGet | Getsan ISV buffer from the ISV buffer queue

sysTemuxISVBufferRtn | Returns an ISV buffer to the ISV buffer queue

sysTemuxDPVBufferGet | Gets a DPV buffer from the DPV buffer queue

sysTemuxDPVBufferRtn | Returns a DPV buffer to the DPV buffer
queue

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 89
Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Porting Drivers

Step 2: Porting Drivers to Hardware Platforms

This section describes how to modify the TEMUX/TEMAP/TECT3 driver for your hardware

platform.

To port the driver to your hardware platform:

1. Modify the low-level device read/write macros in the tmx_hw.h file.

Service Type | Function Name Description
Device 1/O sysTemuxReadReg Reads a device register given its real
address in memory
sysTemuxWriteReg Writes to a device register given its real
address in memory
sysTemuxSafeRead Reads a device register in ‘safe’ fashion
when adding a device
Interrupt sysTemuxISRHandlerInstall | Installs the interrupt handler for the

RTOS

sysTemuxISRHandlerRemove

Removes the interrupt handler from the
RTOS

sysTemuxISRHandler Interrupt handler for the
TEMUX/TEMAP/TECT3 device
sysTemuxDPRTask Task that calls the

TEMUX/TEMAP/TECT3 DPR

Step 3: Porting Driver Application-Specific Elements

Application specific elements are configuration constants used by the API for developing an
application. This section describes how to modify the application specific elements in the
TEMUX/TEMAP/TECT3 driver.

To port the driver’s application-specific elements:

1. Modify the type definition for the user context. The user context is used to identify a device
in your application callbacks.

2. Modify the value of the base error code (TMX ERR BASE) in temux.h. This ensures that the
driver error codes do not overlap other error codes used in your application.

3. Define the application-specific constants for your hardware configuration in tmx_api.h:

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 90
Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Porting Drivers

Device Constant Description Default

TMX_MAX DEVICES The maximum number of TEMUX/TECT3/TEMAP | 48
devices that can be supported by this driver

TMX MAX IPROFILES | The maximum number of device initialization 16
profiles

4. Code the callback functions according to your application. There are four sample callback
functions in the tmx app file. You can use these callback functions or you can customize
them before using the driver. The driver will call these callback functions when an event
occurs on the device. These functions must conform to the following prototype:

o

STMX DPV_XX *pDPV)

Step 4: Building the Driver

This section describes how to build the TEMUX/TEMAP/TECT3 driver.

To build the driver:

1.

directory names.

requirements.

your make utility.

void* sysTemuxCBackXX (void *usrCtxt, TMX DPR EVENT event,

Ensure that the directory variable names in the Makefile reflect your actual driver and

Choose from among the different compile options supported by the driver as per your

Compile the source files and build the TEMUX/TEMAP/TECT3 API driver library using

Link the TEMUX/TEMAP/TECT3 API driver library to your application code.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID: PMC-1991611, Issue 2

91

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Appendix A: Coding Conventions

APPENDIX A: CODING CONVENTIONS

This section describes the coding conventions used in the implementation of PMC driver

software.

Variable Type Definitions

Table 34: Variable Type Definitions

Type Description
UINT1 unsigned integer — 1 byte
UINT2 unsigned integer — 2 bytes
UINT4 unsigned integer — 4 bytes
INT1 signed integer — 1 byte
INT2 signed integer — 2 bytes
INT4 signed integer — 4 bytes
BOOLEAN unsigned integer — 2 bytes
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 92

Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Appendix A: Coding Conventions

Naming Conventions

Table 35 presents a summary of the naming conventions followed by PMC driver software. A

detailed description is then given in the following sub-sections.

The names used in the drivers are verbose enough to make their purpose fairly clear. This makes
the code more readable. Generally, the device’s name or abbreviation appears in prefix.

Table 35: Naming Conventions

Type Case Naming convention Examples
Macros Uppercase | prefix with “m” and device mTMX_WRITE
abbreviation

Constants Uppercase | prefix with device abbreviation TMX_ REG

Structures Hungarian | prefix with “s” and device sTMX_DDB
Notation abbreviation

API Functions Hungarian | prefix with device name temuxAdd ()
Notation

Porting Functions Hungarian | prefix with “sys” and device sysTemuxReadReq ()
Notation | name

Other Functions Hungarian myOwnFunction ()
Notation

Variables Hungarian maxDevs
Notation

Pointers to variables | Hungarian | prefix variable name with “ p” pmaxbevs
Notation

Global variables Hungarian | prefix with device name temuxMDB
Notation

Macros

The following list identifies the macro conventions used in the driver code:

e Macro names must be all uppercase.

e Words shall be separated by an underscore.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991611, Issue 2

93

Appendix A: Coding Conventions

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

e The letter “m” in lowercase is used as a prefix to specify that it is a macro, then the device
abbreviation must appear.

e Example: mTEMUX WRITE is a valid name for a macro.

Constants

The following list identifies the constants conventions used in the driver code:

e Constant names must be all uppercase.
e Words shall be separated by an underscore.
e The device abbreviation must appear as a prefix.

e Example: TEMUX ERR ARG is a valid name for a constant.
p _ERR

Structures

The following list identifies the structures conventions used in the driver code:

e Structure names must be all uppercase.
e Words shall be separated by an underscore.

e The letter “ s” in lowercase must be used as a prefix to specify that it is a structure, then the
device abbreviation must appear.

e Example: sTMX DDB is a valid name for a structure.

Functions

API Functions

Naming of the API functions must follow the Hungarian notation.

e The device’s full name in all lowercase shall be used as a prefix.

e Example: temuxAdd () is a valid name for an API function.

Porting Functions

Porting functions correspond to functions that are hardware and/or RTOS dependant.

e Naming of the porting functions must follow the Hungarian notation.
e The “sys” prefix shall be used to indicate a porting function.
e The device’s name starting with an uppercase must follow the prefix.

e Example: sysTemuxReadReq () is a hardware/RTOS specific.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 94
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Appendix A: Coding Conventions

Other Functions

e Other Functions are the remaining functions that are part of the driver and have no special
naming convention. However, they must follow the Hungarian notation.

e Example: myOwnFunction () is a valid name for such a function.

Variables

Naming of variables must follow the Hungarian notation.

e A pointer to a variable shall use “p” as a prefix followed by the variable name unchanged. If
the variable name already starts with a “ p”, the first letter of the variable name may be
capitalized, but this is not a requirement. Double pointers might be prefixed with “pp”, but
this is not required.

e Global variables must be identified with the device’s name in lowercase as a prefix.

e Examples: maxDevs is a valid name for a variable, pmaxDevs is a valid name for a pointer to
maxDevs, and temuxBaseAddress is a valid name for a global variable. Note that both
pprevBuf and pPrevBuf are accepted names for a pointer to the prevBuf variable, and that
both pmatrix and ppmatrix are accepted names for a double pointer to the variable matrix.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 95
Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
Appendix B: TEMUX/TECT3/TEMAP Error Codes

APPENDIX B: TEMUX/TECT3/TEMAP ERROR CODES

This appendix describes the error codes used in the TEMUX/TECT3/TEMAP device driver.

Table 36: TEMUX/TECT3/TEMAP Error Codes

Error Code Description
TMX_OK Success
TMX FAIL Failure

TMX_ERR_RTOS

RTOS system call failure

TMX ERR_ALLOC

Memory allocation failure

TMX ERR_BUFFER

Buffer management errror

TMX_ERR_STOP

Error stopping module

TMX ERR_ISOPEN

Module is already open

TMX ERR_CLOSED

Module is already closed

TMX_ERR_ADD

Error adding device

TMX ERR_RESET

Error resetting device

TMX ERR DEACTIVATE

Error deactivating device

TMX ERR_ISIDLE

Module state is already idle

TMX ERR_ISREADY

Module state is already ready

TMX ERR ISSTART

Device state is already start

TMX ERR ISPRESENT

Device state is already present

TMX_ERR_NOTIDLE

Module state is not idle

TMX ERR NOTREADY

Module state is not ready

TMX ERR NOTACTIVE

Device state is not active

TMX ERR NOTPRESENT

Device state is not present

TMX ERR NOTINACTIVE

Device state is not inactive

TMX_ERR ARG

Bad argument passed to function

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 96
Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
Appendix B: TEMUX/TECT3/TEMAP Error Codes

Error Code

Description

TMX_ERR_CFG

Device configuration error

TMX_ERR_ADDR

Bad address passed to function

TMX_ERR_HNDL

Bad handle passed to function

TMX_ERR_MODE

Illegal ISR mode

TMX ERR_RANGE

Address passed to function is out of range

TMX ERR_HWFAIL

Error accessing device

TMX ERR INVALID

Module is invalid

TMX ERR ISTEMAP

Operation not allowed on TEMAP device

TMX ERR_MAXPROF

Maximum number of init profiles already added

TMX ERR MAXDEVICE

Maximum devices have already been added

TMX ERR_TECT3

Operation not allowed on TECT3 device

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991611, Issue 2

97

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Acronyms

ACRONYMS

ALMI: Alarm Integrator

API: Application Programming Interface
APRM: Performance Report

BERT: Bit Error-Rate Test

BOC: Bit Oriented Code (RBOC, XBOC)
D3MA: DS3 Add-side Mapper

D3MD: DS3 Drop-side Mapper

DDB: Device Data Block

DIV: Device Initialization Vector

DLC: Data Link Controller (RDLC, TDLC)
DPR: Deferred-Processing Routine

DSB: Device Status Block

ELST: Elastic Store (RX-ELST, TX ELST)
FCS: Frame Check Sequence

FEAC: Far End Alarm & Control

FIFO: First In, First Out

FRMR: Framer (usually the Receive Side)
HDLC: High-level Data Link Control
ISR: Interrupt-Service Routine

JAT: Jitter Attenuator (RJAT, TJAT)
MDB: Module Data Block

MIV: Module Initialization Vector

MSB: Module Status Block

MVIP: Multi-vendor integration protocol

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991611, Issue 2

98

Acronyms

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

PCI: Processor Connection Interface

PMON: Performance Monitor

PRBS: Pseudo Random Bit Sequence

PRGD: Pseudo Random (pattern) Generator & Detector
PSC: Per-Channel Serial Controller (RPSC, TPSC)
RHDL: Receive HDLC processor

RTDM: Receive Tributary DeMapper

RTOS: Real-Time Operating System

SBI: Scaleable Bandwidth Interconnect (INSBI (ingress), EXSBI (egress))

TAPI: Transmit Any-PHY packet interface

THDL: Transmit HDLC processor

TMP: Tributary Mapper (TTMP)

TOP: Tributary (path) Overhead Processor (RTOP, TTOP)
TRAN: Transmitter (of a Framer, usually)

TRAP: Transmit Alarm Processor

VTPP: Tributary Payload Processor (I-VTPP (ingress), E-VTPP (egress))

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991611, Issue 2

99

List of Terms

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

LIST OF TERMS

APPLICATION: Refers to protocol software used in a real system as well as validation software
written to validate the TEMUX/TEMAP/TECT?3 driver on a validation platform.

API (Application Programming Interface): Describes the connection between this module and the
user’s application code.

INGRESS: An older term for the line side of the device. The line side usually contains the larger
aggregate connections and usually connects to the WAN portion of a network.

EGRESS: An older term for the system side of the device. The system side usually contains the
smaller individual connections and usually connects to the LAN portion of a network

ISR (Interrupt-Service Routine): A common function for intercepting and servicing device events.
This function is kept as short as possible because an Interrupt preempts every other function
starting the moment it occurs and gives the service function the highest priority while running.
Data is collected, Interrupt indicators are cleared and the function ended.

DPR (Deferred-Processing Routine): This function is installed as a task, at a user configurable
priority, that serves as the next logical step in Interrupt processing. Data that was collected by the
ISR is analyzed and then calls are made into the application that inform it of the events that
caused the ISR in the first place. Because this function is operating at the task level, the user can
decide on its importance in the system, relative to other functions.

DEVICE : One TEMUX/TEMAP/TECT3 integrated circuit. There can be many devices, all
served by this one driver module

e DIV (Device Initialization Vector): Structure passed from the API to the device during
initialization; it contains parameters that identify the specific modes and arrangements of the
physical device being initialized.

e DDB (Device Data Block): Structure that holds the configuration data for each device.

e DSB (Device Status Block): Structure that holds the alarms, status, and statistics for each
device.

MODULE: All of the code that is part of this driver, there is only one instance of this module
connected to one or more TEMUX/TEMAP/TECTS3 chips.

e MIV (Module Initialization Vector): Structure passed from the API to the module during
initialization, it contains parameters that identify the specific characteristics of the driver
module being initialized.

e MDB (Module Data Block): Structure that holds the configuration data for this module.

e MSB (Module Status Block): Structure that holds the alarms, status and statistics for the
module

e RTOS (Real-Time Operating System): The host for this driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 100
Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Index

INDEX

API Functions
temuxActivate, 20, 58, 59

temuxAdd, 19, 20, 26, 27, 28, 41, 42,
46, 55, 56, 57, 58, 59, 61, 62, 63,
64, 65, 66, 68, 69, 70, 71, 72, 73,
74,75,76,77,78,79, 80, 81, 82,
83, 84, 85, 86, 87, 105, 106

temuxAddInitProfile, 59
temuxBertDS3, 81
temuxBertFramer, 82
temuxClearMask, 32, 75
temuxClearStats, 79
temuxDeActivate, 20, 58
temuxDelete, 20, 24, 55, 56
temuxDeletelnitProfile, 60, 61
temuxDPR, 17, 23, 24, 77, 91
temuxGetlnitProfile, 29, 60
temuxGetMask, 32, 74
temuxGetStats, 78, 81, 82
temuxInit, 20, 27, 28, 29, 30, 42, 57
temuxISR, 16, 23, 24, 25, 76, 89, 90
temuxISRConfig, 77
temuxLinkDataDS3, 72
temuxLinkDataT1, 73
temuxLoopDS3, 80
temuxLoopFramer, 82, 83
temuxLoopMapper, 79
temuxLoopMX23, 83, 84
temuxModuleClose, 19, 53
temuxModuleOpen, 19, 26, 46, 53
temuxModuleStart, 19, 40, 53, 54, 89
temuxModuleStop, 19, 53, 55, 89
temuxPoll, 25, 76

temuxRead, 62

temuxReadBlock, 69
temuxReadFR, 63
temuxReadInd, 66, 67
temuxReadMapper, 71
temuxReadMX, 64, 65
temuxReset, 20, 57

temuxSetMask, 32, 74
temuxUpdate, 61
temuxWrite, 62
temuxWriteBlock, 70
temuxWriteFR, 64
temuxWritelnd, 67, 69
temuxWriteMapper, 71
temuxWriteMX, 65

Callbacks

cbackDS3, 27, 28, 42
cbackFramer, 27, 28, 42
cbacklO, 27, 28, 42
cbackMapper, 27, 28, 42

Constants

TMX_ACTIVE, 20, 41, 42
TMX_DPR_EVENT, 85, 86, 103
TMX_FAIL, 26, 39, 41, 46
TMX_INACTIVE, 20, 41, 42
TMX_ISR_HDWR, 77
TMX_ISR_MANUAL, 77
TMX_ISR_MODE, 28, 42, 77
TMX_LINEOPT_LIU_DS3, 29, 30, 31
TMX_LINEOPT_SDH_DS3, 29

TMX_LINEOPT_SDH_E1T1, 29, 30,
31

TMX_LOOP_TYPE, 79, 80, 83
TMX_MAX_DEVICES, 26, 27
TMX_MAX_IPROFILES, 59, 60
TMX_MOD_IDLE, 19, 39, 40
TMX_MOD_READY, 19, 39, 40
TMX_MOD_START, 19, 39, 40
TMX_OPMODE_DS3_ONLY, 30, 31
TMX_OPMODE_FRAMER, 30, 31
TMX_OPMODE_MAPPER, 30, 31
TMX_OPMODE_TRANSMUX, 30, 31
TMX_PRESENT, 20, 41, 42
TMX_REG, 105

TMX_SECTION, 66, 67

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 101
Document ID: PMC-1991611, Issue 2

1 ﬂ TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual
r \ PMC-Sierra

Index
TMX_START, 19, 41, 42 sysTemuxBufferStop, 97, 101
TMX_SYSOPT, 29, 30, 31 sysTemuxCBackXX, 103
TMX_SYSOPT_CDATA, 29, 30, 31 sysTemuxDPRTask, 23, 24, 77, 91,
TMX_SYSOPT_CDATA_CCS, 29 92,102
TMX SYSOPT MVIP, 29, 30 sysTemuxDPRTasklInstall, 24, 91
TMX_SYSOPT_SBI, 29, 30, 31 sysTemuxDPRTaskRemove, 24, 92
TMX SYSOPT SBI CCS, 29 sysTemuxDPVBufferGet, 94, 101
TMX USR SIZE, 39, 40, 41, 43 sysTemuxDPVBufferRtn, 95, 101
sysTemuxISRHandler, 23, 24, 25, 76,
Errors 89, 90, 102
errDevice, 41, 46 sysTemuxISRHandlerInstall, 24, 89,
errModule, 39, 46 90,102
sysTemuxISRHandlerRemove, 89,
Header Files 90, 102
temux.h, 26, 99, 100 sysTemuxISVBufferGet, 47, 95, 101
tmx_api.h, 26, 98 sysTemuxISVBufferRin, 47, 91, 95,
tmx_app.h, 99 96, 101
tmx_dpr.h, 99 sysTemuxMemAlloc, 93, 100
tmx_hw.h, 98, 102 sysTemuxMemFree, 93, 100
tmx_isr.h, 99 sysTemuxReadReg, 88, 105, 107
tmx_rtos.h, 99, 100 sysTemuxSafeRead, 88
tmx_util.h, 99 sysTemuxWriteReg, 67, 71, 89
Macros Source Files
mTMX_WRITE, 105 tmx_api.c, 98
tmx_app.c, 98
Pointers tmx_diag.c, 98
pData, 88 tmx_dpr.c, 98
pDDB, 27, 28, 40 tmx_hw.c, 98
pDIV, 55, 57, 61 tmx_isr.c, 98, 100
pDPV, 85, 86, 87, 95, 103 tmx_rtos.c, 98
pISV, 76, 95, 96 tmx_stat.c, 98
pMask, 74 tmx_util.c, 98, 100
pmaxDevs, 105, 107
pMDB, 26, 27 Structures
pMIV, 53 sTMX_DDB, 40, 41, 105
oPRBS, 82 sTMX_DIV, 26, 28, 55, 57, 61
pPRGD, 81 sTMX_DPV, 52, 85, 86, 95, 103
oProf, 59, 60 sTMX_DPV_DS3, 85

sTMX_DPV_FRAMER, 86
sTMX_DPV_IO, 85

pprofileNum, 59

Porting Functions sTMX_DPV_MAPPER, 86
sysTemuxBufferReceive, 91 sTMX_DPV_XX, 103
sysTemuxBufferStart, 40, 47, 94, 101 sTMX_DSB, 43, 78

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 102

Document ID: PMC-1991611, Issue 2

PB A c PMC-Sierra

TEMUX/TEMAP/TECT3 (PM8315, PM5365, PM4328) Driver Manual

Document ID: PMC-1991611, Issue 2

Index

sTMX_HNDL, 47, 55, 56, 57, 58, 59, struct tmx_dsb _io, 44

Sl Sg Sg Sj Sg Sg 3; ?g ;g struct tmx_dsb_mapper, 44, 46

80: 81: 82: 83: 84’ ’ ’ ’ ’ struct tmx_dsb_mux, 44, 45
sTMX_INIT PROF, 29, 59, 60 struct th_iSV_dS3, 48, 49
sTMX_IPV, 43 struct tmx_isv_framer, 48, 49
sTMX_ISV, 47, 76, 77, 95, 96 struct tmx_isv_io, 48
sTMX_MASK, 32, 43, 74, 75 struct tmx_isv_mapper, 48, 50
sTMX MDB, 39 struct tmx_isv_mux, 48, 49
sTMX_MIV, 26, 27, 53 struct tmx_mask_ds3, 32
sTMX_MSB, 40, 41 struct tmx_mask_framer, 32, 34
STMX_PRBS, 38, 82 struct tmx_mask_io, 32
sTMX PRGD. 38. 81 struct tmx_mask_mapper, 32, 37
struct tmx_dsb ds3, 44, 45 struct tmx_mask_mux, 32, 34
struct tmx_dsb_framer, 44, 45

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 103

