

VERY LOW POWER 3.3V CMOS FAST SRAM 1 MEG (128K x 8-BIT)

ADVANCE INFORMATION IDT713024SL

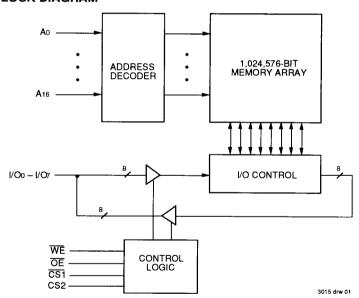
FEATURES:

- 128K x 8 advanced high-speed CMOS Static RAM
- · Equal access and cycle times
 - Commercial: 20/25ns
- True 3.3V design, not a re-characterized 5V device
- Ideal for battery-operated equipment, including notebook computers, portable instruments, and portable communications devices
- · Low standby currents and 2V data retention mode
- · Two Chip Selects plus one Output Enable pin
- · Bidirectional inputs and outputs directly TTL-compatible
- Compliant with all JEDEC LVTTL standard specifications
- Single 3.3V (±0.3V) power supply, resulting in 57% dynamic power savings over equivalent 5 volt devices
- · Available in 400 mil plastic DIP and plastic SOJ packages

DESCRIPTION:

The IDT713024SL is a 1,024,576-bit high-speed Static RAM organized as 128K x 8. It is fabricated using IDT's high-

perfomance, high-reliability 3.3V CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, results in a unique combination of speed and low power consumption, with only a 3.3V supply.


Unlike re-characterized 5V devices, the IDT713024SL is the result of a dedicated 3.3V design, which ensures full compliance with the JEDEC LVTTL standard of operation in terms of thresholds and noise margins. This dedicated 3.3V technology also allows for a faster device.

The IDT713024SL has address access times as fast as 20ns. All bidirectional inputs and outputs are TTL-compatible and operation is from a single 3.3V supply.

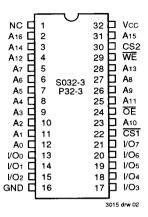
This SRAM offers a very low standby current, as well as a data retention mode that guarantees that data be preserved at voltages as low as 2 volts. These characteristics make the IDT713024SL ideal for high-performance applications that are powered by batteries, as well as AC-powered systems that need to minimize power consumption.

The IDT713024SL is packaged in a 32-pin 400 mil plastic DIP, and a 32-pin 400 mil plastic SOJ.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGE


SEPTEMBER 1992

©1992 Integrated Device Technology, Inc.

9.2 -/

DSC-1107/-

PIN CONFIGURATION

DIP/SOJ TOP VIEW

TRUTH TABLE(1,2)

INPUTS					
WE	CS1	CS2	OE	1/0	FUNCTION
X	Н	Х	Х	High-Z	Deselected-Standby (ISB)
Х	Vнс ⁽³⁾	Х	Х	High-Z	Deselected-Standby (ISB1)
Х	Х	L	Х	High-Z	Deselected-Standby (ISB)
X	Х	VLC ⁽³⁾	Х	High-Z	Deselected-Standby (ISB1)
Н	L	H	Н	High-Z	Outputs Disabled
Н	L	Н	L	DATAOUT	Read Data
L	L	Н	Х	DATAIN	Write Data

NOTES:

3015 tbl 01

- 1. H = VIH, L = VIL, X = Don't care.
- VLC = 0.2V, VHC = VCC -0.2V.
 Other inputs ≥VHC or ≤VLC.

9.2-2