

FEATURES

- Eight 0.180" Dot Matrix Characters in Red, Yellow, High Efficiency Red, Green, or High Efficiency Green
- Built-in 128 Character ROM, Mask Programmable for Custom Fonts
- Readable from 8 Feet (2.5 meters)
- Built-in Decoders, Multiplexers and Drivers
- Wide Viewing Angle, X Axis $\pm 55^{\circ}$, Y Axis 65°
- Programmable Features:
- Individual Flashing Character
- Full Display Blinking
- Multi-Level Dimming and Blanking
- Clear Function
- Self Test
- Internal or External Clock
- End Stackable Dual-In-Line Plastic Package
- Read/Write Capability
- 16 User Definable Characters

DESCRIPTION

The PDSP1880 (Red), PDSP1881 (Yellow), PDSP1882 (High Efficiency Red), PDSP1883 (Green), and PDSP1884 (High Efficiency Green) are eight digit, 5×7 dot matrix, alphanumeric Programmable Displays. The 0.180 inch high digits are packaged in a rugged, high quality, optically transparent, 0.300 inch lead spacing, 30 pin plastic DIP.
The on-board CMOS has a built-in 128 character ROM. The PDSP188X also has a user definable character (UDC) feature, which uses a RAM that permits storage of 16 arbitrary characters, symbols or icons that are soft-ware-definable by the user. The character ROM itself is mask programmable and easily modified by the manufacturer to provide specified custom characters.

The PDSP188X is designed for standard microprocessor interface techniques, and is fully TTL compatible. The Clock I/O and Clock Select pins allow the user to cascade multiple display modules.

ESD Warning: Standard precautions for CMOS handling should be observed.

Maximum Rating ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
DC Supply Voltage,
$V_{C C}$ to GND (max. voltage with no LEDs on)..................... -0.3 to + 7.0 VDC
Input Voltage Levels,
All Inputs \qquad -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating Temperature \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature. $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Relative Humidity (non-condensing)................85\%
Operating Voltage, V_{CC} to GND
(Max. voltage with 20 dots/digits on)............5.5V
Maximum Solder Temperature $260^{\circ} \mathrm{C}$
(0.063 " below the seating plane, $\mathrm{t}<5 \mathrm{sec}$.)
ESD Protection at $1.5 \mathrm{~K} \Omega$, 100 pF
$\mathrm{V}_{\mathrm{Z}}=4 \mathrm{KV}$ (each pin)
Figure 1. Enlarged character format
Dimensions in inches (mm)

Switching Specifications

(over operating temperature range and $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$)

Symbol	Description	Min.	Units
Tacc	Display Access Time-Write	210	ns
Tacc	Display Access Time-Read	230	ns
Tacs	Address Setup Time to CE	10	ns
Tce	Chip Enable Active Time-Write	140	ns
Tce	Chip Enable Active Time-Read	160	ns
Tach	Address Hold Time to CE	20	ns
Tcer	Chip Enable Recovery Time	60	ns
Tces	Chip Enable Active Prior to Rising Edge-Write	140	ns
Tces	Chip Enable Hold Prior to Rising Edge-Read	160	ns
Tceh	Chip Enable Hold to Rising Edge of Read/Write Signal	0	ns
Tw	Write Active Time	100	ns
Twd	Data Valid Prior to Rising Edge of Write Signal	50	ns
Tdh	Data Write Time	20	ns
Tr	Chip Enable Active Prior to Valid Data	160	ns
Trd	Read Active Prior to Valid Data	95	ns
Tdf	Read Data Float Delay	10	ns
Trc	Reset Active Time	300	ns

Figure 2. Write Cycle timing diagram

Figure 3. Read Cycle timing diagram

Character Set

$\begin{aligned} & \text { ASCII } \\ & \text { CODE } \end{aligned}$				D0	L	H	L	H	L	H	L	H	L	H	L	H	L	H	L	H
				D1	L	L	H	H	L	L	H	H	L	L	H	H	L	L	H	H
				D2	L	L	L	L	H	H	H	H	L	L	L	L	H	H	H	H
				D3	L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	H
D7	D6	D5	D4	HEX	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
L	L	L	L	0																
L	L	L	H	1										\cdots	: \quad :					
L	L	H	L	2														$\cdots \cdots$:	$\bullet^{\bullet}{ }^{\bullet}$
L	L	H	H	3						- $\because \cdot \bullet$	-				: \because				\bullet	
L	H	L	L	4					-...						- $0 \cdot$					
L	H	L	H	5				$\begin{aligned} & \bullet \cdots \\ & \bullet \bullet \bullet \\ & \bullet \end{aligned}$												-
L	H	H	L	6																
L	H	H	H	7															$\bullet \cdot$	
H	X	x	X	8	$\begin{gathered} \text { UDC } \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { UDC } \\ 1 \end{array}$	$\begin{gathered} \text { UDC } \\ 2 \end{gathered}$	$\begin{gathered} \text { UDC } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { UDC } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { UDC } \\ 5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { UDC } \\ 6 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { UDC } \\ 7 \end{array}$	$\begin{array}{\|c} \hline \text { UDC } \\ 8 \end{array}$	$\begin{array}{\|c} \hline \text { UDC } \\ 9 \end{array}$	$\begin{array}{c\|} \hline \text { UDC } \\ 10 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { UDC } \\ 11 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { UDC } \\ 12 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { UDC } \\ 13 \\ \hline \end{array}$	$\begin{gathered} \text { UDC } \\ 14 \end{gathered}$	$\begin{gathered} \text { UDC } \\ 15 \end{gathered}$

Notes: 1. Upon power up, device will initialize in a random state
2. $X=$ Don't care.

Optical Characteristics at $25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ at Full Brightness
Red PDSP1880

Description	Symbol	Min.	Typ.	Max.	Units
Luminous Intensity	I_{V}	70	125		$\mu \mathrm{~cd} / \mathrm{dot}$
Peak Wavelength	λ (peak)		660		nm
Dominant Wavelength	$\lambda(\mathrm{d})$		639		nm

Yellow PDSP1881

Description	Symbol	Min.	Typ.	Max.	Units
Luminous Intensity	I_{V}	125	205		$\mu \mathrm{~cd} / \mathrm{dot}$
Peak Wavelength	$\lambda($ peak $)$		583		nm
Dominant Wavelength	$\lambda(\mathrm{d})$		585		nm

High Efficiency Red PDSP1882

Description	Symbol	Min.	Typ.	Max.	Units
Luminous Intensity	I_{V}	125	350		$\mu \mathrm{~cd} / \mathrm{dot}$
Peak Wavelength	λ (peak)		630		nm
Dominant Wavelength	$\lambda(\mathrm{d})$		626		nm

Green PDSP1883

Description	Symbol	Min.	Typ.	Max.	Units
Luminous Intensity	I_{V}	125	275		$\mu \mathrm{~cd} / \mathrm{dot}$
Peak Wavelength	λ (peak)		565		nm
Dominant Wavelength	$\lambda(\mathrm{d})$		570		nm

High Efficiency Green PDSP1884

Description	Symbol	Min.	Typ.	Max.	Units
Luminous Intensity	I_{V}	125	500		$\mu \mathrm{~cd} / \mathrm{dot}$
Peak Wavelength	λ (peak)		568		nm
Dominant Wavelength	$\lambda(\mathrm{d})$		574		nm

DC Electrical Characteristics at $25^{\circ} \mathrm{C}$

Parameter	Limits				Conditions
	Min.	Typ.	Max.	Units	
V_{CC}	4.5	5.0	5.5	V	
$\mathrm{I}_{\text {CC }}$ Blank		0.65	1.0	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$
$\mathrm{I}_{\text {CC }} 12$ dots/digit on ${ }^{(1,2)}$		200	255	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, " V " in all 8 digits
$\mathrm{I}_{\text {CC }} 20$ dots/digit on ${ }^{(1,2)}$		300	370	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, "\#" in all 8 digits
$\mathrm{I}_{\text {ILP }}$ (with pull-up) Input Leakage	-18	-11	-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC} (내, $\overline{\mathrm{CE}}, \overline{\mathrm{FL}}, \overline{\mathrm{RST}}, \overline{\mathrm{RD}}, \mathrm{CLKSEL})$
IIL ((pull-up) Input Leakage	-1		+1	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{I N}=5 \mathrm{~V} \\ & \text { (CLK, AO-A3, D0-D7) } \end{aligned}$
$\mathrm{V}_{1 H}$ Input Voltage High	2.0		$\mathrm{V}_{\mathrm{CC}}+0.3$	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
$\mathrm{V}_{\text {IL }}$ Input Voltage Low	Gnd -0.3			V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
V_{OL} (D0 to D7) Output Voltage Low			0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V ${ }_{\text {OL }}$ (CLK) Output Voltage Low			0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=40 \mu \mathrm{~A}$
V_{OH} Output Voltage High	2.4			V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=40 \mu \mathrm{~A}$
$\theta_{\text {JC }}$ Thermal Resistance, Junction to Case		60		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
Clock I/O Frequency	28	57.34	81.14	KHz	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
FM, Digit Multiplex Frequency	125	256	362.5	Hz	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
Blinking Rate	0.98	2.0	2.83	Hz	
Clock I/O Bus Loading			2.40	pF	
Clock Out Rise Time			500	nsec	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
Clock Out Fall Time			500	nsec	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0.4 \mathrm{~V}$

Notes: $1 . I_{\mathrm{CC}}$ is an average value.

2. I_{CC} is measured with the display at full brightness. Peak $\mathrm{I}_{\mathrm{CC}}={ }^{28 / 15} \mathrm{I} \mathrm{ICC}$ average (\# displayed).

Recommended Operating Conditions ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V_{CC}	4.5	5.5	V
Input Voltage Low	V_{IL}		0.8	V
Input Voltage High	V_{IH}	2.0		V
Output Voltage Low	V_{OL}		0.4	V
Output Voltage High	V_{OH}	2.4		V

Figure 4. Top view

Pin Assignments

Pin \#	Name	Symbol	Definition
1	Reset	$\overline{\mathrm{RST}}$	Initializes display: clears Character RAM $(20 \mathrm{H})$, Flash RAM $(00 \mathrm{H})$, control word $(00 \mathrm{H})$, and resets internal counters. UDC Address Register and UDC RAM unaffected.
2	Flash	$\overline{\mathrm{FL}}$	Accesses Flash RAM. Address inputs A0-A2 select digit address while data bit D0 sets ($D 0=1$) or resets ($D 0=0$) Flash bit, A3 and A4 ignored.
3	Addr. input	A0	A0-A2 select specific digits. See Table 1.
4		A1	Same as A0
5		A2	Same as A0
6	Addr. input	A3	A3 and A4 access parts of memory together with Flash pin. See Table 1.
7-9	No pins		No connections
10	Addr. input	A4	Same as A3
11	Clock Select	CLS	Selects internal or external clock source. CLS=1 selects internal clock (master), CLS=0 selects external clock (slave operation).

Figure 5. Cascading displays

The PDSP188X is designed to drive up to 16 other PDSP188Xs with input loading of 15 pF each. General requirements for cascading 16 displays together:

Pin \#	Name	Symbol	Definition
12	Clock In/Out	CLK	Inputs or outputs clock as determined by CLS.
13	Write	$\overline{\mathrm{WR}}$	Writes data into display when $\overline{\mathrm{WR}}=0$. Note $\overline{\mathrm{CE}}=0$ to enable write cycle.
14	Chip Enable	$\overline{\mathrm{CE}}$	Enables display's write and read cycles when $\overline{\mathrm{CE}}=0$.
15	Positive supply	V_{CC}	Positive power supply input.
16	Supply GND	$\mathrm{GND}_{\text {sup }}$	Analog ground for LED drivers
17		NC	No connection
18	Logic GND	$\mathrm{GND}_{\mathrm{log}}$	Logic ground for digital circuitry
19	Read	$\overline{\mathrm{RD}}$	Reads data from display when $\overline{\mathrm{RD}}=0$. Also $\overline{\mathrm{CE}}=0$.
20	Data bit zero	D0	Least significant data bit.
21	Data bit one	D1	Second data bit.
$\begin{aligned} & 22- \\ & 24 \end{aligned}$	No pins		No connections
25	Data bit two	D2	Third data bit.
26	Data bit three	D3	Fourth data bit.
27	Data bit four	D4	Fifth data bit.
28	Data bit five	D5	Sixth data bit.
29	Data bit six	D6	Seventh data bit.
30	Data bit seven	D7	Most significant data bit.

- Determine the correct address for each display.
- Use $\overline{\mathrm{CE}}$ from an adrress decoder to select the correct display.
- Use CE from an adrress decoder to select the correct display.
- Select one of the Displays to provide the Clock for the other displays. Connect CLKSEL to V_{CC} for this display.
- Tie CLKSEL to ground on other displays.
- Use $\overline{\mathrm{RST}}$ to synchronize the blinking between the displays.

Figure 6. Block diagram

Functional Description

The display's user interface is organized into five memory areas. They are accessed using the Flash Input, $\overline{\text { FL, and }}$ address lines, A3 and A4. All the listed RAMs and Registers may be read or written through the data bus. See Table 1. Each input pin is described in Pin Definitions. The five basic memory areas are:

Character RAM	Stores either ASCII (Kata- kana) character data or an UDC RAM address
Flash RAM	1×8 RAM which stores Flash data
User-Defined Character RAM (UDC RAM)	Stores dot pattern for cus- tom characters
User-Defined Address Regis- ter (UDC Address Register)	Provides address to UDC RAM when user is writing or reading a custom char- acter

Control Word Register	Enables adjustment of display brightness, flash individual char-acters, blink, self test or clearing the display.

$\overline{\text { RST }}$ can be used to initialize display operation upon power up or during normal operation. When activated, RST will clear the Flash RAM and Control Word Register (00 H) and reset the internal counter. All eight display memory locations will be set to 20 H to show blanks in all digits.
$\overline{F L}$ pin enables access to the Flash RAM. The Flash RAM will set ($D 0=1$) or reset $(D 0=0)$ flashing of the character addressed by A0-A2.
The 1×8 bit Control Word Register is loaded with attribute data if $A 3=0$.
The Control Word Logic decodes attribute data for proper implementation.

Character ROM is designed for 128 ASCII characters. The ROM is Mask Programmable for custom fonts.

The Clock Source could either be the internal oscillator (CLKSEL=1) of the device or an external clock (CLKSEL=0) could be an input from another HDSP211X display for the
synchronization of blinking for multiple displays.
The Display Multiplexer controls the Row Drivers so no additional logic is required for a display system.
The Display has eight digits. Each digit has 35 LEDs clustered into a 5×7 dot matrix.
Table 1. Memory Selection

FLA4A3		Section of Memory	A2-A0	Data Bits Used	
0	X	X	Flash RAM	Character Address	D0
1	0	0	UDC Address Register	Don't Care	D3-D0
1	0	1	UDC RAM	Row Address	D4-D0

FLA4A3	Section of Memory	A2-A0	DTheory of Operation			
1	1	1	Character RAM	Character Address		Dwith all major microprocessors. Data entry is via an eight bit
:---						
parallel bus. Three bits of address route the data to the	$\overline{\mathrm{WR}}$ and $\overline{\mathrm{CE}}$ allow the data to be written into the display.					

D0-D7 data bits are used for both Character RAM and control word data input. A3 acts as the mode selector. If $A 3=1$, character RAM is selected. Then input data bit D7 will determine whether input data bits D0-D6 is ASCII coded data (D7=0) or UDC data (D7=1). See section on UDC Address Register and RAM.
For normal operation FL pin should be held high. When FL is held low, Flash RAM is accessed to set character blinking.
The seven bit ASCII code is decoded by the Character ROM to generate Column data. Twenty columns worth of data is sent out each display cycle, and it takes fourteen display cycles to write into eight digits.

The rows are multiplexed in two sets of seven rows each. The internal timing and control logic synchronizes the turning on of rows and presentation of column data to assure proper display operation.

Power Up Sequence

Upon power up display will come on at random. Thus the display should be reset on power-up. The reset will clear the Flash RAM, Control Word Register and reset the internal counter. All the digits will show blanks and display brightness level will be 100%.
The display must not be accessed until three clock pulses ($110 \mu \mathrm{~seconds}$ minimum using the internal clock) after the rising edge of the reset line.

Microprocessor Interface

The interface to a micrprocessor is through the 8-bit data bus (D0-D7), the 4-bit address bus (AO-A3) and control lines FL, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WR}}$.
To write data (ASCII/Control Word) into the display $\overline{\mathrm{CE}}$ should be held low, address and data signals stable and $\overline{W R}$ should be brought low. The data is written on the low to high transistion of $\overline{W R}$.
The Control Word is decoded by the Control Word Decode Logic. Each code has a different function. The code for display brightness changes the duty cycle for the column drivers. The peak LED current stays the same but the average LED current diminishes depending on the intensity level.

The character Flash Enable causes 2 Hz coming out of the counter to be ANDED with column drive signal and makes the column driver to cycle at 2 Hz . Thus the character flashes at 2 Hz .

The display Blink works the same way as the Flash Enable but causes all twenty column drivers to cycle at 2 Hz thereby making all eight digits to blink at 2 Hz .
The Self Test function of the IC consists of two internal routines which exercise major portions of the IC and illuminates all the LEDs.
Clear bit clears the character RAM and writes a blank into the display memory. It however does not clear the control word.

$\overline{\text { RST }}$	CE	WR	RD	FL	A4	A3	A2 A1 A0
1	0	0	1	1	0	0	Character Ad- dress, Digits 0-
1	0	1	0	1	0	0	Character Ad- dress, Digits 0-

Figure 8. UDC Address Register and UDC Character RAM

$\overline{\text { RST }}$	CE	WR	RD	FL	A4	A3	A2 A1 A0
1	0	0	1	1	0	0	Not used for U[Address Regist
1	0	1	0	1	0	0	Not used for U[Address Regist
1	0	0	1	1	0	1	A2-A0=Charac Row Address
1	0	1	0	1	0	1	A2-A0=Charac Row Address

UDC Address Register
The UDC Address Register is selected by setting $\overline{\mathrm{FL}}=1$, $A 4=0, A 3=0$. It is a 4 bit register and uses data bits, D3-D0 to store the 4 bit address code (D7-D4 are ignored). The address code selects one of 16 UDC RAM locations for cus-

ASCII Data or Control Word Data can be written into the dis-
play at this point. For multiple display operation, CLK I/O must be properly selected. CLK I/O will output the internal clock if CLKSEL=1, or will allow input from an external clock if CLKSEL=0.

Character RAM

The Character RAM is selected when $\overline{F L}$, A4 and A3 are set to $1,1,1$ during a read or write cycle. The Character RAM is a 8 by 8 bit RAM with each of the eight locations corresponding to a digit on the display. Digit 0 is on the left side of the display and digit 7 is on the right side of the display. Address lines, A2-A0 select the digit address with A2 being the most significant bit and AO being the least significant bit. The two types of data stored in the Character RAM are the ASCII coded data and the UDC Address Data. The type of data stored in the Character RAM is determined by data bit, D7. If D7 is low, then ASCII coded data is stored in data bits D6-D0. If D7 is high, then UDC Address Data is stored in data bit D3-D0.
The ASCII coded data is a 7 bit code used to select one of 128 ASCII characters permanently stored in the ASCII ROM.
The UDC Address data is a 4 bit code used to select one of the UDC characters in the UDC RAM. There are up to 16 characters available. See Figure 7.

UDC Address Register and UDC RAM

The UDC Address Register and UDC RAM allows the user to generate and store up to 16 custom characters. Each custom character is defined in 5×7 dot matrix pattern. It takes 8 write cycles to define a custom character, one cycle to load the UDC Address Register and 7 cycles to define the character. The contents of the UDC Address Register will store the 4 bit address for one of the 16 UDC RAM locations. The UDC RAM is used to store the custom character.

Figure 7. Character RAM access logic

$\overline{\text { RST }}$	CE	WR	RD	FL	A4	A3	A2 A1 A0	D7 D6 D5 D4 D3 D2 D1 D0
1	0	0	1	1	1	1	Character Ad- dress, Digits $0-7$	07 bit ASCII code, Write Cycle
1	0	1	0	1	1	1	Character Ad- dress, Digits $0-7$	$0 \quad 7$ bit ASCII code read during a Read Cycle

tom character generation.

UDC RAM

The UDC RAM is selected by setting $\overline{\mathrm{FL}}=1, \mathrm{~A} 4=0, \mathrm{~A} 3=1$. The RAM is comprised of a 7×5 bit RAM. As shown in Figure 9, address lines, A2-A0 select one of the 7 rows of the custom character. Data bits, D4-D0 determine the 5 bits of column data in each row. Each data bit corresponds to a LED. If the data bit is high, then the LED is on. If the data bit is low, the LED is off. To create a character, each of the 7 rows of column data need to be defined. See Figures 8 for logic.

Flash RAM

The Flash RAM allows the display to flash one or more of the characters being displayed. The Flash Ram is accessed by setting FL low. A4 and A3 are ignored. The Flash RAM is a 8 $x 1$ bit RAM with each bit corresponding to a digit address. Digit 0 is on the left side of the display and digit 7 is on the right side of the display. Address lines, A2-A0 select the digit address with A2 being the most significant digit and A0 being the least significant digit. Data bit, D0, sets and resets the flash bit for each digit. When D0 is high, the flash bit is set and when DO is low, it is reset. See Figure 9.

Control Word

The Control Word is used to set up the attributes required by the user. It is addressed by setting $\overline{\mathrm{FL}}=1, \mathrm{~A} 4=1, \mathrm{~A} 3=0$. The Control Word is an 8 bit register and is accessed using data bits, D7-D0. See Figures 10 and 11 for the logic and attributed control. The Control Word has 5 functions. They are brightness control, flashing character enable, blinking character enable, self test, and clear (Flash and Character RAMS only).

Brightness Control

Control Word bits, D2-D0, control the brightness of the display with a binary code of 000 being 100% brightness and 111 being display blank. See Figure 11 for brightness level versus binary code. The average ICC can be calculated by
multiplying the 100% brightness level $I_{C C}$ value by the display's brightness level. For example, a display set to 80% brightness with a 100% average $I_{C C}$ value of 200 mA will have an average $I_{c c}$ value of $200 \mathrm{~mA} \times 80 \%=160 \mathrm{~mA}$.

Flash Function

Control Word bit, D3, enables or disables the Flash Function. When D3 is 1, the Flash Function is enabled and any digit with its corresponding bit set in the Flash RAM will flash at approximately 2 hertz. When using an external clock, the flash rate can be determined by dividing the clock rate by 28,672 . When D3 is 0 , the Flash Function is disabled and the contents of the Flash RAM is ignored. For synchronized flashing on multiple displays, see the Reset Section.

Blink Function

Control Word bit, D4, enables or disables the Blink Function. When D4 is 1 , the Blink Function is enabled and all characters on the display will blink at approximately 2 hertz. The Blink Function will override the Flash Function if both functions are enabled. When D4 is 0 , the Blink Function is disabled. When using an external clock, the blink rate can be determined by dividing the clock rate by 28,672 . For synchronized blinking on multiple displays, see the Reset Section.

Self Test

Before starting Self Test, Reset must first be activated. Control Word bits, D6 and D5, are used for the Self Test Function. When D6 is 1, the Self Test is initiated. Results of the Self Test are stored in bits D5. Control Word bit, D5, is a read only bit. When D5 is 1 , Self Test passed is indicated. When D5 is 0 , Self Test failed is indicated. The Self Test function of the IC consists of two internal routines which exercise major portions of the IC and illuminates all of the LEDs. The first routine cycles the ASCII decoder ROM through all states and performs a check sum on the output. If the check sum agrees with the correct value, D5 is set to a 1 .
The second routine provides a visual test of the LEDs using the drive circuitry. This is accomplished by writing checkered and inversed checkered patterns to the display. Each pattern is displayed for approximately 2 seconds. During the self test function the display must not be accessed. The time needed

Row Data	Column Data			
	C1	C2	C3	C4
A2	C5			
0	A1	A0	Row\#	D4
0	0	D3	D2	D1
D0				
0	0	12		
0	1	03		
0	1	14		
1	0	05		
1	0	16		
1	1	07		

to execute the self test function is calculated by multiplying the clock time by 262,144 (typical time $\approx 4.6 \mathrm{sec}$.). At the end of the
self test function, the Character RAM is loaded with blanks; the Control Word Register is set to zeroes except D5, and the Flash RAM is cleared and the UDC Address Register is set to all 1 s .

$\overline{\text { RST }}$	CE	WR	RD	FL	A4	A3	A2 A1 A0
1	0	1	1	0	X	X	Character Ad- dress, Digits 0-7

Figure 9. Flash RAM access logic

$\overline{\mathrm{RST}}$	$\mathbf{C E}$	WR	RD	FL	A4	A3	A2 A1 A0	D7 D6 D5 D4 D3 D2 D1 D0
1	0	1	0	1	1	0	Not used for Con- trol Word	Control Word data for a Read during a Read Cycle.

Clear Function (see Figure 11 and Figure 12)
Control Word bit, D7 clears the character RAM to 20 hex and the flash RAM to all zeroes. The RAMs are cleared within three clock cycles (110μ s minimum, using the internal clock) when D7 is set to 1 . During the clear time the display must not be accessed. When the clear function is finished, bit 7 of the Control Word RAM will be reset to a " 0 ".

Reset Function

The display should be reset on power up of the display ($\overline{\mathrm{RST}}=\mathrm{LOW}$). When the display is reset, the Character RAM, Flash RAM, and Control Word Register are cleared. The display's internal counters are reset. Reset cycle takes three clock cycles (110 $\mu s e c o n d s$ minimum using the internal clock). The display must not be accessed during this time.
To synchronize the flashing and blinking of multiple displays, it is necessary for the display to use a common clock source and reset all the displays at the same time to start the internal counters at the same place.
While $\overline{\mathrm{RST}}$ is low, the display must not be accessed by RD nor WR.
Figure 11. Control Word data definition

	D6	D5		D3	D2				
C	ST	ST		FL	Br	Br			STSelf test

0 Normal Operation
1 Clear Flash RAM \& Character RAM (Character RAM=20 Hex)

Figure 12. Clear function

CE	WR	FL	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	1	0	X	X	X	0	X	X	X	X	X	X	X	Clear Disabled
0	1	0	0	X	X	X	1	X	X	X	X	X	X	X	Clear User RAM, Flash RAM and Dispaly

Figure 13. Display Cycle using built-in ROM example
Display message "Showtime." Digit 0 is leftmost-Closest to Pin 1.
Logic levels: $0=$ Low, $1=$ High, $X=$ Don't care.

$\overline{\mathbf{R S T}}$	$\mathbf{C E}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R D}}$	$\overline{\mathrm{FL}}$	$\mathbf{A 4}$	$\mathbf{A} 3$	$\mathbf{A} 2$	$\mathbf{A 1}$	$\mathbf{A 0}$	$\mathbf{D} 7$	$\mathbf{D 6}$	$\mathbf{D} 5$	
0	0	1	1	1	X	X	X	X	X	X	X	X	X
1	0	0	1	1	1	0	X	X	X	0	0	X	0
1	0	0	1	1	1	1	0	0	0	0	1	0	
1	0	0	1	1	1	1	0	0	1	0	1	0	
1	0	0	1	1	1	1	0	1	0	0	1	0	0
1	0	0	1	1	1	1	0	1	1	0	1	0	
1	0	0	1	1	1	1	1	0	0	0	1	0	
1	0	0	1	1	1	1	1	0	1	0	1	0	0
1	0	0	1	1	1	1	1	1	0	0	1	0	0
1	0	0	1	1	1	1	1	1	1	0	1	0	0

ELECTRICAL AND MECHANICAL CONSIDERATIONS

Voltage Transient Suppression

For best results power the display and the components that interface with the display to avoid logic inputs higher than V_{Cc}. Additionally, the LEDs may cause transients in the

Figure 14. Displaying user defined character example
Load character "A" into UDC-5 and then display it in digit 2 Logic levels: $0=$ Low, $1=$ High, $X=$ Don't care.

$\overline{\text { RST }}$	$\overline{C E}$	$\overline{\text { WR }}$	$\overline{\mathbf{R D}}$	FL	A4	A3	A2	A1	A0	D7	D6	D5	D
0	X	1	1	1	X	X	X	X	X	X	X	X	X
1	0	0	1	1	0	0	X	X	X	X	X	X	X
1	0	0	1	1	0	1	0	0	0	X	X	X	0
1	0	0	1	1	0	1	0	0	1	X	X	X	1
1	0	0	1	1	0	1	0	1	0	X	X	X	1
1	0	0	1	1	0	1	0	1	1	X	X	X	1
1	0	0	1	1	0	1	1	0	0	X	X	X	1
1	0	0	1	1	0	1	1	0	1	X	X	X	1
1	0	0	1	1	0	1	1	1	0	X	X	X	1
1	0	0	1	1	1	1	0	1	0	1	X	X	X

Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $85^{\circ} \mathrm{C}$. Water soluble organic acid flux (except carboxylic acid) or resinbased RMA flux without alcohol can be used
 portation, Specialty Chemical Division, Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI; E.I. DuPont de Nemours \& Co., Wilmington, DE.

For further information refer to Appnote 19 in the current Siemens Optoelectronic Data Book (Display group1 in Table I applies).
An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 28 pin DIP sockets .300 " wide

