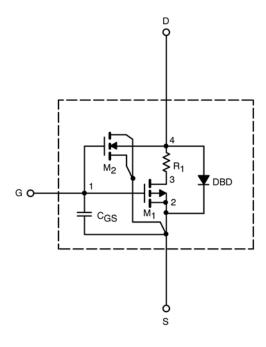


SPICE Device Model Si7491DP Vishay Siliconix

P-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- · Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

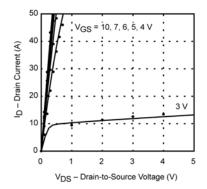
Document Number: 72336 www.vishay.com 25-May-04

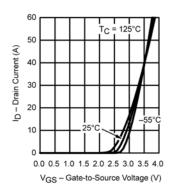
SPICE Device Model Si7491DP

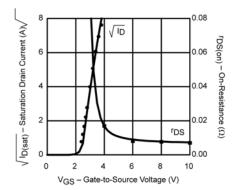
Vishay Siliconix

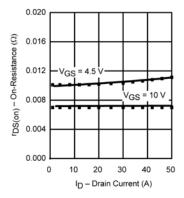
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	1.8		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	620		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -18 \text{ A}$	0.0072	0.0070	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -14 \text{ A}$	0.0102	0.0105	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -15 \text{ V}, I_{D} = -18 \text{ A}$	52	46	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = -4.5 A, $V_{\rm GS}$ = 0 V	-0.84	-0.74	V
Dynamic ^b					
Total Gate Charge	Q_g	$V_{DS} = -15 \text{ V}, V_{GS} = -5 \text{ V}, I_{D} = -18 \text{ A}$	48	56	nC
Gate-Source Charge	Q_{gs}		12	12	
Gate-Drain Charge	Q_{gd}		25	25	
Turn-On Delay Time	$t_{d(on)}$	$V_{DD} = -15 \text{ V}, \text{ R}_{L} = 15 \Omega$ $I_{D} \cong -1 \text{ A}, \text{ V}_{GEN} = -10 \text{ V}, \text{ R}_{G} = 6 \Omega$	145	150	ns
Rise Time	t _r		104	190	
Turn-Off Delay Time	$t_{d(off)}$		95	120	
Fall Time	t _f		107	90	

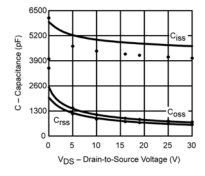
Notes

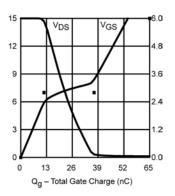

www.vishay.com Document Number: 72336


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si7491DP Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data

Document Number: 72336 www.vishay.com 25-May-04