

TCMD0110G 10 Gbits/s Clocked Modulator Driver

Features

- Operation to 12.5 Gbits/s NRZ.
- Internal optional retiming flip-flop to minimize output data pattern jitter.
- Adjustable output amplitude up to 3 V ($RL = 50 \Omega$).
- Integrated dc level adjustment to -1.5 V
- Complementary data and clock inputs, and data output.
- Complete operation and control with single –5.2 V power supply.
- 28 ps rise and fall time (20%—80%).
- 2 ps typical rms jitter (clocked mode).
- Clock disable mode for data feed-through.
- Optional 50 Ω on-chip termination for unused output (die form only).
- Single or dual-pin pulse width adjust 80 ps— 120 ps.
- Available in die form or a 32-pin microlead frame package.

Applications

- Optical transmitters.
- Digital video transmission.
- SONET/SDH test equipment.
- SONET/SDH OC-192/STM-64 transmission systems.
- 10.7 Gbits/s and 12.5 Gbits/s forward error correction (FEC).
- 10G Ethernet 10.3125 Gbits/s.

Functional Description

The TCMD0110G has been designed to drive electroabsorption modulators (EAMs), electroabsorption modulated lasers (EMLs), Mach-Zehnder (M-Z) lithium niobate modulators, and direct modulated lasers (DMLs) that have a 50 Ω input impedance at speeds up to 12.5 Gbit/s NRZ. For nonclocked applications, a clock disable pin is provided.

The driver consists of an input buffer, a limiting amplifier, a selectable data retiming section, a pulse width control circuitry, an output buffer with adjustable modulation level, and a dc offset section to provide a mark level adjustment.

The output buffer is designed to provide 3 V of modulation to a 50 Ω load at each output. The dc offset adjustment networks provide down to -1.5 V offset (see Figure 7). The dc offset for the unused output can be disabled to minimize power consumption (see Table 1).

The input data is retimed using an integrated flip-flop to remove incoming pattern dependent jitter. This feature is enabled using a clock select pad (see Table 1). If no clock is available, the TCMD0110G can be operated in a nonclocked mode.

The unused output can be terminated through the integrated 50 Ω resistor when using the die form of the product (see Table 1).

Note: This advance data sheet serves as a product description and reflects design objectives and conceptual characteristics. Specifications may be incomplete and, along with functionality, packaging, and pin functions, are subject to change. The devices have not been extensively characterized and final specifications may not correspond to advanced data sheet values.

Functional Description (continued)

Figure 1. TCMD0110G Block Diagram

Pad Name	Function
CKSEL	-5.2 V = enable, float = disable
VSSBP	Float when not using DOUTP
VSSBN	Float when not using DOUTN
TRM	Ground to terminate unused DOUTP
TRMB	Ground to terminate unused DOUTN

Table 1. Functional Description of Selected Pads

Die Layout

Dimensions are in µm.

Figure 2. TCMD0110G Pad Layout

2639(F)

Die Layout (continued)

Table 2. Die Pad Description

Pad Number	Symbol	Description
1, 3, 5, 7, 9	GND	Ground
2	CLKN	Complementary clock input
4	CLKP	Clock input
6	DATAN	Complementary data input
8	DATAP	Data input
10	PWP	Pulse width control positive
11	PWN	Pulse width control negative
12	VSS1	Supply voltage
13	VSS2	Supply voltage for output buffer
14	VSSR	Modulation voltage sense
15	VSSBN	Supply voltage for DOUTN mark level adjustment network
16	VSSBP	Supply voltage for DOUTP mark level adjustment network
17	VMOD	Modulation amplitude control voltage
18	VBIAS	Mark level control voltage
19	CKSEL	Clock select
21	DOUTP	Data output
22	TRM	Ground pad for termination resistor of unused DOUTP
23	TRMB	Ground pad for termination resistor of unused DOUTN
24	DOUTN	Complementary data output

Package Layout

Figure 3. Package Layout of TCMD0110G (Top View)

Pin Number	Symbol	Description
1, 3, 4, 6, 19, 21, 22, 24, 26, 28, 29, 31	GND	Ground
2	DOUTN	Complementary data output
5	DOUTP	Data output
7, 14, 25, 32	NC	Not connected, Intended for future use
8	CKSEL	Clock select
9	VBIAS	Mark level control voltage
10	VMOD	Modulation amplitude control voltage
11	VSSBP	Supply voltage for DOUTP mark level adjustment network
12	VSSBN	Supply voltage for DOUTN mark level adjustment network
13	VSSR	Modulation voltage sense
15	VSS2	Supply voltage for output buffer
16	VSS1	Supply voltage
17	PWN	Pulse width control negative
18	PWP	Pulse width control positive
20	DINP	Data input
23	DINN	Complementary data input
27	CLKP	Clock input
30	CLKN	Complementary clock input

Table 3. Micro-Lead Frame Package P	Pin-out for TCMD0110G
-------------------------------------	-----------------------

Agere Systems Inc.

Powerup Sequence

The control voltages VMOD, PWP, PWN and VBIAS must be referenced to Vss. To avoid damage to the device, power should be applied to the pins simultaneously or in the following sequence:

- 1. VSS1, VSS2 and VMOD simultaneously, or VSS1 then VMOD then VSS2, or VMOD then VSS1 then VSS2 (in the latter case, a current limit of 3 mA must be applied to VMOD).
- 2. a) VSSBP and/or VSSBN and VBIAS simultaneously.
 - b) VBIAS then VSSBP and/or VSSBN with a current limit of 3 mA applied to VBIAS
- 3. a) Adjust VMOD to achieve desired output amplitude.

b) Adjust VBIAS to get desired offset.

- 4. PWP and PWN.
- 5. Adjust PWP and PWN to position the eye crosspoint

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods of time can adversely affect device reliability. Unless otherwise specified, maximum ratings apply to both die and packaged product.

Parameter	Symbol	Min	Мах	Unit
Storage Temperature	Tstg	-40	125	°C
Supply Voltage	Vss	-5.5	0	V
Supply Current	lss	—	400	mA
Input Voltage	Vdatap, Vdatan	-2.0	0.5	V
Output Voltage	Vdoutp, Vdoutn	-4.1	0.5	V
Modulation Control Voltage	Vmod	Vss – 0.5	Vss + 1.5	V
Offset Control Voltage	VBIAS	Vss – 0.5	Vss + 2.5	V
Pulse Width Control Voltage	Vpwp, Vpwn	Vss – 0.5	Vss + 2.5	V
Modulation Current	Ivmod	-3	3	mA

Table 4. Absolute Maximum Ratings

Handling Precautions

Although protection circuitry has been designed into this device, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. Agere Systems Inc. employs a human-body model (HBM) and a charged device module (CDM) for ESD susceptibility testing and protection design evaluation. Our method complies with the EOS/ESD association standard for ESD sensitivity testing for CDM.

Device	Voltage
TCMD0110G	TBD

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data Rate	—	NRZ	—		10.7	Gbits/s
Supply Voltage	Vss	—	-5.5		-5.0	V
Operating Case Tem- perature	TCASE	_	0		85	°C
Data Input Signal	Vdatap, Vdatan	ac coupled, single-ended	0.5	_	1.0	Vp-р
		ac coupled, differential	0.5	_	1.0	Vp-р
		dc coupled, single-ended	0.5	_	1.0	Vp-р
		dc coupled, differential	0.5	_	1.0	Vp-р
Clock Input Signal	VCLKP, VCLKN	ac coupled, single-ended	0.5	_	1.0	Vp-р
		ac coupled, differential	0.5	_	1.0	Vp-р
		dc coupled, single-ended	0.5		1.0	Vp-р
		dc coupled, differential	0.5	_	1.0	Vp-р
Input Data to Clock Setup and Hold Time	ts, tH	See Figure 8	—	TBD	—	ps
Modulation Current Control Voltage	Vmod	VMOD referenced Vss	Vss	_	Vss + 1.0	V
Offset Level Control Voltage	VBIAS	VBIAS referenced Vss	Vss	_	Vss + 2.0	V
Pulse Width Control Voltage	Vpwp, Vpwn	PWP and PWN refer- enced to Vss	Vss + 1.0	—	Vss + 2.0	V
Clock Select Signal	VCSEL	CSEL referenced to Vss	Vss	_	Vss + TBD	V

Table 5. Recommended Operating Conditions

Electrical Characteristics

Table 6. Electrical Characteristics

TAMBIENT = 25 °C, RL = 50 Ω , VSS = -5.2 V, VIN = 600 mVp-p, clock enabled, VCLK = 600 mVp-p, both data and clock single-ended ac coupled. Bit rate = 9.95328 Gbits/s NRZ and the data pattern = 2^{31} – 1 PRBS. Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information purposes only and are not part of the testing requirements.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Maximum Output Signal Amplitude	VAMP	RL = 50 Ω, VBIAS = VSS	3.0		—	V
Maximum Output Signal Amplitude with dc Off- set	Vamp	R∟ = 50 Ω, V Offset = −1.0 V	2.5	—	_	V
Minimum Output Signal Amplitude	VAMP	$RL = 50 \Omega$, VBIAS = Vss, VMOD = Vss	_	_	1.5	V
Data Output High	Vdout, h	$RL = 50 \Omega$, $VBIAS = VSS$	-600	—	0.0	mV
Output Offset Voltage Minimum [†]	VOFFSET	RL = 50 Ω, VBIAS = VSS + 2.0 V		—	-1.5	V
MOD Rise/Fall Time	Tr/Tf	20—80%; RL = 50 Ω, VAMP = 3.0 Vp-p, VBIAS = VSS		—	35	ps
Maximum Pulse Width	PW	—	120	_	—	ps
Minimum Pulse Width	PW	—	-	_	80	ps
Pulse Width Control Input	PWP	80 ps pulse width for mark at Vss + 1.0; 120 ps at Vss + 2.0	Vss + 1.0	—	Vss + 2.0	V
Output Voltage Over- shoot	Voslow Voshigh	VAMP > 2.0 V	-10	—	+10	%
Phase Margin	_	—		TBD	—	Deg
Jitter (RMS)*	_	Clock enabled mode		_	3	ps
		Clock disabled mode	—	—	5	ps
Supply Current	Iss	Output amp = 2.5 Vp-p Output offset = -1.0 V			300	mA

* $J_{RMS} = \sqrt{(J_{RMS, DUT})^2 - (J_{RMS, SYSTEM})^2}$

† See Figure 7.

Electrical Characteristics (continued)

Figure 4. VMOD Vs. DOUT

Figure 5. Offset Vs. VBIAS

Electrical Characteristics (continued)

Figure 6. PWP/PWN Vs. Pulse Width

Figure 7. Available Output Amplitude as a Function of Offset Voltage

Timing Requirements

* The active edge will be the rising edge of the CLKP

Figure 8. Input Data to Clock Setup and Hold Time

Chip Visual Inspection Criteria

At 100x the chips will be visually free of the following defects:

- Scratches in the metallization (including air-bridges) that leave less than 50% of the original width undisturbed and distort the outline of the metal feature.
- Voids or missing metallization that leave less than 50% of the original width undisturbed.
- Extra metals that bridge adjacent same-layer metal features. This includes bond pads damaged from probing.
- Cracks or chips out that extend into the active area of the device.
- Damaged air-bridges that have been distorted or torn off.
- Particles on the surface of the chip that are large enough to bridge between bond pads.
- Stains larger than the size of a bond pad.
- Lifted or blistered metallization.
- Missing nitride that occurs over or under an active feature.
- Defects to bond pad area:
 - Stains larger than 25% of bond pads.
 - Extra nitride on the bond pad that reduces the open area by more than 25%.
 - Probe damage that removes more than 25% of the bond pad.
 - Probe damage that causes cracks in the surrounding nitride substrate.

1620(F).a

On Wafer Results

Figure 10. Electrical Eye Diagram with Pulse Adjusted for Greater than 120 ps Pulse Width (PWP = Vss + 2 V)

Results of TCMD0110G Driving an Agere E2580 Type Electroabsorption Modulated Laser (EML)

Figure 12. Optical Eye Diagram with 1.0 V Input to TCMD0110G

Figure 13. Optical Eye Diagram with 0.5 V Input to TCMD0110G

Agere Bonding Parameters

Parameters in Table 7 have been provided as a reference for die applications. They represent parameters used at Agere Systems and some or all may be process and bonder dependent. They are not intended to indicate universal settings that should be used for every process and/or bonder.

Parameter	Specifications
Wire bonder	ESEC 3018
Bondsite temperature	150 °C ± 10 °C
Bond wire	99.99% Gold, .001 in diameter, 3-6% elongation
Capillary	UTS-38EE-CM-1/16-XL (from SPT), hole size = 38 µm (1.5 mils), tip diameter =
	130 μ m (5.1 mils), chamfer diameter = 58 μ m (2.3 mils)
Ball bond parameters	Force = 450 mN, US time = 12 ms, US power = 20%
Wedge bond parameters	Force = 550 mN, US time = 15 ms, US power = 25%
EFO parameters	FAB size = 60 μm (1.3 ms spark time, 34.04 uA current)
Wire pull strength	Range = 7.0—12.0 gf, Agere spec = min 5.0 gf
Ball sheer	Range = 45—65 gf, Agere spec = 35 gf

Table 7. Bonding Parameters Used at Agere Systems

Mounting and Connections

The TCMD0110G package is a 32-pin *Micro*LeadFrame[™] (MLF) package. The package is a near CSP (chip scale package) plastic encapsulated with a copper leadframe substrate. This package is leadless and electrical contacts are made by soldering lands on the bottom surface to the printed-circuit board (PCB). Since the package does not include traditional formed gull-wing leads, a soldering iron cannot be used to solder the package to the PCB. Instead, solder paste must be printed onto the PCB and then reflowed after component placement. The temperature during solder re-flow should not exceed 220 °C and the time above liquids should be less than 75 seconds. There is a die attach paddle on the bottom that facilitates heat dissipation from the die to the PCB. For effective heat conduction, the PCB must have features to effectively conduct heat away from the package. This can be achieved by incorporating a thermal pad and thermal vias on the PCB. While a thermal pad will provide a solderable surface on the top of the PCB for better grounding, thermal vias are needed to provide a thermal path to inner and/or bottom layers of the PCB to remove the heat. Heat could further be transferred into the module case by including a thermal pad on the opposite side of the PCB, directly under the device, and building a pedestal into the case to make contact with the thermal pad. The die attached paddle is at ground potential.

Package Dimensions

32- Pin MLF Package

Package Dimensions (continued)

Table 8. Package Dimensions (in mm)

Symbol	Dimensions			Note
	Min	Nom	Max	
А	—	0.85	1	
A1	0.00	0.01	0.05	1
A2		0.65	0.8	
A3		0.20 REF.		—
D		5.00 BSC		4
D1		4.75 BSC		4
E		5.00 BSC		4
E1		4.75 BSC		4
q			12°	—
Р	0.24	0.42	0.6	
R	0.13	0.17	0.23	
е	0.50 BSC			
N		32		2
Nd		8		2
Ne		8		2
L	0.30	0.40	0.50	
В	0.18	0.23	0.30	3
Q	0.00	0.20	0.45	
D2	2.95	3.10	3.25	
E2	2.95	3.10	3.25	

Notes:

1. Applied only for terminals.

2. N is the number of terminals. Nd is the number of terminals in x-direction.

Ne is the number of terminals in y-direction.

3. Dimension b applies to plated terminal snd is measured between 0.20 mm and 0.25 mm from terminal tip.

4. BSC is a basic dimension without tolerance.

*Micro*LeadFrame is a trademark of Amkor Technology, Inc.

For additional in	nformation, contact your Agere Systems Account Manager or the following:
INTERNET:	http://www.agere.com
E-MAIL:	docmaster@agere.com
N. AMERICA:	Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
	1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA:	Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon
	Tel. (852) 3129-2000, FAX (852) 3129-2020
	CHINA: (86) 21-5047-1212 (Shanghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzhen)
	JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)
EUROPE:	Tel. (44) 7000 624624, FAX (44) 1344 488 045

agere

Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.

Copyright © 2002 Agere Systems Inc. All Rights Reserved

April 01, 2002 DS02-008HSPL