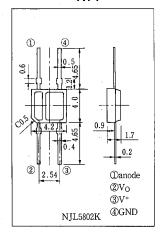
DIGITAL OUTPUT PHOTO REFLECTOR

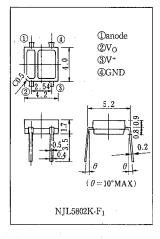
■ GENERAL DESCRIPTION

The NJL5802K is thin package digiral output type photo reflector which consist of New JRC original designed one chip photo recieving IC and high output LED.

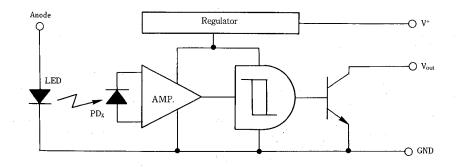
■ FEATURES

- Normaly off type
- With schmitt triger circuit
- TTL Compatible
- Built-in visible light cut-off filter.

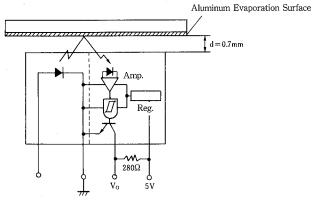

■ APPLICATIONS

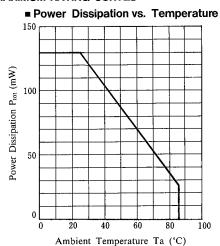

- Tape end sensor
- Reel rotation sensor
- Paper detector, Paper end sensor
- Bar code reader
- Sensor of FDD, Robot, manufacturing installation, etc.

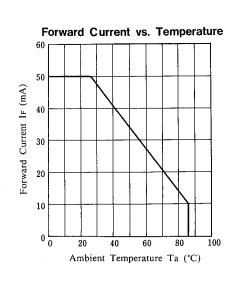
■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)


PARAMETER	SYMBOL	RATINGS	UNIT
Emitter			
Forward Current (Continuous)	IF	50	mA
Reverse Voltage (Continuous)	VR	6	v
Power Dissipation	PD	75	mW
Detector			
Supply Voltage	V+	16	v
High Level Output Voltage	VoH	16	v
Low Level Output Current	IoL	50	mA
Power Dissipation	Po	110	mW
Coupler			
Total Power Dissipation	Ptot	130	mW
Operating Temperature	Topr	$-20 \sim +85$	°C
Storage Temperature	T _{stg}	$-30\sim +100$	°C
Soldering Temperature	Tsol	260	°C
		(5sec. 1.5mm from body)	

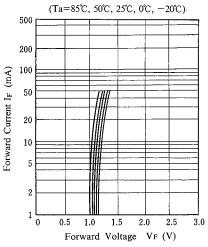
■ OUTLINE (typ.) Unit: mm

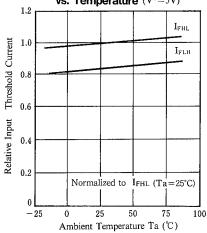

■ BLOCK DIAGRAM


■ ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

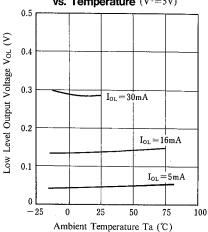

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Emitter						
Forward Voltage	V _F	$I_F = 10mA$	—	1.1	1.3	V
Reverse Current	IR	$V_R = 6V$	-	_	1.0	μ A
Capacitance	Ct	$V_R = 0V$, $f = 1MHz$	-	25		pF
Detector			1		1.	v
Supply Voltage Range	V+		3.5	_	15	
Low Level Output Voltage	Vol	$I_{OL}=16mA$, V+=5V, $I_F=10mA$, d=0.7mm		0.2	0.5	V
High Level Output Current	Іон	$V_0 = V^+ = 15V, I_F = 0mA$	-	_	100	μΑ
Low Level Supply Current	ICCL	$V^{+}=5V$, $I_{F}=10mA$, $d=0.7mm$	-	3	10	mA
High Level Supply Current	I _{CCH}	$V^{+}=5V$, $I_{F}=0mA$	-	4.5	10	mA
Coupled		•			1	
H→L Threshold Input Current	I _{FHL}	$V^{+}=5V$, $R_L = 280\Omega$, $d=0.7mm$	-	-	10	mA
Hysteresis	I _{FLH} /I _{FHL}	$V^{+}=5V$, $R_L = 280\Omega$, $d=0.7mm$		0.8	-	
H→L Delay Time	tpHL	$V^{+}=5V$, $R_L = 280\Omega$, $I_F = 10$ mA, $d=0.7$ mm	1 —	10		μs
L→H Delay Time	tPLH	$V^{+}=5V$, $R_L = 280\Omega$, $I_F = 10mA$, $d=0.7mm$		5	-	μs
Fall Time	tr	$V^{+}=5V$, $R_L = 280\Omega$, $I_F = 10mA$, $d=0.7mm$	-	0.1		μs
Rise Time	t _r	$V^{+}=5V$, $R_L = 280\Omega$, $I_F = 10mA$, $d=0.7mm$		0.1	-	μs

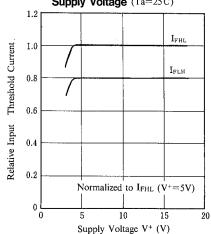
■ MEASURING SPECIFICATION FOR THRESHOLD INPUT CURRENT


■ MAXIMUM RATING CURVES

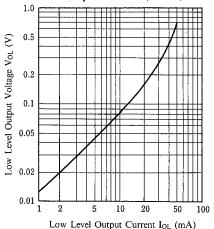


■ TYPICAL CHARACTERISTICS

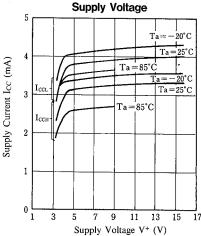

Forward Current vs. Forward Voltage


Input Threshold Current vs. Temperature (V*=5V)

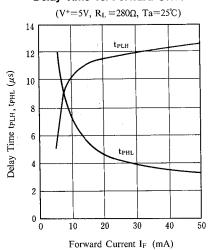
Low Level Output Voltage vs. Temperature (V*=5V)

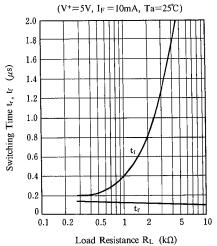


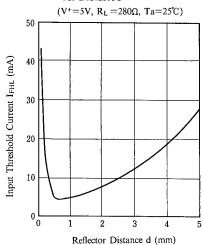
Input Threshold Current vs. Supply Voltage (Ta=25°C)

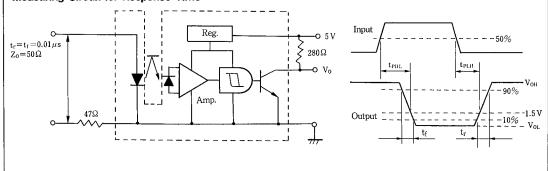


Low Level Output Voltage vs.


Low Level Output Current (V+=5V, Ta=25°C)


Supply Current vs.


Delay Time vs. Forward Current


Switching Time vs. Resistance

Input Threshold Current vs. Distance

Measuring Circuit for Response Time

NJL5802K

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.