
20-S3-F443FX -092002

USER'S MANUAL

S3F443FX

16/32-Bit RISC
Microcontroller

Revision 0

S3F443FX (Preliminary Spec) PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

INTRODUCTION

SAMSUNG S3F443FX 16/32-bit RISC micro-controller is a cost-effective and high-performance solution for HDD
and general purpose applications.

An outstanding feature of the S3F443FX is its CPU core, a 16/32-bit RISC processor (ARM7TDMI) designed by
Advanced RISC Machines, Ltd. The ARM7TDMI core is a low-power, general-purpose, microprocessor macro-
cell which was developed for the use in application-specific and customer-specific integrated circuits. Its simple,
elegant, and fully static design is particularly suitable for cost-sensitive and power-sensitive applications.

The S3F443FX has been developed by using the ARM7TDMI core, CMOS standard cell, and data path compiler.
the S3F443FX has been designed to support only Big Endian. Most of the on-chip function blocks have been
designed by using a HDL synthesizer. The S3F443FX has been fully verified in SAMSUNG ASIC test
environment including internal Qualification Assurance Process.

By providing a complete set of common system peripherals, the S3F443FX can minimize the overall system
costs and eliminate the need to configure additional components, externally.

The integrated on-chip functions which are described in this document include:

— Memory system manager: 3 external memory banks. (If the internal flash ROM is not used for a boot code,
nCS0 will be used for a boot ROM)

— Built-in 256Kbyte (64K × 32-bit) Flash memory

— 8K-bytes (2K × 32-bit) internal SRAM for stack, data memory, and/or code memory

— One channel UART

— Six 16-bit internal timers with 8-bit pre-scaler and input Capture function

— Power down mode: STOP and IDLE modes

— One 8-bit basic timer and 3-bit watch-dog timer

— Interrupt controller (Total of 21 interrupt sources including 3 external sources)

— Sixteen programmable I/O ports

— One 8-Bit PWM

— 64-pin LQFP

PRODUCT OVERVIEW S3F443FX (Preliminary Spec)

1-2

FEATURES

Architecture

• Completely integrated micro-controller for
embedded applications

• Big Endian only supported

• Fully 16/32-bit RISC architecture

• Efficient and powerful ARM7TDMI CPU core

• Cost effective JTAG-based debugging solution

Memory

• 8-bit external bus support for one ROM bank
and two external memory banks

• Programmable memory access times (from 0 to
7 wait cycles)

• 8-Kbyte SRAM (for stack, data memory, and/or
code memory)

• Built-in 256-Kbyte Flash memory (for data
and/or code memory)

UART

• One UART channel with interrupt-based
operation

• Programmable baud rates

• Supports asynchronous serial data
transmit/receive operations with 5-bit, 6-bit, 7-
bit, 8-bit data per frame

16-bit Timers/Counters with Capture Function
(T0, T1, T2, T3, T4 and T5)

• Six programmable 16-bit timer/counters

• Interval, capture, or match & overflow mode
operations

• EXTCLK or TIN (Timer Input Capture Signal)
can be the clock source for the timer.

• TIN is shared by all timers.

PWM

• One-8 bit PWM

• Clock source is driven from EXTCLK signal
source divided by 1/1 or by1/2

• PWM signal out

Basic Timer and Watch-dog Timer

• 8-bit counter (Basic Timer) + 3-bit counter
(Watch-dog Timer).

• Overflow signal from the 8-bit counter can
generate a basic timer interrupt and can be the
input clock for the 3-bit counter.

• Overflow signal from the 3-bit counter resets the
system.

I/O Ports

• 16 programmable I/O ports (7 dedicated I/O pins
only)

• Each port pin can be configured individually as
input, output, or functional pin

Interrupts

• 21 interrupt sources including 3 external
Interrupt sources.

• H/W interrupt priority logic and vector
generation

• Normal or fast interrupt mode (IRQ, FIQ)

Power down mode

• IDLE and STOP modes

• Division of system clock to reduce the power
(1/1,1/2, 1/8, 1/16 and 1/1024)

Operating Voltage Range

• Core: 1.8V ,I/O: 2.7–3.6V

Operating Frequency Range

• up to 80MHz (CPU core, SRAM, and
Peripherals)

• up to 40MHz (Flash ROM)

Package Type

• 64-pin LQFP

S3F443FX (Preliminary Spec) PRODUCT OVERVIEW

1-3

BLOCK DIAGRAM

I/O Port
Controller

System Manager

Sytem Bus Controller

Bus Arbitration

Bus Interface

ROM/SRAM Controller

UART

Timer 0,1,2,3,4,5

Clock Control
(Power Down)

Basic Timer
& WDT

Interrupt
Controller

Bus
Router

Local Bus

A
D

D
R

E
S

S
/D

A
T

A
 B

U
S

 /
C

O
N

T
R

O
L

S
IG

N
A

LS

CPU
(ARM7TDMI)

8K-byte
SRAM

256 K-byte
Flash ROM

8bit-PWM

Figure 1-1. S3F443FX Block Diagram

PRODUCT OVERVIEW S3F443FX (Preliminary Spec)

1-4

PIN ASSIGNMENTS

S3F443FX

(64-LQFP)

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

33343536373839404142434445464748

16151413121110987654321

32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

A4
A5
VDD(3.3V)
VSS(3.3V)
A6
A7
A8
A9
A10
A11
A12/GPIO8
A13/GPIO9
A14/GPIO10/PWM_OUT
A15/GPIO11
A16/GPIO12
A17/GPIO13

D4
D3
D2
D1
D0

EINT0
EINT1
EINT2

TIN/GPIO7
GPIO0

VSS(1.8V)
VDD(1.8V)

GPIO1
GPIO2
GPIO3
GPIO4

A
3

A
2

A
1

A
0

nW
E

nO
E

nC
S

0
nC

S
1

nC
S

2
E

X
T

C
LK

V
S

S
(1.8V

)
V

D
D

(1.8V
)

nW
A

IT
D

7
D

6
D

5

nT
R

S
T

M
D

0
M

D
1

nR
E

S
E

T
V

D
D

(1.8V
)

V
S

S
(1.8V

)
T

X
D

/G
P

IO
14

R
X

D
/G

P
IO

15
T

D
I

T
M

S
T

C
K

T
D

O
V

D
D

(3.3V
)

V
S

S
(3.3V

)
G

P
IO

6
G

P
I05

Figure 1-2. S3F443FX Pin Assignments (64-LQFP)

S3F443FX (Preliminary Spec) PRODUCT OVERVIEW

1-5

SIGNAL DESCRIPTIONS

Table 1-1. S3F443FX Signal Descriptions (64-pin LQFP)

Signal Pin # I/O Pin Type Description

TDO 5 O TDO (TAP Controller Data Output) is the serial output for the JTAG
port

TCK 6 IU TCK (TAP Controller Clock) provides the clock input for the JTAG
logic. A 100K pull-up resistor is connected to the TCK pin internally.

TMS 7 IU TMS (TAP Controller Mode Select) controls the sequence of the
TAP controller state diagram. A 100K pull-up resistor is connected
to the TMS pin internally.

TDI 8 IU TDI (TAP Controller Data Input) is the serial input for the JTAG port.
A 100K pull-up resister is connected to the TDI pin internally.

nTRST 16 IU nTRST (TAP Controller Reset) resets the TAP controller at start.
A 100K pull-up resistor is connected to the nTRST pin internally.
If the debugger (Black ICE) is not used, nTRST pin should be L
level or low active pulse should be applied before running the CPU.
For example, nRESET signal can be tied with the nTRST.

MD[1:0] 14,15 I 00: Normal mode (In-ROM mode). The nCS0 may be used for an
external device. (MDS can be used.)

01: External ROM mode. The nCS0 will be used for boot code
 instead of the internal FLASH ROM. (MDS can be used.)

10: Optional MDS mode for ICE. (External ROM mode is selected)

11: Test mode for Internal Flash memory, which is used only a flash
 writer equipment.

nRESET 13 IUS nRESET is the global reset input for the S3F443FX. For a safe
system reset, nRESET should be held at Low level for at least
150us.

A17/GPIO13 17 IOPD A17: Address line A17

GPIO[13]: Programmable I/O port 13 for push-pull input or output.

A16/GPIO12 18 IOPD A16: Address line A16

GPIO[12]: Programmable I/O port 12 for push-pull input or output.

A15/GPIO11 19 IOPD A15: Address line A15

GPIO[11]: Programmable I/O port 11 for push-pull input or output.

A14/GPIO10/
PWM_OUT

20 IOPD A14: Address line A14
GPIO[10]: Programmable I/O port 10 for push-pull input or output.
PWM_OUT: PWM signal out

A13/GPIO9 21 IOPD A13: Address line A13
GPIO[9]: Programmable I/O port 9 for push-pull input or output.

A12/GPIO8 22 IOPD A12: Address line A12

GPIO[8]: Programmable I/O port 8 for push-pull input or output.

A[11:0] 23-28,

31-36

O Address lines A11–A0

PRODUCT OVERVIEW S3F443FX (Preliminary Spec)

1-6

Table 1-1. S3F443FX Signal Descriptions (64-pin LQFP) (Continued)

Signal Pin # I/O Pin Type Description

nWE 37 O nWE (Write Enable) indicates that the current bus cycle is a write
cycle.

nOE 38 O nOE (Output Enable) indicates that the current bus cycle is a
read cycle.

nWAIT 45 IU nWAIT requests to prolong a current bus cycle. As long as
nWAIT is L, the current bus cycle cannot be completed.

nCS0 39 O nCS0 (Chip Select 0) can be activated when the issued address
for memory access is within the address region 0x0–0x3FFFF
and MD[1:0] is configured as an external ROM mode.

nCS1 40 O nCS1(Chip Select 1) can be activated when the issued address
for memory access is within the address region 0x800000–
0x83FFFF.

nCS2 41 O nCS2 (Chip Select 2) can be activated when the issued address
for memory access is within the address region 0xC00000–
0xC3FFFF.

D[7:0] 46-53 IOPD D[7:0] (Bi-directional Data Bus) inputs data during memory read
and outputs data during memory write.

EXTCLK 42 IS External clock source.

EINT[2:0] 54-56 IOPUSE External interrupt inputs 2–0.

TIN/GPIO7 57 IOPUS TIN: Timer capture input

GPIO[7]: Programmable I/O port 7 for push-pull input or output.

GPIO[6:0] 58,61–
64,1-2

IOPU GPIO[6:0]: Programmable I/O port 6~0 for push-pull input/output.

RXD/GPIO15 9 IOPUS RXD: Rx data input for the UART

GPIO[15]: Programmable I/O port 15 for push-pull input or
 output.

TXD/GPIO14 10 IOPUS TXD: Tx data output for the UART

GPIO[14]: Programmable I/O port 14 for push-pull input or
 output.

VDD(3.3V) 4,30 3.3 Volt for Peripheral Block

VDD(1.8V) 12,44,
 60

– 1.8 Volt for Core Block

VSS(3.3V) 3,29 3.3 Volt for Peripheral Block

VSS(1.8V) 11,43,
59

– 1.8 Volt for Core Block

S3F443FX (Preliminary Spec) PRODUCT OVERVIEW

1-7

I/O PIN TYPES

Table 1-2. S3F443FX I/O Pin Types

I/O Type Descriptions

IOPUS Schmitt-trigger input/output pin with programmable pull-up resistor

IOPUSE Schmitt-trigger input/output pin with programmable pull-up resistor and edge detection

IOPD Input/output pin with programmable pull-down resistor

IOPU Input/output pin with programmable pull-up resistor

O Output pin

IUS Schmitt-trigger Input pin with pull-up resistor

I Input pin

IU Input pin with pull-up resistor

IS Schmitt-trigger input pin

A A pin for analog signal

PRODUCT OVERVIEW S3F443FX (Preliminary Spec)

1-8

Pull-up Resistor
(Typical 50 KΩ)

VDD

I/O

VDD

Output Data

Pull-up Enable

VSSInput Data

External
Interrupt Input

Output Enable

Figure 1-3. IOPUSE (Schmitt Input/Output Pin with Programmable Pull-up Resistor and Edge Detection)

Pull-up Resistor
(Typical 50 KΩ)

VDD

I/O

VDD

Output Data

Pull-up Enable

VSS
Input Data

Output Enable

Figure 1-4. IOPUS (Schmitt Input/Output Pin with Programmable Pull-up Resistor)

S3F443FX (Preliminary Spec) PRODUCT OVERVIEW

1-9

VDD

I/O

Output Data

VSS
Input Data

Output Enable

Power-down Enable

VSS

Pull-down Resistor
(Typical 50K§Ù)

Figure 1-5. IOPD (Input/Output Pin with Programmable Pull-down Resistor)

Pull-up Resistor
(Typical 50 KΩ)

VDD

I/O

VDD

Output Data

Pull-up Enable

VSS
Input Data

Output Enable

Figure 1-6. IOPU (Input/Output Pin with Programmable Pull-up Resistor)

PRODUCT OVERVIEW S3F443FX (Preliminary Spec)

1-10

NOTES

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

2-1

2 PROGRAMMER'S MODEL

OVERVIEW

S3F443FX was developed using the advanced ARM7TDMI core designed by Advanced RISC Machines, Ltd and
it supports only Big Endian mode.

PROCESSOR OPERATING STATES

From the programmer's point of view, the ARM7TDMI can be in one of two states:

— ARM state which executes 32-bit, word-aligned ARM instructions.

— THUMB state which operates with 16-bit, half-word-aligned THUMB instructions. In this state, the PC uses bit
1 to select between alternate half-words.

NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

SWITCHING STATE

Entering THUMB State

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand
register.

Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF, ABORT,
SWI etc.), if the exception was entered with the processor in THUMB state.

Entering ARM State

Entry into ARM state happens:

— On execution of the BX instruction with the state bit clear in the operand register.

— On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is
placed in the exception mode's link register, and execution commences at the exception's vector address.

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

2-2

MEMORY FORMATS

ARM7TDMI views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first
stored word, bytes 4 to 7 the second and so on. ARM7TDMI can treat words in memory as being stored either in
Big-Endian or Little-Endian format.

BIG-ENDIAN FORMAT

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines
31 through 24.

31

8

4

0

23

9

5

1

10

6

2

11

7

3

8 7 0

4

0

8

Higher Address

Lower Address

Word Address

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

24 1516

Figure 2-1. Big-Endian Addresses of Bytes within Words

LITTLE-ENDIAN FORMAT

In Little-Endian format, the lowest numbered byte in a word is considered the word's least significant byte, and
the highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines
7 through 0. (NOTE: S3F443FX does not support Little-Endian)

31 23 8 7 0

4

0

8

Higher Address

Lower Address

Word Address

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

24 1516

8

4

0

9

5

1

10

6

2

11

7

3

Figure 2-2. Little-Endian Addresses of Bytes within Words

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

2-3

INSTRUCTION LENGTH

Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

Data Types

ARM7TDMI supports byte (8-bit), half-word (16-bit) and word (32-bit) data types. Words must be aligned to four-
byte boundaries and half words to two-byte boundaries.

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

2-4

OPERATING MODES

ARM7TDMI supports seven modes of operation:

— User (usr): The normal ARM program execution state

— FIQ (fiq): Designed to support a data transfer or channel process

— IRQ (irq): Used for general-purpose interrupt handling

— Supervisor (svc): Protected mode for the operating system

— Abort mode (abt): Entered after a data or instruction pre-fetch abort

— System (sys): A privileged user mode for the operating system

— Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs will execute in User mode. The non-user modes' known as privileged
modes-are entered in order to service interrupts or exceptions, or to access protected resources.

REGISTERS

ARM7TDMI has a total of 37 registers - 31 general-purpose 32-bit registers and six status registers - but these
cannot all be seen at once. The processor state and operating mode dictate which registers are available to the
programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-
User) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in
each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of these except R15 are
general-purpose, and may be used to hold either data or address values. In addition to these, there is a
seventeenth register used to store status information.

Register 14 is used as the subroutine link register. This receives a copy of R15 when a Branch and
Link (BL) instruction is executed. At all other times it may be treated as a general-
purpose register. The corresponding banked registers R14_svc, R14_irq, R14_fiq,
R14_abt and R14_und are similarly used to hold the return values of R15 when
interrupts and exceptions arise, or when Branch and Link instructions are executed
within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits
[31:2] contain the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the CPSR (Current Program Status Register). This contains condition code flags and
the current mode bits.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). In ARM state, many FIQ handlers do
not need to save any registers. User, IRQ, Supervisor, Abort and Undefined each have two banked registers
mapped to R13 and R14, allowing each of these modes to have a private stack pointer and link registers.

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

2-5

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R8_fiq

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

R13_und

R14_und

R15 (PC)

System & User FIQ Supervisor IRQAbort Undefined

ARM State General Registers and Program Counter

ARM State Program Status Registers

CPSR CPSR

SPSR_fiq

CPSR

SPSR_irq

= banked register

CPSR

SPSR_und

CPSR

SPSR_abt

CPSR

SPSR_svc

Figure 2-3. Register Organization in ARM State

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

2-6

The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight
general registers, R0-R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR),
and the CPSR. There are banked Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs)
for each privileged mode. This is shown in Figure 2-4.

R0

R1

R2

R3

R4

R5

R6

R7

LR

SP

PC

System & User FIQ Supervisor IRQAbort Undefined

THUMB State General Registers and Program Counter

THUMB State Program Status Registers

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

= banked register

LR_fiq

R0

R1

R2

R3

R4

R5

R6

R7

SP_fiq

PC

LR_svc

R0

R1

R2

R3

R4

R5

R6

R7

SP_svc

PC

LR_und

R0

R1

R2

R3

R4

R5

R6

R7

SP_und

PC

LR_fiq

R0

R1

R2

R3

R4

R5

R6

R7

SP_fiq

PC

LR_abt

R0

R1

R2

R3

R4

R5

R6

R7

SP_abt

PC

Figure 2-4. Register Organization in THUMB state

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

2-7

The relationship between ARM and THUMB state registers

The THUMB state registers relate to the ARM state registers in the following way:

— THUMB state R0-R7 and ARM state R0-R7 are identical

— THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical

— THUMB state SP maps onto ARM state R13

— THUMB state LR maps onto ARM state R14

— The THUMB state Program Counter maps onto the ARM state Program Counter (R15)

This relationship is shown in Figure 2-5.

R0

R1

R2

R3

R4

R5

R6

R7

Stack Pointer (SP)

Link register (LR)

Program Counter (PC)

CPSR

SPSR

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

Stack Pointer (R13)

Link register (R14)

Program Counter (R15)

CPSR

SPSR

Lo
-r

eg
is

te
rs

H
i-r

eg
is

te
rs

THUMB state ARM state

Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

2-8

Accessing Hi-Registers in THUMB State

In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard register set. However, the
assembly language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0-R7 (a Lo register) to a Hi register, and from a Hi
register to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared
against or added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure
3-34.

THE PROGRAM STATUS REGISTERS

The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers. These register's functions are:

— Hold information about the most recently performed ALU operation

— Control the enabling and disabling of interrupts

— Set the processor operating mode

The arrangement of bits is shown in Figure 2-6.

31

Condition Code Flags

Overflow

N Z C V I F T M4 M3 M2 M1 M0

30 29 2728 26 25 24 23 8 7 6 5 4 3 2 1 0

(Reserved) Control Bits

Carry/Borrow/Extend

Zero

Negative/Less Than

Mode bits

State bit

FIQ disable

IRQ disable

~~
~~

Figure 2-6. Program Status Register Format

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

2-9

The Condition Code Flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical
operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-2 for details.
In THUMB state, only the Branch instruction is capable of conditional execution: see Figure 3-46 for details.

The Control Bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will
be changed when an exception arises. If the processor is operating in a privileged mode, they can also be
manipulated by software.

The T bit This reflects the operating state. When this bit is set, the processor is executing in
THUMB state, otherwise it is executing in ARM state. This is reflected on the TBIT
external signal.

Note that the software must never change the state of the TBIT in the CPSR. If this
happens, the processor will enter an unpredictable state.

Interrupt disable bits The I and F bits are the interrupt disable bits. When set, these disable the IRQ and FIQ
interrupts respectively.

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These determine the
processor's operating mode, as shown in Table 2-1. Not all combinations of the mode
bits define a valid processor mode. Only those explicitly described shall be used. The
user should be aware that if any illegal value is programmed into the mode bits, M[4:0],
then the processor will enter an unrecoverable state. If this occurs, reset should be
applied.

Reserved bits The remaining bits in the PSRs are reserved. When changing a PSR's flag or control
bits, you must ensure that these unused bits are not altered. Also, your program should
not rely on them containing specific values, since in future processors they may read
as one or zero.

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

2-10

Table 2-1. PSR Mode Bit Values

M[4:0] Mode Visible THUMB State Registers Visible ARM State Registers

10000 User R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

10001 FIQ R7..R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7..R0,
R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12..R0,
R14_irq, R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12..R0,
R14_svc, R13_svc,
PC, CPSR, SPSR_svc

10111 Abort R7..R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12..R0,
R14_abt, R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7..R0
LR_und, SP_und,
PC, CPSR, SPSR_und

R12..R0,
R14_und, R13_und,
PC, CPSR

11111 System R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

Reserved bits The remaining bits in the PSR's are reserved. When changing a PSR's flag or control
bits, you must ensure that these unused bits are not altered. Also, your program should
not rely on them containing specific values, since in future processors they may read
as one or zero.

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

2-11

EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an
interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved
so that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order.
See Exception Priorities on page 2-14.

Action on Entering an Exception

When handling an exception, the ARM7TDMI:

1. Preserves the address of the next instruction in the appropriate Link Register. If the exception has been
entered from ARM state, then the address of the next instruction is copied into the Link Register (that is,
current PC + 4 or PC + 8 depending on the exception. See Table 2-2 on for details). If the exception has
been entered from THUMB state, then the value written into the Link Register is the current PC offset by a
value such that the program resumes from the correct place on return from the exception. This means that
the exception handler need not determine which state the exception was entered from. For example, in the
case of SWI, MOVS PC, R14_svc will always return to the next instruction regardless of whether the SWI
was executed in ARM or THUMB state.

2. Copies the CPSR into the appropriate SPSR

3. Forces the CPSR mode bits to a value which depends on the exception

4. Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nesting of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically switch into ARM state when the
PC is loaded with the exception vector address.

Action on Leaving an Exception

On completion, the exception handler:

1. Moves the Link Register, minus an offset where appropriate, to the PC. (The offset will vary depending on the
type of exception.)

2. Copies the SPSR back to the CPSR

3. Clears the interrupt disable flags, if they were set on entry

NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR
automatically sets the T bit to the value it held immediately prior to the exception.

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

2-12

Exception Entry/Exit Summary

Table 2-2 summarizes the PC value preserved in the relevant R14 on exception entry, and the recommended
instruction for exiting the exception handler.

Table 2-2. Exception Entry/Exit

Return Instruction Previous State Notes

ARM R14_x THUMB R14_x

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA – – 4

NOTES:
1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.
2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.
4. The value saved in R14_svc upon reset is unpredictable.

FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in
ARM state has sufficient private registers to remove the need for register saving (thus minimizing the overhead
of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either synchronous or
asynchronous transitions, depending on the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and
nIRQ are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can
affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the
interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR's F flag (but note that this is not possible from User mode). If the F flag
is clear, ARM7TDMI checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

2-13

IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has a
lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by
setting the I bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from
the interrupt by executing

SUBS PC,R14_irq,#4

Abort

An abort indicates that the current memory access cannot be completed. It can be signaled by the external
ABORT input. ARM7TDMI checks for the abort exception during memory access cycles.

There are two types of abort:

— Prefetch abort: occurs during an instruction prefetch.

— Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until
the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch
occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

— Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be
aware of this.

— The swap instruction (SWP) is aborted as though it had not been executed.

— Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the
instruction would have overwritten the base with data (i.e. it has the base in the transfer list), the overwriting
is prevented. All register overwriting is prevented after an abort is indicated, which means in particular that
R15 (always the last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system
the processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the
Memory Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort,
make the requested data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or
Thumb):

SUBS PC,R14_abt,#4 ; for a prefetch abort, or
SUBS PC,R14_abt,#8 ; for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

2-14

Software Interrupt

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually to request a particular
supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or
Thumb):

MOV PC,R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

NOTE

nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the ARM7TDMI CPU core.

Undefined Instruction

When ARM7TDMI comes across an instruction which it cannot handle, it takes the undefined instruction trap.
This mechanism may be used to extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM
or Thumb):

MOVS PC,R14_und

This restores the CPSR and returns to the instruction following the undefined instruction.

Exception Vectors

The following table shows the exception vector addresses.

Table 2-3. Exception Vectors

Address Exception Mode in Entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software Interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

2-15

Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are
handled:

Highest priority:

1. Reset

2. Data abort

3. FIQ

4. IRQ

5. Prefetch abort

Lowest priority:

6. Undefined Instruction, Software interrupt.

Not All Exceptions Can Occur at Once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each correspond to particular
(non-overlapping) decoding of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the CPSR's F flag is clear),
ARM7TDMI enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from
FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection. The time for this exception entry should be
added to worst-case FIQ latency calculations.

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

2-16

INTERRUPT LATENCIES

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to
pass through the synchroniser (Tsyncmax if asynchronous), plus the time for the longest instruction to complete
(Tldm, the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data
abort entry (Texc), plus the time for FIQ entry (Tfiq). At the end of this time ARM7TDMI will be executing the
instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is
therefore 28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20 MHz
processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher
priority and could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency
for FIQ or IRQ consists of the shortest time the request can take through the synchroniser (Tsyncmin) plus Tfiq.
This is 4 processor cycles.

RESET

When the nRESET signal goes LOW, ARM7TDMI abandons the executing instruction and then continues to
fetch instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM7TDMI:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them. The value
of the saved PC and SPSR is not defined.

2. Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR, and clears the CPSR's T bit.

3. Forces the PC to fetch the next instruction from address 0x00.

4. Execution resumes in ARM state.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-1

3 INSTRUCTION SET

INSTRUCTION SET SUMMAY

This chapter describes the ARM instruction set and the THUMB instruction set in the ARM7TDMI core.

FORMAT SUMMARY

The ARM instruction set formats are shown below.

Cond Rn Data Processing/
PSR Transfer

0 0 I SOpcode

0 0 0 P U 0 W L

0 0 0 P U 1 W L

0 1 I P U B W L

0 1 I

1 0 0 P U B W L

11 11 1 1 11

1 0 L1

1 1 0 P U B W L

1 1 11

1 1 01

1 1 01 L

Rd

Rd

RnRdHi RdLo

Rn

Rn

Rn

Rn

Rd

Rd

Rd

Rn Register List

Rn

CRn

CRn

CRd

Rd

CP Opc

CP
Opc

Operand2

Rs

Rm

Rm

Rm

Rm

Rn

Rn

Rd

Offset Offset

CRd OffsetCP#

CP#

CP#

CP

CP

CRm

CRm

Ignored by processor

0

1

Offset

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 00 A S

A SU10 0 00

0 0 0 0 0 01 B

1 00 010 0 0

1

1

1

1

1

1

0

0

0

0

H

H

0

0

0

0

S

S

1

1

1

0

1

1

1

0

0

1

0

0

1

0

0

1

0

0

1

Multiply

Multiply Long

Single Data Swap

Branch and Exchange

Halfword Data Transfer:
register offset

Halfword Data Transfer:
immediate offset

Single Data Transfer

Undefined

Block Data Transfer

Branch

Coprocessor Register Transfer

Coprocessor Data Operation

Coprocessor Data Transfer

Software Interrupt

Offset

27262524232221201918171615 1314 12111031302928 9 8 7 6 5 4 3 2 1 0

27262524232221201918171615 1314 12111031302928 9 8 7 6 5 4 3 2 1 0

Figure 3-1. ARM Instruction Set Format

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-2

NOTE

Some instruction codes are not defined but do not cause the Undefined instruction trap to be taken, for
instance a Multiply instruction with bit 6 changed to a 1. These instructions should not be used, as their
action may change in future ARM implementations.

INSTRUCTION SUMMARY

Table 3-1. The ARM Instruction Set

Mnemonic Instruction Action

ADC Add with carry Rd: = Rn + Op2 + Carry

ADD Add Rd: = Rn + Op2

AND AND Rd: = Rn AND Op2

B Branch R15: = address

BIC Bit Clear Rd: = Rn AND NOT Op2

BL Branch with Link R14: = R15, R15: = address

BX Branch and Exchange R15: = Rn, T bit: = Rn[0]

CDP Coprocessor Data Processing (Coprocessor-specific)

CMN Compare Negative CPSR flags: = Rn + Op2

CMP Compare CPSR flags: = Rn - Op2

EOR Exclusive OR Rd: = (Rn AND NOT Op2)
OR (Op2 AND NOT Rn)

LDC Load coprocessor from memory Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd: = (address)

MCR Move CPU register to coprocessor
register

cRn: = rRn {<op>cRm}

MLA Multiply Accumulate Rd: = (Rm × Rs) + Rn

MOV Move register or constant Rd: = Op2

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-3

Table 3-1. The ARM Instruction Set (Continued)

Mnemonic Instruction Action

MRC Move from coprocessor register to
CPU register

Rd: = cRn {<op>cRm}

MRS Move PSR status/flags to register Rd: = PSR

MSR Move register to PSR status/flags PSR: = Rm

MUL Multiply Rd: = Rm × Rs

MVN Move negative register Rd: = Not Op2

ORR OR Rd: = Rn OR Op2

RSB Reverse Subtract Rd: = Op2 - Rn

RSC Reverse Subtract with Carry Rd: = Op2 - Rn - Not Carry Flag

SBC Subtract with Carry Rd: = Rn - Op2 - Not Carry Flag

STC Store coprocessor register to memory address: = CRn

STM Store Multiple Stack manipulation (Push)

STR Store register to memory <address>: = Rd

SUB Subtract Rd: = Rn - Op2

SWI Software Interrupt OS call

SWP Swap register with memory Rd: = [Rn], [Rn] := Rm

TEQ Test bitwise equality CPSR flags: = Rn EOR Op2

TST Test bits CPSR flags: = Rn AND Op2

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-4

THE CONDITION FIELD

In ARM state, all instructions are conditionally executed according to the state of the CPSR condition codes and
the instruction's condition field. This field (bits 31:28) determines the circumstances under which an instruction is
to be executed. If the state of the C, N, Z and V flags fulfils the conditions encoded by the field, the instruction is
executed, otherwise it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that can be appended to the
instruction's mnemonic. For example, a Branch (B in assembly language) becomes BEQ for "Branch if Equal",
which means the Branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in Table 3-2. The sixteenth (1111) is
reserved, and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always" (sufix AL). This means the
instruction will always be executed regardless of the CPSR condition codes.

Table 3-2. Condition Code Summary

Code Suffix Flags Meaning

0000 EQ Z set equal

0001 NE Z clear not equal

0010 CS C set unsigned higher or same

0011 CC C clear unsigned lower

0100 MI N set negative

0101 PL N clear positive or zero

0110 VS V set overflow

0111 VC V clear no overflow

1000 HI C set and Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same

1010 GE N equals V greater or equal

1011 LT N not equal to V less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) always

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-5

BRANCH AND EXCHANGE (BX)

This instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

This instruction performs a branch by copying the contents of a general register, Rn, into the program counter,
PC. The branch causes a pipeline flush and refill from the address specified by Rn. This instruction also permits
the instruction set to be exchanged. When the instruction is executed, the value of Rn[0] determines whether the
instruction stream will be decoded as ARM or THUMB instructions.

31 2427 19 15 8 7 0

00 0 1 10 0 0 11 1 1 11 1 1 11 1 1 00 0 1Cond Rn

28 16 111223 20 4 3

[3:0] Operand Register
If bit0 of Rn = 1, subsequent instructions decoded as THUMB instructions
If bit0 of Rn =0, subsequent instructions decoded as ARM instructions

[31:28] Condition Field

Figure 3-2. Branch and Exchange Instructions

INSTRUCTION CYCLE TIMES

The BX instruction takes 2S + 1N cycles to execute, where S and N are defined as sequential (S-cycle) and non-
sequencial (N-cycle), respectively.

ASSEMBLER SYNTAX

BX - branch and exchange.

BX {cond} Rn

{cond} Two character condition mnemonic. See Table 3-2.

Rn is an expression evaluating to a valid register number.

USING R15 AS AN OPERAND

If R15 is used as an operand, the behavior is undefined.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-6

EXAMPLES

ADR R0, Into_THUMB + 1 ; Generate branch target address
; and set bit 0 high - hence
; arrive in THUMB state.

BX R0 ; Branch and change to THUMB
; state.

CODE16 ; Assemble subsequent code as
Into_THUMB ; THUMB instructions
•
•
•
ADR R5, Back_to_ARM ; Generate branch target to word aligned address

; - hence bit 0 is low and so change back to ARM state.
BX R5 ; Branch and change back to ARM state.
•
•
•
ALIGN ; Word align
CODE32 ; Assemble subsequent code as ARM instructions
Back_to_ARM

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-7

BRANCH AND BRANCH WITH LINK (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined Table 3-2. The
instruction encoding is shown in Figure 3-3, below.

31 2427

Cond Offset

28 23

[24] Link bit
0 = Branch 1 = Branch with link

[31:28] Condition Field

25

101 L

0

Figure 3-3. Branch Instructions

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended to 32
bits, and added to the PC. The instruction can therefore specify a branch of +/- 32Mbytes. The branch offset must
take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has been previously loaded into
a register. In this case the PC should be manually saved in R14 if a Branch with Link type operation is required.

THE LINK BIT

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value written into
R14 is adjusted to allow for the prefetch, and contains the address of the instruction following the branch and link
instruction. Note that the CPSR is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or LDM
Rn!,{..PC} if the link register has been saved onto a stack pointed to by Rn.

INSTRUCTION CYCLE TIMES

Branch and Branch with Link instructions take 2S + 1N incremental cycles, where S and N are defined as
squential (S-cycle) and internal (I-cycle).

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-8

ASSEMBLER SYNTAX

Items in {} are optional. Items in <> must be present.

B{L}{cond} <expression>

{L} Used to request the Branch with Link form of the instruction. If absent, R14 will not be
affected by the instruction.

{cond} A two-character mnemonic as shown in Table 3-2. If absent then AL (ALways) will be
 used.

<expression> The destination. The assembler calculates the offset.

EXAMPLES

here BAL here ; Assembles to 0xEAFFFFFE (note effect of PC offset).
B there ; Always condition used as default.
CMP R1,#0 ; Compare R1 with zero and branch to fred

; if R1 was zero, otherwise continue.
BEQ fred ; Continue to next instruction.
BL sub+ROM ; Call subroutine at computed address.
ADDS R1,#1 ; Add 1 to register 1, setting CPSR flags

; on the result then call subroutine if
BLCC sub ; the C flag is clear, which will be the

; case unless R1 held 0xFFFFFFFF.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-9

DATA PROCESSING

The data processing instruction is only executed if the condition is true. The conditions are defined in Table 3-2.
The instruction encoding is shown in Figure 3-4.

31 2427 19 15

Cond Operand2

28 16 111221

[15:12] Destination register

[19:16] 1st operand register

[20] Set condition codes
0 = Do not affect condition codes 1 = Set condition codes

[24:21] Operation code
0000 = AND-Rd: = Op1 AND Op2
0001 = EOR-Rd: = Op1 EOR Op2
0010 = SUB-Rd: = Op1-Op2
0011 = RSB-Rd: = Op2-Op1
0100 = ADD-Rd: = Op1+Op2
0101 = ADC-Rd: = Op1+Op2+C
0110 = SBC-Rd: = OP1-Op2+C-1
0111 = RSC-Rd: = Op2-Op1+C-1
1000 = TST-set condition codes on Op1 AND Op2
1001 = TEO-set condition codes on OP1 EOR Op2
1010 = CMP-set condition codes on Op1-Op2
1011 = SMN-set condition codes on Op1+Op2
1100 = ORR-Rd: = Op1 OR Op2
1101 = MOV-Rd: =OP2
1110 = BIC-Rd: = Op1 AND NOT Op2
1111 = MVN-Rd: = NOT Op2

[25] Immediate operand
0 = Operand 2 is a register 1 = Operand 2 is an immediate Value

[11:0] Operand 2 Type selection

[31:28] Condition field

26 25

00 I

20

OpCode S Rn Rd

0

Rotate

Shift Rm

[3:0] 2nd Operand Register [11:4] Shift applied to Rm

411 03

811 07

Imm

[7:0] Unsigned 8 bit immediate value [11:8] Rotate applied to Imm

Figure 3-4. Data Processing Instructions

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-10

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a rotated 8 bit immediate value (Imm) according to the
value of the I bit in the instruction. The condition codes in the CPSR may be preserved or updated as a result of
this instruction, according to the value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and
to set the condition codes on the result and always have the S bit set. The instructions and their effects are listed
in Table 3-3.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-11

CPSR FLAGS

The data processing operations may be classified as logical or arithmetic. The logical operations (AND, EOR,
TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or
operands to produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift operation is
LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to the logical value of
bit 31 of the result.

Table 3-3. ARM Data Processing Instructions

Assembler Mnemonic OP Code Action

AND 0000 Operand1 AND operand2

EOR 0001 Operand1 EOR operand2

SUB 0010 Operand1 - operand2

RSB 0011 Operand2 operand1

ADD 0100 Operand1 + operand2

ADC 0101 Operand1 + operand2 + carry

SBC 0110 Operand1 - operand2 -Not carry flag

RSC 0111 Operand2 - operand1 Not carry flag

TST 1000 As AND, but result is not written

TEQ 1001 As EOR, but result is not written

CMP 1010 As SUB, but result is not written

CMN 1011 As ADD, but result is not written

ORR 1100 Operand1 OR operand2

MOV 1101 Operand2 (operand1 is ignored)

BIC 1110 Operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit integer
(either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not R15) the V
flag in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if the operands
were considered unsigned, but warns of a possible error if the operands were 2's complement signed. The C flag
will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the result was zero, and the N
flag will be set to the value of bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-12

SHIFTS

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled by
the Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right,
arithmetic right or rotate right). The amount by which the register should be shifted may be contained in an
immediate field in the instruction, or in the least-significant byte of another register (other than R15). The
encoding for the different shift types is shown in Figure 3-5.

0

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:7] Shift amount
5 bit unsigned integer

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:8] Shift register
Shift amount specified in the
least-significant byte of Rs

456711

1

456711 8

0RS

Figure 3-5. ARM Shift Operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value from
0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more
significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do
not map into the result are discarded, except that the least significant discarded bit becomes the shifter carry
output which may be latched into the C bit of the CPSR when the ALU operation is in the logical class (see
above). For example, the effect of LSL #5 is shown in Figure 3-6.

31 27 26

Contents of Rm

Value of Operand 2

carry out

0

0

0000

Figure 3-6. Logical Shift Left

NOTE

LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The contents of
Rm are used directly as the second operand. A logical shift right (LSR) is similar, but the contents of Rm
are moved to less significant positions in the result. LSR #5 has the effect shown in Figure 3-7.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-13

31

Contents of Rm

Value of Operand 2

0

carry out

45

00000

Figure 3-7. Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32, which
has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is the same as
logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow
LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31 of Rm
instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown in Figure
3-8.

31

Contents of Rm

Value of Operand 2

0

carry out

4530

Figure 3-8. Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm is
again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is therefore all
ones or all zeros, according to the value of bit 31 of Rm.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-14

Rotate right (ROR) operations reuse the bits which "overshoot" in a logical shift right operation by reintroducing
them at the high end of the result, in place of the zeros used to fill the high end in logical right operations. For
example, ROR #5 is shown in Figure 3-9.

31

Contents of Rm

Value of Operand 2

0

carry out

45

Figure 3-9. Rotate Right

The form of the shift field which might be expected to give ROR #0 is used to encode a special function of the
barrel shifter, rotate right extended (RRX). This is a rotate right by one bit position of the 33 bit quantity formed by
appending the CPSR C flag to the most significant end of the contents of Rm as shown in Figure 3-10.

31

Contents of Rm

Value of Operand 2

01

carry outC
in

Figure 3-10. Rotate Right Extended

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-15

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any general
register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

1. LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2. LSL by more than 32 has result zero, carry out zero.

3. LSR by 32 has result zero, carry out equal to bit 31 of Rm.

4. LSR by more than 32 has result zero, carry out zero.

5. ASR by 32 or more has result filled with the value of bit 31 of Rm, carry out equal to bit 31 of Rm.

6. ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7. ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32; therefore
repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

NOTE

The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause
the instruction to be a multiply or undefined instruction.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-16

IMMEDIATE OPERAND ROTATES

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value in
the rotate field. This enables many common constants to be generated, for example all powers of 2.

WRITING TO R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU flags
as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the
CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which automatically restore both PC and
CPSR. This form of instruction should not be used in User mode.

USING R15 AS AN OPERAND

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction pre-fetching. If the shift
amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift
amount the PC will be 12 bytes ahead.

TEQ, TST, CMP AND CMN OPCODES

NOTE

TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An
assembler should always set the S flag for these instructions even if this is not specified in the
mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR transfer
operations should be used instead.

The action of TEQP in the ARM7TDMI is to move SPSR_<mode> to the CPSR if the processor is in a privileged
mode and to do nothing if in User mode.

INSTRUCTION CYCLE TIMES

Data Processing instructions vary in the number of incremental cycles taken as follows:

Table 3-4. Incremental Cycle Times

Processing Type Cycles

Normal data processing 1S

Data processing with register specified shift 1S + 1I

Data processing with PC written 2S + 1N

Data processing with register specified shift and PC written 2S + 1N +1I

NOTE: S, N and I are as defined sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle) respectively.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-17

ASSEMBLER SYNTAX

•• MOV,MVN (single operand instructions).
<opcode>{cond}{S} Rd,<Op2>

•• CMP,CMN,TEQ,TST (instructions which do not produce a result).
<opcode>{cond} Rn,<Op2>

•• AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

where:

<Op2> Rm{,<shift>} or,<#expression>

{cond} A two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd, Rn and Rm Expressions evaluating to a register number.

<#expression> If this is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

<shift> <Shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with
extend).

<shiftname>s ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same
 code.)

EXAMPLES

ADDEQ R2,R4,R5 ; If the Z flag is set make R2:=R4+R5
TEQS R4,#3 ; Test R4 for equality with 3.

; (The S is in fact redundant as the
; assembler inserts it automatically.)

SUB R4,R5,R7,LSR R2 ; Logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4.

MOV PC,R14 ; Return from subroutine.
MOVS PC,R14 ; Return from exception and restore CPSR

; from SPSR_mode.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-18

PSR TRANSFER (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are
implemented using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is shown in
Figure 3-11.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of the
CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a general
register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition code
flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four bits of
the specified register contents or 32 bit immediate value are written to the top four bits of the relevant PSR.

OPERAND RESTRICTIONS

•• In user mode, the control bits of the CPSR are protected from change, so only the condition code flags of the
CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

•• Note that the software must never change the state of the T bit in the CPSR. If this happens, the processor
will enter an unpredictable state.

•• The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

•• You must not specify R15 as the source or destination register.

•• Also, do not attempt to access an SPSR in User mode, since no such register exists.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-19

MSR (transfer register contents or immediate value to PSR flag bits only)

Cond Source operandPd 101001111

31 222728 11122123

I 1000

26 25 24 0

Cond 0000000000010 Pd 101001111

31 222728 11122123

Rm

MSR (transfer register contents to PSR)

4 3 0

Cond 00000000000000010 RdPs 001111

31 2227 1528 16 11122123

MRS (transfer PSR contents to a register)

0

[3:0] Source Register

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

[15:12] Destination Register

[22] Source PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

[3:0] Source Register
[11:4] Source operand is an immediate value

[7:0] Unsigned 8 bit immediate value
[11:8] Rotate applied to Imm

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[25] Immediate Operand
0 = Source operand is a register
1 = Source operand is a immediate value

[11:0] Source Operand

[31:28] Condition Field

00000000 Rm

11 4 3 0

Rotate Imm

11 08 7

Figure 3-11. PSR Transfer

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-20

RESERVED BITS

Only twelve bits of the PSR are defined in ARM7TDMI (N,Z,C,V,I,F, T & M[4:0]); the remaining bits are reserved
for use in future versions of the processor. Refer to Figure 2-6 for a full description of the PSR bits.

To ensure the maximum compatibility between ARM7TDMI programs and future processors, the following rules
should be observed:

• The reserved bits should be preserved when changing the value in a PSR.

• Programs should not rely on specific values from the reserved bits when checking the PSR status, since they
may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register; this
involves transferring the appropriate PSR register to a general register using the MRS instruction, changing only
the relevant bits and then transferring the modified value back to the PSR register using the MSR instruction.

Examples

The following sequence performs a mode change:

MRS R0,CPSR ; Take a copy of the CPSR.
BIC R0,R0,#0x1F ; Clear the mode bits.
ORR R0,R0,#new_mode ; Select new mode
MSR CPSR,R0 ; Write back the modified CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag
bits without disturbing the control bits. The following instruction sets the N,Z,C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags regardless of their previous state
; (does not affect any control bits).

No attempt should be made to write an 8 bit immediate value into the whole PSR since such an operation cannot
preserve the reserved bits.

INSTRUCTION CYCLE TIMES

PSR transfers take 1S incremental cycles, where S is defined as Sequential (S-cycle).

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-21

ASSEMBLY SYNTAX

•• MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>

•• MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

•• MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively.

•• MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which the most significant four bits are written to the N,Z,C
and V flags respectively.

Key:

{cond} Two-character condition mnemonic. See Table 3-2..

Rd and Rm Expressions evaluating to a register number other than R15

<psr> CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are SPSR
and SPSR_all)

<psrf> CPSR_flg or SPSR_flg

<#expression> Where this is used, the assembler will attempt to generate a shifted immediate 8-bit field
 to match the expression. If this is impossible, it will give an error.

EXAMPLES

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] ← Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] ← Rm[31:28]
MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] ← 0xA (set N,C; clear Z,V)
MRS Rd,CPSR ; Rd[31:0] ← CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] ← Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] ← Rm[31:28]
MSR CPSR_flg,#0x50000000 ; CPSR[31:28] ← 0x5 (set Z,V; clear N,C)
MSR SPSR_all,Rm ; SPSR_<mode>[31:0] ← Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] ← Rm[31:28]
MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] ← 0xC (set N,Z; clear C,V)
MRS Rd,SPSR ; Rd[31:0] ← SPSR_<mode>[31:0]

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-22

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-12.

The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to perform integer multiplication.

31 27 19 15

Cond

28 16 111221 20

S Rd Rn

[15:12][11:8][3:0] Operand Registers
[19:16] Destination Register

[20] Set Condition Code
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[31:28] Condition Field

22

1 0 0 1Rs RmA00 0 0 0 0

8 7 4 3 0

Figure 3-12. Multiply Instructions

The multiply form of the instruction gives Rd=Rm×Rs. Rn is ignored, and should be set to zero for compatibility
with possible future upgrades to the instruction set. The multiply-accumulate form gives Rd=Rm×Rs+Rn, which
can save an explicit ADD instruction in some circumstances. Both forms of the instruction work on operands
which may be considered as signed (2's complement) or unsigned integers.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ only in the upper 32 bits -
the low 32 bits of the signed and unsigned results are identical. As these instructions only produce the low 32 bits
of a multiply, they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:
Operand A Operand B Result
0xFFFFFFF6 0x0000001 0xFFFFFF38

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-23

If the Operands Are Interpreted as Signed

Operand A has the value -10, operand B has the value 20, and the result is -200 which is correctly represented as
0xFFFFFF38.

If the Operands Are Interpreted as Unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is 85899345720, which is
represented as 0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

Operand Restrictions

The destination register Rd must not be the same as the operand register Rm. R15 must not be used as an
operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-24

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero)
flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is
zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

INSTRUCTION CYCLE TIMES

MUL takes 1S + mI and MLA 1S + (m+1)I cycles to execute, where S and I are defined as sequential (S-cycle)
and internal (I-cycle), respectively.

m The number of 8 bit multiplier array cycles is required to complete the multiply, which is
controlled by the value of the multiplier operand specified by Rs. Its possible values are
as follows

1 If bits [32:8] of the multiplier operand are all zero or all one.

2 If bits [32:16] of the multiplier operand are all zero or all one.

3 If bits [32:24] of the multiplier operand are all zero or all one.

4 In all other cases.

ASSEMBLER SYNTAX

MUL{cond}{S} Rd,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} Two-character condition mnemonic. See Table 3-2..

{S} Set condition codes if S present

Rd, Rm, Rs and Rn Expressions evaluating to a register number other than R15.

EXAMPLES

MUL R1,R2,R3 ; R1:=R2*R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1:=R2*R3+R4, Setting condition codes.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-25

MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL, MLAL)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-13.

The multiply long instructions perform integer multiplication on two 32 bit operands and produce 64 bit results.
Signed and unsigned multiplication each with optional accumulate give rise to four variations.

31 27 19 15

Cond

28 16 11122123

U

20

S RdHi RdLo

[11:8][3:0] Operand Registers
[19:16][15:12] Source Destination Registers

[20] Set Condition Code
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[22] Unsigned
0 = Unsigned
1 = Signed

[31:28] Condition Field

22

00 0 0 1 1 0 0 1Rs RmA

8 7 4 3 0

Figure 3-13. Multiply Long Instructions

The multiply forms (UMULL and SMULL) take two 32 bit numbers and multiply them to produce a 64 bit result of
the form RdHi,RdLo := Rm * Rs. The lower 32 bits of the 64 bit result are written to RdLo, the upper 32 bits of the
result are written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit numbers, multiply them and add a 64 bit
number to produce a 64 bit result of the form RdHi,RdLo := Rm * Rs + RdHi,RdLo. The lower 32 bits of the 64 bit
number to add is read from RdLo. The upper 32 bits of the 64 bit number to add is read from RdHi. The lower 32
bits of the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit result are written to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary numbers and write an
unsigned 64 bit result. The SMULL and SMLAL instructions treat all of their operands as two's-complement
signed numbers and write a two's-complement signed 64 bit result.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-26

OPERAND RESTRICTIONS

•• R15 must not be used as an operand or as a destination register.

•• RdHi, RdLo, and Rm must all specify different registers.

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set
correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero).
Both the C and V flags are set to meaningless values.

INSTRUCTION CYCLE TIMES

MULL takes 1S + (m+1)I and MLAL 1S + (m+2)I cycles to execute, where m is the number of 8 bit multiplier
array cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified
by Rs.

Its possible values are as follows:

For Signed INSTRUCTIONS SMULL, SMLAL:

•• If bits [31:8] of the multiplier operand are all zero or all one.

•• If bits [31:16] of the multiplier operand are all zero or all one.

•• If bits [31:24] of the multiplier operand are all zero or all one.

•• In all other cases.

For Unsigned Instructions UMULL, UMLAL:

•• If bits [31:8] of the multiplier operand are all zero.

•• If bits [31:16] of the multiplier operand are all zero.

•• If bits [31:24] of the multiplier operand are all zero.

•• In all other cases.

S and I are defined as sequential (S-cycle) and internal (I-cycle), respectively.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-27

ASSEMBLER SYNTAX

Table 3-5. Assembler Syntax Descriptions

Mnemonic Description Purpose

UMULL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply Long 32 x 32 = 64

UMLAL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply & Accumulate Long 32 x 32 + 64 = 64

SMULL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply Long 32 x 32 = 64

SMLAL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply & Accumulate Long 32 x 32 + 64 = 64

where:

{cond} Two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present

RdLo, RdHi, Rm, Rs Expressions evaluating to a register number other than R15.

EXAMPLES

UMULL R1,R4,R2,R3 ; R4,R1:=R2*R3
UMLALS R1,R5,R2,R3 ; R5,R1:=R2*R3+R5,R1 also setting condition codes

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-28

SINGLE DATA TRANSFER (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-14.

The single data transfer instructions are used to load or store single bytes or words of data. The memory address
used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing is required.

31 27 19 15 0

Cond

28 16 11122123

B

20

L Rn Rd

22

01 I P U OffsetW

26 2425

[15:12] Source/Destination Registers

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Byte/Word Bit
0 = Transfer word quantity
1 = Transfer byte quantity

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[25] Immediate Offset
0 = Offset is an immediate value
1 = Offset is an register value

[11:0] Offset

Shift

Immediate

[11:0] Unsigned 12-bit immediate offset

11

11

Rm

[3:0] Offset register [11:4] Shift applied to Rm

[31:28] Condition Field

0

4 3 0

Figure 3-14. Single Data Transfer Instructions

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-29

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a second
register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from (U=0) the base
register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed,
P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The only
use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

SHIFTED REGISTER OFFSET

The 8 shift control bits are described in the data processing instructions section. However, the register specified
shift amounts are not available in this instruction class. See Figure 3-5.

BYTES AND WORDS

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal of ARM7TDMI core.
The two possible configurations are described below.

Little-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the least significant 8 bits of the destination register, and the remaining bits of the register are filled with
zeros. Please see Figure 2-2.

A byte store (STRB) repeats the least significant 8 bits of the source register four times across data bus outputs
31 through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary
will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that
half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of
the register. Two shift operations are then required to clear or to sign extend the upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-30

LDR from word aligned address

A+3

A

A+2

A+1

memory

24

16

8

0

A

B

C

D

register

24

16

8

0

A

B

C

D

LDR from address offset by 2

A+3

A

A+2

A+1

memory

24

16

8

0

A

B

C

D

register

24

16

8

0

A

B

C

D

Figure 3-15. Little-Endian Offset Addressing

Big-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the least significant 8 bits of the destination register and the remaining bits of the register are filled with
zeros. Please see Figure 2-1.

A byte store (STRB) repeats the least significant 8 bits of the source register four times across data bus outputs
31 through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or 2 from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 31 through 24. This means
that half-words accessed at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom 16 bits. An address offset
of 1 or 3 from a word boundary will cause the data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-31

USE OF R15

Write-back must not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address of the
instruction plus 12.

RESTRICTION ON THE USE OF BASE REGISTER

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn, gets
updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register, Rn, gets updated before the
abort handler starts. Sometimes it may be impossible to calculate the initial value.

Example:

LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should not be used.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from main memory. The memory manager
can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It
is up to the system software to resolve the cause of the problem, then the instruction can be restarted and the
original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR instructions take 1S + 1N + 1I and LDR PC take 2S + 2N +1I incremental cycles, where S,N and I
are defined as squential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STR instructions
take 2N incremental cycles to execute.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-32

ASSEMBLER SYNTAX

<LDR|STR>{cond}{B}{T} Rd,<Address>

where:

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

{T} If T is present the W bit will be set in a post-indexed instruction, forcing non-privileged
mode for the transfer cycle. T is not allowed when a pre-indexed addressing mode is
specified or implied.

Rd An expression evaluating to a valid register number.

Rn and Rm Expressions evaluating to a register number. If Rn is R15 then the assembler will
subtract 8 from
the offset value to allow for ARM7TDMI pipelining. In this case base write-back should
not be specified.

<Address>can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted

by <shift>

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register, shifted as

by <shift>.

<shift> General shift operation (see data processing instructions) but you cannot specify the shift
amount by a register.

{!} Writes back the base register (set the W bit) if! is present.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-33

EXAMPLES

STR R1,[R2,R4]! ; Store R1 at R2+R4 (both of which are registers)
; and write back address to R2.

STR R1,[R2],R4 ; Store R1 at R2 and write back R2+R4 to R2.
LDR R1,[R2,#16] ; Load R1 from contents of R2+16, but don't write back.
LDR R1,[R2,R3,LSL#2] ; Load R1 from contents of R2+R3*4.
LDREQB R1,[R6,#5] ; Conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31 with zeros.
STR R1,PLACE ; Generate PC relative offset to address PLACE.
PLACE

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-34

HALFWORD AND SIGNED BYTE DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-16.

These instructions are used to load or store half-words of data and also load sign-extended bytes. The memory
address used in the transfer is calculated by adding an offset to or subtracting an offset from a base register. The
result of this calculation may be written back into the base register if auto-indexing is required.

31 27 19 15

Cond

28 16 11122123

0

20

L Rn Rd

[3:0] Offset Register

[6][5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfword
 1 1 = Signed byte
 1 1 = Signed halfword

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

22

000 P U 0000W

2425

1 RmS H 1

8 7 6 5 4 3 0

Figure 3-16. Half-word and Signed Byte Data Transfer with Register Offset

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-35

31 27 19 15

Cond

28 16 11122123

1

20

L Rn Rd

[3:0] Immediate Offset (Low Nibble)

[6][5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfword
 1 1 = Signed byte
 1 1 = Signed halfword

[11:8] Immediate Offset (High Nibble)

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

22

000 P U OffsetW

2425

1 OffsetS H 1

8 7 6 5 4 3 0

Figure 3-17. Half-word and Signed Byte Data Transfer with Immediate Offset and Auto-Indexing

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 8-bit unsigned binary immediate value in the instruction, or a second
register. The 8-bit offset is formed by concatenating bits 11 to 8 and bits 3 to 0 of the instruction word, such that
bit 11 becomes the MSB and bit 0 becomes the LSB. The offset may be added to (U=1) or subtracted from (U=0)
the base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-
indexed, P=0) the base register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base may be kept (W=0). In the case of post-indexed addressing, the
write back bit is redundant and is always set to zero, since the old base value can be retained if necessary by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base.

The Write-back bit should not be set high (W=1) when post-indexed addressing is selected.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-36

HALF-WORD LOAD AND STORES

Setting S=0 and H=1 may be used to transfer unsigned Half-words between an ARM7TDMI register and memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the section below.

SIGNED BYTE AND HALF-WORD LOADS

The S bit controls the loading of sign-extended data. When S=1 the H bit selects between Bytes (H=0) and Half-
words (H=1). The L bit should not be set low (Store) when Signed (S=1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the
destination register are set to the value of bit 7, the sign bit.

The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination register and bits 31 to 16
of the destination register are set to the value of bit 15, the sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the following section.

ENDIANNESS AND BYTE/HALF-WORD SELECTION

Little-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see Figure 2-2.

A half-word load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if the supplied address is on
a word boundary and on data bus inputs 31 through to 16 if it is a half-word boundary, (A[1]=1).The supplied
address should always be on a half-word boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected half-word is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the half-word.

A half-word store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate half-word subsystem to store the data.
Note that the address must be half-word aligned, if bit 0 of the address is HIGH this will cause unpredictable
behavior.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-37

Big-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the supplied address is on a
word boundary, on data bus inputs 23 through to 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with
the sign bit, bit 7 of the byte. Please see Figure 2-1.

A half-word load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16 if the supplied address is on
a word boundary and on data bus inputs 15 through to 0 if it is a half-word boundary, (A[1]=1). The supplied
address should always be on a half-word boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected half-word is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the half-word.

A half-word store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate half-word subsystem to store the data.
Note that the address must be half-word aligned, if bit 0 of the address is HIGH this will cause unpredictable
behavior.

USE OF R15

Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the stored address will be address
of the instruction plus 12.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from the main memory. The memory
manager can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be
taken. It is up to the system software to resolve the cause of the problem, then the instruction can be restarted
and the original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR(H,SH,SB) instructions take 1S + 1N + 1I. LDR(H,SH,SB) PC take 2S + 2N + 1I incremental cycles.
S,N and I are defined as squential (S-cycle), non-squential (N-cycle), and internal (I-cycle), respectively. STRH
instructions take 2N incremental cycles to execute.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-38

ASSEMBLER SYNTAX

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2..

H Transfer half-word quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended half-word (Only valid for LDR)

Rd An expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm]{!} offset of +/- contents of index register

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm offset of +/- contents of index register.

4 Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this
case base write-back should not be specified.

{!} Writes back the base register (set the W bit) if ! is present.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-39

EXAMPLES

LDRH R1,[R2,-R3]! ; Load R1 from the contents of the half-word address
; contained in R2-R3 (both of which are registers)
; and write back address to R2

STRH R3,[R4,#14] ; Store the half-word in R3 at R14+14 but don't write back.
LDRSB R8,[R2],#-223 ; Load R8 with the sign extended contents of the byte

; address contained in R2 and write back R2-223 to R2.
LDRNESH R11,[R0] ; Conditionally load R11 with the sign extended contents

; of the half-word address contained in R0.
HERE ; Generate PC relative offset to address FRED.
STRH R5, [PC,#(FRED-HERE-8)]; Store the half-word in R5 at address FRED
FRED

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-40

BLOCK DATA TRANSFER (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-18.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or down
memory, and are very efficient instructions for saving or restoring context, or for moving large blocks of data
around main memory.

THE REGISTER LIST

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also
transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction, with each bit
corresponding to a register. A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

31 27 19 15

Cond

28 162123

S

20

L Rn

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] PSR & Force User Bit
0 = Do not load PSR or user mode
1 = Load PSR or force user mode

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset bofore transfer

[31:28] Condition Field

22

100 P U W

2425

Register list

24 0

Figure 3-18. Block Data Transfer Instructions

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-41

ADDRESSING MODES

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/
down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will always be
transferred last. The lowest register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and write back of the modified
base is required (W=1). Figure 3.19-22 show the sequence of register transfers, the addresses used, and the
value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would have retained its initial value
of 0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would have been
overwritten with the loaded value.

ADDRESS ALIGNMENT

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by the
memory system.

1 2

3 4

Rn R1

R1

R5

R1

R5

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-19. Post-Increment Addressing

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-42

Rn

1

R1

R1

2

R5

3

R1

R5

4

R7Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-20. Pre-Increment Addressing

Rn

1

R1

R1

2

R5

3

R1

R5

4

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-21. Post-Decrement Addressing

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-43

Rn

1

R1

R1

2

R5

3

R1

R5

4

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-22. Pre-Decrement Addressing

USE OF THE S BIT

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer list
and on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged mode.

LDM with R15 in Transfer List and S Bit Set (Mode Changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the User bank rather than the bank corresponding to the current mode.
This is useful for saving the user state on process switches. Base write-back should not be used when this
mechanism is employed.

R15 not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the User bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-back
should not be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register during the following cycle
(inserting a dummy instruction such as MOV R0, R0 after the LDM will ensure safety).

USE OF R15 AS THE BASE

R15 should not be used as the base register in any LDM or STM instruction.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-44

INCLUSION OF THE BASE IN THE REGISTER LIST

When write-back is specified, the base is written back at the end of the second cycle of the instruction. During a
STM, the first register is written out at the start of the second cycle. A STM which includes storing the base, with
the base as the first register to be stored, will therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. A LDM will always overwrite the updated base if the
base is in the list.

DATA ABORTS

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any transfer during a
multiple register load or store, and must be recoverable if ARM7TDMI is to be used in a virtual memory system.

Abort during STM Instructions

If the abort occurs during a store multiple instruction, ARM7TDMI takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the modification of
the base register if write-back was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Aborts during LDM Instructions

When ARM7TDMI detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

• Overwriting of registers stops when the abort happens. The aborting load will not take place but earlier ones
may have overwritten registers. The PC is always the last register to be written and so will always be
preserved.

• The base register is restored, to its modified value if write-back was requested. This ensures recoverability in
the case where the base register is also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any base
modification (and resolve the cause of the abort) before restarting the instruction.

INSTRUCTION CYCLE TIMES

Normal LDM instructions take nS + 1N + 1I and LDM PC takes (n+1)S + 2N + 1I incremental cycles, where S,N
and I are defined as squential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STM
instructions take (n-1)S + 2N incremental cycles to execute, where n is the number of words transferred.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-45

ASSEMBLER SYNTAX

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

where:

{cond} Two character condition mnemonic. See Table 3-2.

Rn An expression evaluating to a valid register number

<Rlist> A list of registers and register ranges enclosed in {} (e.g. {R0,R2-R7,R10}).

{!} If present requests write-back (W=1), otherwise W=0.

{^} If present set S bit to load the CPSR along with the PC, or force transfer of user bank
when in privileged mode.

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalence between the names and the
values of the bits in the instruction are shown in the following table 3-6.

Table 3-6. Addressing Mode Names

Name Stack Other L bit P bit U bit

Pre-Increment Load LDMED LDMIB 1 1 1

Post-Increment Load LDMFD LDMIA 1 0 1

Pre-Decrement Load LDMEA LDMDB 1 1 0

Post-Decrement Load LDMFA LDMDA 1 0 0

Pre-Increment Store STMFA STMIB 0 1 1

Post-Increment Store STMEA STMIA 0 0 1

Pre-Decrement Store STMFD STMDB 0 1 0

Post-Decrement Store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required. The F
and E refer to a "full" or "empty" stack, i.e. whether a pre-index has to be done (full) before storing to the stack.
The A and D refer to whether the stack is ascending or descending. If ascending, a STM will go up and LDM
down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment After,
Increment Before, Decrement After, Decrement Before.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-46

EXAMPLES

LDMFD SP!,{R0,R1,R2} ; Unstack 3 registers.
STMIA R0,{R0-R15} ; Save all registers.
LDMFD SP!,{R15} ; R15 ← (SP), CPSR unchanged.
LDMFD SP!,{R15}^ ; R15 ← (SP), CPSR <- SPSR_mode

; (allowed only in privileged modes).
STMFD R13,{R0-R14}^ ; Save user mode regs on stack

; (allowed only in privileged modes).

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling
routine:

STMED SP!,{R0-R3,R14} ; Save R0 to R3 to use as workspace
; and R14 for returning.

BL somewhere ; This nested call will overwrite R14
LDMED SP!,{R0-R3,R15} ; Restore workspace and return.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-47

SINGLE DATA SWAP (SWP)

31 19 15

Cond

28 16 11122123

B

20

00 Rn Rd

[3:0] Source Register

[15:12] Destination Register

[19:16] Base Register

[22] Byte/Word Bit
0 = Swap word quantity
1 = Swap byte quantity

[31:28] Condition Field

22

00010 0000 Rm1001

27 8 7 4 3 0

Figure 3-23. Swap Instruction

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-23.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This
instruction is implemented as a memory read followed by a memory write which are “locked” together (the
processor cannot be interrupted until both operations have completed, and the memory manager is warned to
treat them as inseparable). This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents
of the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the
old memory contents in the destination register (Rd). The same register may be specified as both the source and
destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external memory
manager that they are locked together, and should be allowed to complete without interruption. This is important
in multi-processor systems where the swap instruction is the only indivisible instruction which may be used to
implement semaphores; control of the memory must not be removed from a processor while it is performing a
locked operation.

BYTES AND WORDS

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and Little Endian
configuration applies to the SWP instruction.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-48

USE OF R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

DATA ABORTS

If the address used for the swap is unacceptable to a memory management system, the memory manager can
flag the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or both), and in
either case, the Data Abort trap will be taken. It is up to the system software to resolve the cause of the problem,
then the instruction can be restarted and the original program continued.

INSTRUCTION CYCLE TIMES

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S,N and I are defined as squential
(S-cycle), non-sequential, and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn Expressions evaluating to valid register numbers

EXAMPLES

SWP R0,R1,[R2] ; Load R0 with the word addressed by R2, and
; store R1 at R2.

SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.

SWPEQ R0,R0,[R1] ; Conditionally swap the contents of the
; word addressed by R1 with R0.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-49

SOFTWARE INTERRUPT (SWI)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-24, below.

31 2427

1111Cond Comment Field (Ignored by Processor)

28 23

[31:28] Condition Field

0

Figure 3-24. Software Interrupt Instruction

The software interrupt instruction is used to enter Supervisor mode in a controlled manner. The instruction
causes the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a fixed
value (0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by external
memory management hardware) from modification by the user, a fully protected operating system may be
constructed.

RETURN FROM THE SUPERVISOR

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the word
after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts within
itself it must first save a copy of the return address and SPSR.

COMMENT FIELD

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate information
to the supervisor code. For instance, the supervisor may look at this field and use it to index into an array of entry
points for routines which perform the various supervisor functions.

INSTRUCTION CYCLE TIMES

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are defined as
sequential (S-cycle) and non-sequential (N-cycle).

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-50

ASSEMBLER SYNTAX

SWI{cond} <expression>

{cond} Two character condition mnemonic, Table 3-2.

<expression> Evaluated and placed in the comment field (which is ignored by ARM7TDMI).

EXAMPLES

SWI ReadC ; Get next character from read stream.
SWI WriteI+"k” ; Output a "k" to the write stream.
SWINE 0 ; Conditionally call supervisor with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point
EntryTable ; Addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
• • •
Zero EQU 0

ReadC EQU 256
WriteI EQU 512

Supervisor ; SWI has routine required in bits 8-23 and data (if any) in
; bits 0-7. Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; Save work registers and return address.
LDR R0,[R14,#-4] ; Get SWI instruction.
BIC R0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table.
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.
WriteIRtn ; Enter with character in R0 bits 0-7.
• • •
LDMFD R13,{R0-R2,R15}^ ; Restore workspace and return,

; restoring processor mode and flags.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-51

COPROCESSOR DATA OPERATIONS (CDP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-25.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to ARM7TDMI, and it will not wait for the operation to complete. The coprocessor could
contain a queue of such instructions awaiting execution, and their execution can overlap other activity, allowing
the coprocessor and ARM7TDMI to perform independent tasks in parallel.

COPROCESSOR INSTRUCTIONS

The S3F443FX, unlike some other ARM-based processors, does not have an external coprocessor interface. It
does not have a on-chip coprocessor also.

So then all coprocessor instructions will cause the undefined instruction trap to be taken on the S3F443FX. These
coprocessor instructions can be emulated by the undefined trap handler. Even though external coprocessor can
not be connected to the S3F443FX, the coprocessor instructions are still described here in full for completeness.
(Remember that any external coprocessor described in this section is a software emulation.)

31 2427 19 15

Cond CRm

28 16 111223 20

[3:0] Coprocessor operand register

[7:5] Coprocessor information

[11:8] Coprocessor number

[15:12] Coprocessor destination register

[19:16] Coprocessor operand register

[23:20] Coprocessor operation code

[31:28] Condition Field

0CpCp#CRdCRn1110 CP Opc

8 7 5 4 3 0

Figure 3-25. Coprocessor Data Operation Instruction

Only bit 4 and bits 24 to 31 The coprocessor fields are significant to ARM7TDMI. The remaining bits are used by
coprocessors. The above field names are used by convention, and particular coprocessors may redefine the use
of all fields except CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to
15) for each coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the
CP# field.

The conventional interpretation of the instruction is that the coprocessor should perform an operation specified in
the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the result in CRd.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-52

INSTRUCTION CYCLE TIMES

Coprocessor data operations take 1S + bI incremental cycles to execute, where b is the number of cycles spent
in the coprocessor busy-wait loop.

S and I are defined as sequential (S-cycle) and internal (I-cycle).

ASSEMBLER SYNTAX

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} Two character condition mnemonic. See Table 3-2.

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

cd, cn and cm Evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

EXAMPLES

CDP p1,10,c1,c2,c3 ; Request coprocessor 1 to do operation 10
; on CR2 and CR3, and put the result in CR1.

CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coprocessor 2 to do operation 5
; (type 2)
; on CR2 and CR3, and put the result in CR1.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-53

COPROCESSOR DATA TRANSFERS (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-26.

This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessor’s registers directly to
memory. ARM7TDMI is responsible for supplying the memory address, and the coprocessor supplies or accepts
the data and controls the number of words transferred.

[7:0] Unsigned 8 Bit Immediate Offset

[11:8] Coprocessor Number

[15:12] Coprocessor Source/Destination Register

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Transfer Length

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition Field

31 27 19 15

Cond

28 16 11122123

N

20

L Rn CRd

22

110 P U CP#W

2425

Offset

8 7 0

Figure 3-26. Coprocessor Data Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a
coprocessor will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different ways by
different coprocessors, but by convention CRd is the register to be transferred (or the first register where more
than one is to be transferred), and the N bit is used to choose one of two transfer length options. For instance
N=0 could select the transfer of a single register, and N=1 could select the transfer of all the registers for context
switching.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-54

ADDRESSING MODES

ARM7TDMI is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however, that
the immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas they are
12 bits wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or subtracted from (U=0) the
base register (Rn); this calculation may be performed either before (P=1) or after (P=0) the base is used as the
transfer address. The modified base value may be overwritten back into the base register (if W=1), or the old
value of the base may be preserved (W=0). Note that post-indexed addressing modes require explicit setting of
the W bit, unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for the
transfer of the first word. The second word (if more than one is transferred) will go to or come from an address
one word (4 bytes) higher than the first transfer, and the address will be incremented by one word for each
subsequent transfer.

ADDRESS ALIGNMENT

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear on
A[1:0] and might be interpreted by the memory system.

USE OF R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 must not
be specified.

DATA ABORTS

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-back of
the modified base will take place, but all other processor state will be preserved. The coprocessor is partly
responsible for ensuring that the data transfer can be restarted after the cause of the abort has been resolved,
and must ensure that any subsequent actions it undertakes can be repeated when the instruction is retried.

INSTRUCTION CYCLE TIMES

Coprocessor data transfer instructions take (n-1)S + 2N + bI incremental cycles to execute, where:

n The number of words transferred.

b The number of cycles spent in the coprocessor busy-wait loop.

S, N and I are defined as squential (S-cycle), non-squential (N-cycle), and internal (I-cycle), respectively.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-55

ASSEMBLER SYNTAX

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC Load from memory to coprocessor

STC Store from coprocessor to memory

{L} When present perform long transfer (N=1), otherwise perform short transfer (N=0)

{cond} Two character condition mnemonic. See Table 3-2..

p# The unique number of the required coprocessor

cd An expression evaluating to a valid coprocessor register number that is placed in the
CRd field

<Address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:
[Rn],<#expression offset of <expression> bytes
{!} write back the base register (set the W bit) if! is present
Rn is an expression evaluating to a valid

ARM7TDMI register number.

NOTE

If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining.

EXAMPLES

LDC p1,c2,table ; Load c2 of coprocessor 1 from address
; table, using a PC relative address.

STCEQL p2,c3,[R5,#24]! ; Conditionally store c3 of coprocessor 2
; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to store multiple words).

NOTE

Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler
will adjust the offset appropriately.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-56

COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-27.

This class of instruction is used to communicate information directly between ARM7TDMI and a coprocessor. An
example of a coprocessor to ARM7TDMI register transfer (MRC) instruction would be a FIX of a floating point
value held in a coprocessor, where the floating point number is converted into a 32 bit integer within the
coprocessor, and the result is then transferred to ARM7TDMI register. A FLOAT of a 32 bit value in ARM7TDMI
register into a floating point value within the coprocessor illustrates the use of ARM7TDMI register to coprocessor
transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor into the
ARM7TDMI CPSR flags. As an example, the result of a comparison of two floating point values within a
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

31 27 19 15

Cond

28 16 11122123 20

L CRn Rd

[3:0] Coprocessor Operand Register

[7:5] Coprocessor Information

[11:8] Coprocessor Number

[15:12] ARM Source/Destination Register

[19:16] Coprocessor Source/Destination Register

[20] Load/Store Bit
0 = Store to coprocessor
1 = Load from coprocessor

[21] Coprocessor Operation Mode

[31:28] Condition Field

1110 CP Opc CP#

24

CRm1CP

8 7 5 4 3 0

Figure 3-27. Coprocessor Register Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented here is
derived from convention only. Other interpretations are allowed where the coprocessor functionality is
incompatible with this one. The conventional interpretation is that the CP Opc and CP fields specify the operation
the coprocessor is required to perform, CRn is the coprocessor register which is the source or destination of the
transferred information, and CRm is a second coprocessor register which may be involved in some way which
depends on the particular operation specified.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-57

TRANSFERS TO R15

When a coprocessor register transfer to ARM7TDMI has R15 as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word are
ignored, and the PC and other CPSR bits are unaffected by the transfer.

TRANSFERS FROM R15

A coprocessor register transfer from ARM7TDMI with R15 as the source register will store the PC+12.

INSTRUCTION CYCLE TIMES

MRC instructions take 1S + (b+1)I +1C incremental cycles to execute, where S, I and C are defined as sequential
(S-cycle), internal (I-cycle), and coprocessor register transfer (C-cycle), respectively. MCR instructions take 1S +
bI +1C incremental cycles to execute, where b is the number of cycles spent in the coprocessor busy-wait loop.

ASSEMBLER SYNTAX

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC Move from coprocessor to ARM7TDMI register (L=1)

MCR Move from ARM7TDMI register to coprocessor (L=0)

{cond} Two character condition mnemonic. See Table 3-2

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

Rd An expression evaluating to a valid ARM7TDMI register number

cn and cm Expressions evaluating to the valid coprocessor register numbers CRn and CRm
respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

EXAMPLES

MRC p2,5,R3,c5,c6 ; Request coprocessor 2 to perform operation 5
; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coprocessor 6 to perform operation 0
; on R4 and place the result in c6.

MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coprocessor 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-58

UNDEFINED INSTRUCTION

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction format is shown in Figure 3-28.

31 27

Cond

28 25 24

011 xxxxxxxxxxxxxxxxxxxx 1 xxxx

5 4 3 0

Figure 3-28. Undefined Instruction

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which may
be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

INSTRUCTION CYCLE TIMES

This instruction takes 2S + 1I + 1N cycles, where S, N and I are defined as squential (S-cycle), non-sequential
(N-cycle), and internal (I-cycle).

ASSEMBLER SYNTAX

The assembler has no mnemonics for generating this instruction. If it is adopted in the future for some specified
use, suitable mnemonics will be added to the assembler. Until such time, this instruction must not be used.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-59

INSTRUCTION SET EXAMPLES

The following examples show ways in which the basic ARM7TDMI instructions can combine to give efficient
code. None of these methods saves a great deal of execution time (although they may save some), mostly they
just save code.

USING THE CONDITIONAL INSTRUCTIONS

Using Conditionals for Logical OR

CMP Rn,#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label
CMP Rm,#q
BEQ Label

This can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try other test.
BEQ Label

Absolute Value

TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary.

Multiplication by 4, 5 or 6 (Run Time)

MOV Rc,Ra,LSL#2 ; Multiply by 4,
CMP Rb,#5 ; Test value,
ADDCS Rc,Rc,Ra ; Complete multiply by 5,
ADDHI Rc,Rc,Ra ; Complete multiply by 6.

Combining Discrete and Range Tests

TEQ Rc,#127 ; Discrete test,
CMPNE Rc,# " "-1 ; Range test
MOVLS Rc,# "" ; IF Rc<= "" OR Rc=ASCII(127)

; THEN Rc:= "."

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-60

Division and Remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C library
provided with the ARM Cross Development Toolkit, available from your supplier. A short general purpose divide
routine follows.

; Enter with numbers in Ra and Rb.
MOV Rcnt,#1 ; Bit to control the division.

Div1 CMP Rb,#0x80000000 ; Move Rb until greater than Ra.
CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; Test for possible subtraction.
SUBCS Ra,Ra,Rb ; Subtract if ok,
ADDCS Rc,Rc,Rcnt ; Put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; Shift control bit
MOVNE Rb,Rb,LSR#1 ; Halve unless finished.
BNE Div2 ; Divide result in Rc, remainder in Ra.

Overflow Eetection in the ARM7TDMI

1. Overflow in unsigned multiply with a 32-bit result

UMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

2. Overflow in signed multiply with a 32-bit result

SMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,Rd ASR#31 ; +1 cycle and a register
BNE overflow

3. Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

4. Overflow in signed multiply accumulate with a 32 bit result

SMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,Rd, ASR#31 ; +1 cycle and a register
BNE overflow

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-61

5. Overflow in unsigned multiply accumulate with a 64 bit result

UMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BCS overflow ; 1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64 bit result

SMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BVS overflow ; 1 cycle and 2 registers

NOTE

Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow
does not occur in such calculations.

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift
generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately the
sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles
before repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is
newbit:=bit 33 eor bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is performed
for all the newbits needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
; Rb (1 bit in Rb lsb), uses Rc.

TST Rb,Rb,LSR#1 ; Top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; Carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)

 EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!) new seed in Ra, Rb as before

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER

Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-62

Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; Multiply by 2 and add in next digit

General recursive method for Rb := Ra*C, C a constant:

1. If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n

2. If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n

3. If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; Multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; Multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2 ; Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; Multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; Multiply by 5*9 = 45

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-63

LOADING A WORD FROM AN UNKNOWN ALIGNMENT

; Enter with address in Ra (32 bits) uses
; Rb, Rc result in Rd. Note d must be less than c e.g. 0,1

BIC Rb,Ra,#3 ; Get word aligned address
LDMIA Rb,{Rd,Rc} ; Get 64 bits containing answer
AND Rb,Ra,#3 ; Correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; Produce bottom of result word (if not aligned)
RSBNE Rb,Rb,#32 ; Get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; Combine two halves to get result

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-64

NOTES

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-65

THUMB INSTRUCTION SET FORMAT

The thumb instruction sets are 16-bit versions of ARM instruction sets (32-bit format). The ARM instructions are
reduced to 16-bit versions, Thumb instructions, at the cost of versatile functions of the ARM instruction sets. The
thumb instructions are decompressed to the ARM instructions by the Thumb decompressor inside the
ARM7TDMI core.

As the Thumb instructions are compressed ARM instructions, the Thumb instructions have the 16-bit format
instructions and have some restrictions. The restrictions by 16-bit format is fully notified for using the Thumb
instructions.

FORMAT SUMMARY

The THUMB instruction set formats are shown in the following figure.

Move Shifted register

00

0

0 0 0

0 0 0

0 0 0

1

0

0

0 1 0

0

0

0

0

0

1

11

1

1

1

1

00

0 0 0

1

1

1

1

11

1

1

0

L

0

1

1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

0 0 0

0

1 1

1 1

0 0

10

0

L

1 0 R

1 1 0

1 0 SP

1 L

L

S

H

0

0

1 B L

0 1 H

0 1 B

0 0 1

1 1 I Op

Op

Op

Op

Op

L 0

S 1

Offset5 Rs Rd

Rn/offset3

Rd

Rs Rd

Offset8

Rs

Rd/Hd

Rd

H1 H2 Rs/Hs

Rd

Word8

Rd

RbRo

Ro Rb

Rd

Offset5 Rb Rd

Rb RdOffset5

Rd

Rd

Word8

Word8

SWord7

Rb

Cond

Rlist

Rlist

Softset8

Value8

Offset11

Offset

Add/subtract

Move/compare/add/
subtract immediate

ALU operations

Hi register operations
/branch exchange

PC-relative load

Load/store with register
offset

Load/store with immediate
offset

Load/store sign-extended
byte/halfword

Load/store halfword

SP-relative load/store

Load address

Add offset to stack pointer

Push/pop register

Multiple load/store

Conditional branch

Software interrupt

Unconditional branch

Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 3-29. THUMB Instruction Set Formats

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-66

OPCODE SUMMARY

The following table summarizes the THUMB instruction set. For further information about a particular instruction
please refer to the sections listed in the right-most column.

Table 3-7. THUMB Instruction Set Opcodes

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

ADC Add with Carry Y – Y

ADD Add Y – Y (1)

AND AND Y – Y

ASR Arithmetic Shift Right Y – Y

B Unconditional branch Y – –

Bxx Conditional branch Y – –

BIC Bit Clear Y – Y

BL Branch and Link – – –

BX Branch and Exchange Y Y –

CMN Compare Negative Y – Y

CMP Compare Y Y Y

EOR EOR Y – Y

LDMIA Load multiple Y – –

LDR Load word Y – –

LDRB Load byte Y – –

LDRH Load half-word Y – –

LSL Logical Shift Left Y – Y

LDSB Load sign-extended byte Y – –

LDSH Load sign-extended half-word Y – –

LSR Logical Shift Right Y – Y

MOV Move register Y Y Y (2)

MUL Multiply Y – Y

MVN Move Negative register Y – Y

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-67

Table 3-7. THUMB Instruction Set Opcodes (Continued)

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

NEG Negate Y – Y

ORR OR Y – Y

POP Pop register Y – –

PUSH Push register Y – –

ROR Rotate Right Y – Y

SBC Subtract with Carry Y – Y

STMIA Store Multiple Y – –

STR Store word Y – –

STRB Store byte Y – –

STRH Store half-word Y – –

SWI Software Interrupt – – –

SUB Subtract Y – Y

TST Test bits Y – Y

NOTES:
1. The condition codes are unaffected by the format 5, 12 and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-68

FORMAT 1: MOVE SHIFTED REGISTER

15 0

0

14 10

[2:0] Destination Register

[5:3] Source Register

[10:6] Immediate Vale

[12:11] Opcode
0 = LSL
1 = LSR
2 = ASR

Offset5

6 5 3 2

Rd0 0

13 12 11

Op Rs

Figure 3-30. Format 1

OPERATION

These instructions move a shifted value between Lo registers. The THUMB assembler syntax is shown in
Table 3-8.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-8. Summary of Format 1 Instructions

OP THUMB Assembler ARM Equipment Action

00 LSL Rd, Rs, #Offset5 MOVS Rd, Rs, LSL #Offset5 Shift Rs left by a 5-bit immediate
value and store the result in Rd.

01 LSR Rd, Rs, #Offset5 MOVS Rd, Rs, LSR #Offset5 Perform logical shift right on Rs by
a 5-bit immediate value and store
the result in Rd.

10 ASR Rd, Rs, #Offset5 MOVS Rd, Rs, ASR
#Offset5

Perform arithmetic shift right on Rs
by a 5-bit immediate value and
store the result in Rd.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-69

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-8. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LSR R2, R5, #27 ; Logical shift right the contents
; of R5 by 27 and store the result in R2.
; Set condition codes on the result.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-70

FORMAT 2: ADD/SUBTRACT

15

0

14 10

[2:0] Destination Register

[5:3] Source Register

[8:6] Register/Immediate Vale

[9] Opcode
0 = ADD
1 = SUB

[10] Immediate Flag
0 = Register operand
1 = Immediate oerand

Rn/Offset3 Rd0 0

13 12 11

Op Rs

9 8

1 1 1

6 5 3 2 0

Figure 3-31. Format 2

OPERATION

These instructions allow the contents of a Lo register or a 3-bit immediate value to be added to or subtracted
from a Lo register. The THUMB assembler syntax is shown in Table 3-9.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-9. Summary of Format 2 Instructions

OP I THUMB Assembler ARM Equipment Action

0 0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs.
Place result in Rd.

0 1 ADD Rd, Rs, #Offset3 ADDS Rd, Rs, #Offset3 Add 3-bit immediate value to contents of
Rs. Place result in Rd.

1 0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of
Rs. Place result in Rd.

1 1 SUB Rd, Rs, #Offset3 SUBS Rd, Rs, #Offset3 Subtract 3-bit immediate value from
contents of Rs. Place result in Rd.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-71

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-9. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD R0, R3, R4 ; R0 := R3 + R4 and set condition codes on the result.
SUB R6, R2, #6 ; R6 := R2 - 6 and set condition codes.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-72

FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE

15 0

0

14 10

[7:0] Immediate Vale

[10:8] Source/Destination Register

[12:11] Opcode
0 = MOV
1 = CMP
2 = ADD
3 = SUB

Offset8Rd0 0

13 12 11

Op

78

Figure 3-32. Format 3

OPERATIONS

The instructions in this group perform operations between a Lo register and an 8-bit immediate value. The
THUMB assembler syntax is shown in Table 3-10.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-10. Summary of Format 3 Instructions

OP THUMB Assembler ARM Equipment Action

00 MOV Rd, #Offset8 MOVS Rd, #Offset8 Move 8-bit immediate value into Rd.

01 CMP Rd, #Offset8 CMP Rd, #Offset8 Compare contents of Rd with 8-bit
immediate value.

10 ADD Rd, #Offset8 ADDS Rd, Rd, #Offset8 Add 8-bit immediate value to contents of
Rd and place the result in Rd.

11 SUB Rd, #Offset8 SUBS Rd, Rd, #Offset8 Subtract 8-bit immediate value from
contents of Rd and place the result in Rd.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-73

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-10. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

MOV R0, #128 ; R0 := 128 and set condition codes
CMP R2, #62 ; Set condition codes on R2 - 62
ADD R1, #255 ; R1 := R1 + 255 and set condition codes
SUB R6, #145 ; R6 := R6 - 145 and set condition codes

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-74

FORMAT 4: ALU OPERATIONS

15 0

0

14 10

[2:0] Source/Destination Register

[5:3] Source Register 2

[9:6] Opcode

56 3

Rd0 0

13 12 11

Op Rs0 0 0

9 2

Figure 3-33. Format 4

OPERATION

The following instructions perform ALU operations on a Lo register pair.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-11. Summary of Format 4 Instructions

OP THUMB Assembler ARM Equipment Action

0000 AND Rd, Rs ANDS Rd, Rd, Rs Rd:= Rd AND Rs

0001 EOR Rd, Rs EORS Rd, Rd, Rs Rd:= Rd EOR Rs

0010 LSL Rd, Rs MOVS Rd, Rd, LSL Rs Rd := Rd << Rs

0011 LSR Rd, Rs MOVS Rd, Rd, LSR Rs Rd := Rd >> Rs

0100 ASR Rd, Rs MOVS Rd, Rd, ASR Rs Rd := Rd ASR Rs

0101 ADC Rd, Rs ADCS Rd, Rd, Rs Rd := Rd + Rs + C-bit

0110 SBC Rd, Rs SBCS Rd, Rd, Rs Rd := Rd - Rs - NOT C-bit

0111 ROR Rd, Rs MOVS Rd, Rd, ROR Rs Rd := Rd ROR Rs

1000 TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs

1001 NEG Rd, Rs RSBS Rd, Rs, #0 Rd = - Rs

1010 CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd - Rs

1011 CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs

1100 ORR Rd, Rs ORRS Rd, Rd, Rs Rd := Rd OR Rs

1101 MUL Rd, Rs MULS Rd, Rs, Rd Rd := Rs * Rd

1110 BIC Rd, Rs BICS Rd, Rd, Rs Rd := Rd AND NOT Rs

1111 MVN Rd, Rs MVNS Rd, Rs Rd := NOT Rs

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-75

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-11. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

EOR R3, R4 ; R3 := R3 EOR R4 and set condition codes
ROR R1, R0 ; Rotate Right R1 by the value in R0, store

; the result in R1 and set condition codes
NEG R5, R3 ; Subtract the contents of R3 from zero,

; Store the result in R5. Set condition codes ie R5 = - R3
CMP R2, R6 ; Set the condition codes on the result of R2 - R6
MUL R0, R7 ; R0 := R7 * R0 and set condition codes

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-76

FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE

15 0

0

14 10

[2:0] Destination Register

[5:3] Source Register

[6] Hi Operand Flag 2

[7] Hi Operand Flag 1

[9:8] Opcode

6 5 3 2

Rd/Hd0 0

13 12 11

Op Rs/Hs0 0 0

9 8 7

H1 H2

Figure 3-34. Format 5

OPERATION

There are four sets of instructions in this group. The first three allow ADD, CMP and MOV operations to be
performed between Lo and Hi registers, or a pair of Hi registers. The fourth, BX, allows a Branch to be performed
which may also be used to switch processor state. The THUMB assembler syntax is shown in Table 3-12.

NOTE

In this group only CMP (Op = 01) sets the CPSR condition codes.

The action of H1= 0, H2 = 0 for Op = 00 (ADD), Op =01 (CMP) and Op = 10 (MOV) is undefined, and should not
be used.

Table 3-12. Summary of Format 5 Instructions

Op H1 H2 THUMB assembler ARM equivalent Action

00 0 1 ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8-15 to a
register in the range 0-7.

00 1 0 ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0-7 to a
register in the range 8-15.

00 1 1 ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8-15

01 0 1 CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0-7
with a register in the range 8-15. Set
the condition code flags on the result.

01 1 0 CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8-15
with a register in the range 0-7. Set
the condition code flags on the result.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-77

Table 3-12. Summary of Format 5 Instructions (Continued)

Op H1 H2 THUMB assembler ARM equivalent Action

01 1 1 CMP Hd, Hs CMP Hd, Hs Compare two registers in the range
8-15. Set the condition code flags on
the result.

10 0 1 MOV Rd, Hs MOV Rd, Hs Move a value from a register in the
range 8-15 to a register in the range 0-
7.

10 1 0 MOV Hd, Rs MOV Hd, Rs Move a value from a register in the
range 0-7 to a register in the range
8-15.

10 1 1 MOV Hd, Hs MOV Hd, Hs Move a value between two registers in
the range 8-15.

11 0 0 BX Rs BX Rs Perform branch (plus optional state
change) to address in a register in the
range 0-7.

11 0 1 BX Hs BX Hs Perform branch (plus optional state
change) to address in a register in the
range 8-15.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-12. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

THE BX INSTRUCTION

BX performs a Branch to a routine whose start address is specified in a Lo or Hi register.

Bit 0 of the address determines the processor state on entry to the routine:

Bit 0 = 0 Causes the processor to enter ARM state.
Bit 0 = 1 Causes the processor to enter THUMB state.

NOTE

The action of H1 = 1 for this instruction is undefined, and should not be used.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-78

EXAMPLES

Hi-Register Operations

ADD PC, R5 ; PC := PC + R5 but don't set the condition codes.
CMP R4, R12 ; Set the condition codes on the result of R4 - R12.
MOV R15, R14 ; Move R14 (LR) into R15 (PC)

; but don't set the condition codes,
; eg. return from subroutine.

Branch and Exchange

; Switch from THUMB to ARM state.
ADR R1,outofTHUMB ; Load address of outofTHUMB into R1.
MOV R11,R1
BX R11 ; Transfer the contents of R11 into the PC.

; Bit 0 of R11 determines whether
; ARM or THUMB state is entered, ie. ARM state here.

 •
•
ALIGN
CODE32
outofTHUMB ; Now processing ARM instructions...

USING R15 AS AN OPERAND

If R15 is used as an operand, the value will be the address of the instruction + 4 with bit 0 cleared. Executing a
BX PC in THUMB state from a non-word aligned address will result in unpredictable execution.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-79

FORMAT 6: PC-RELATIVE LOAD

15 0

0

14 10

[7:0] Immediate Value

[10:8] Destination Register

Word 80 0

13 12 11

Rd0 0

8 7

Figure 3-35. Format 6

OPERATION

This instruction loads a word from an address specified as a 10-bit immediate offset from the PC. The THUMB
assembler syntax is shown below.

Table 3-13. Summary of PC-Relative Load Instruction

THUMB assembler ARM equivalent Action

LDR Rd, [PC, #Imm] LDR Rd, [R15, #Imm] Add unsigned offset (255 words, 1020 bytes) in
Imm to the current value of the PC. Load the
word from the resulting address into Rd.

NOTE: The value specified by #Imm is a full 10-bit address, but must always be word-aligned (ie with bits 1:0 set to 0),
since the assembler places #Imm >> 2 in field Word 8. The value of the PC will be 4 bytes greater than the address
of this instruction, but bit 1 of the PC is forced to 0 to ensure it is word aligned.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-80

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction. The instruction cycle times for the THUMB
instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R3,[PC,#844] ; Load into R3 the word found at the
; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
; 211 as the Word8 value.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-81

FORMAT 7: LOAD/STORE WITH REGISTER OFFSET

[2:0] Source/Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Byte/Word Flag
0 = Transfer word quantity
1 = Transfer byte quantity

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb1 L B

9 8

Ro0

Figure 3-36. Format 7

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-82

OPERATION

These instructions transfer byte or word values between registers and memory. Memory addresses are pre-
indexed using an offset register in the range 0-7. The THUMB assembler syntax is shown in Table 3-14.

Table 3-14. Summary of Format 7 Instructions

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, Ro] STR Rd, [Rb, Ro] Pre-indexed word store:
Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the contents of Rd at the
address.

0 1 STRB Rd, [Rb, Ro] STRB Rd, [Rb, Ro] Pre-indexed byte store:
Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the byte value in Rd at the
resulting address.

1 0 LDR Rd, [Rb, Ro] LDR Rd, [Rb, Ro] Pre-indexed word load:
Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the contents of the address into
Rd.

1 1 LDRB Rd, [Rb, Ro] LDRB Rd, [Rb, Ro] Pre-indexed byte load:
Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the byte value at the resulting
address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-14. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STR R3, [R2,R6] ; Store word in R3 at the address
; formed by adding R6 to R2.

LDRB R2, [R0,R7] ; Load into R2 the byte found at
; the address formed by adding R7 to R0.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-83

FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALF-WORD

[2:0] Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Sign-Extended Flag
0 = Operand not sing-extended
1 = Operand sing-extended

[11] H Flag

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb1 H S

9 8

Ro1

Figure 3-37. Format 8

OPERATION

These instructions load optionally sign-extended bytes or half-words, and store half-words. The THUMB
assembler syntax is shown below.

Table 3-15. Summary of format 8 instructions

L B THUMB assembler ARM equivalent Action

0 0 STRH Rd, [Rb, Ro] STRH Rd, [Rb, Ro] Store half-word:

Add Ro to base address in Rb. Store bits
0-15 of Rd at the resulting address.

0 1 LDRH Rd, [Rb, Ro] LDRH Rd, [Rb, Ro] Load half-word:

Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16-31 of Rd to 0.

1 0 LDSB Rd, [Rb, Ro] LDRSB Rd, [Rb, Ro] Load sign-extended byte:

Add Ro to base address in Rb. Load bits
0-7 of Rd from the resulting address, and
set bits 8-31 of Rd to bit 7.

1 1 LDSH Rd, [Rb, Ro] LDRSH Rd, [Rb, Ro] Load sign-extended half-word:

Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16-31 of Rd to bit 15.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-84

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-15. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STRH R4, [R3, R0] ; Store the lower 16 bits of R4 at the
; address formed by adding R0 to R3.

LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding R1 to R7.

LDSH R3, [R4, R2] ; Load into R3 the sign extended half-word
; found at the address formed by adding R2 to R4.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-85

FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Offset Register

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

[12] Byte/Word Flad
0 = Transfer word quantity
1 = Transfer byte quantity

15 0

0

14 10 6 5 3 2

Rd1 1

13 12 11

RbB L Offset5

Figure 3-38. Format 9

OPERATION

These instructions transfer byte or word values between registers and memory using an immediate 5 or 7-bit
offset. The THUMB assembler syntax is shown in Table 3-16.

Table 3-16. Summary of Format 9 Instructions

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, #Imm] STR Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store
the contents of Rd at the address.

1 0 LDR Rd, [Rb, #Imm] LDR Rd, [Rb, #Imm] Calculate the source address by adding
together the value in Rb and Imm. Load
Rd from the address.

0 1 STRB Rd, [Rb, #Imm] STRB Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store
the byte value in Rd at the address.

1 1 LDRB Rd, [Rb, #Imm] LDRB Rd, [Rb, #Imm] Calculate source address by adding
together the value in Rb and Imm. Load
the byte value at the address into Rd.

NOTE: For word accesses (B = 0), the value specified by #Imm is a full 7-bit address, but must be word-aligned
(ie with bits 1:0 set to 0), since the assembler places #Imm >> 2 in the Offset5 field.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-86

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-16. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R2, [R5,#116] ; Load into R2 the word found at the
; address formed by adding 116 to R5.
; Note that the THUMB opcode will
; contain 29 as the Offset5 value.

STRB R1, [R0,#13] ; Store the lower 8 bits of R1 at the
; address formed by adding 13 to R0.
; Note that the THUMB opcode will
; contain 13 as the Offset5 value.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-87

FORMAT 10: LOAD/STORE HALF-WORD

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Immediate Value

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb0 L Offset5

Figure 3-39. Format 10

OPERATION

These instructions transfer half-word values between a Lo register and memory. Addresses are pre-indexed,
using a 6-bit immediate value. The THUMB assembler syntax is shown in Table 3-17.

Table 3-17. Half-word Data Transfer Instructions

L THUMB assembler ARM equivalent Action

0 STRH Rd, [Rb, #Imm] STRH Rd, [Rb, #Imm] Add #Imm to base address in Rb and store
bits 0 - 15 of Rd at the resulting address.

1 LDRH Rd, [Rb, #Imm] LDRH Rd, [Rb, #Imm] Add #Imm to base address in Rb. Load bits
0-15 from the resulting address into Rd and
set bits 16-31 to zero.

NOTE: #Imm is a full 6-bit address but must be half-word-aligned (ie with bit 0 set to 0) since the assembler places
#Imm >> 1 in the Offset5 field.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-88

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-17. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at the address formed by
; adding 56 R1. Note that the THUMB opcode will contain
; 28 as the Offset5 value.

LDRH R4, [R7, #4] ; Load into R4 the half-word found at the address formed by
; adding 4 to R7. Note that the THUMB opcode will contain
; 2 as the Offset5 value.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-89

FORMAT 11: SP-RELATIVE LOAD/STORE

[7:0] Immediate Value

[10:8] Destination Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

0 0

13 12 11

Word 81 L Rd

78

Figure 3-40. Format 11

OPERATION

The instructions in this group perform an SP-relative load or store.The THUMB assembler syntax is shown in the
following table.

Table 3-18. SP-Relative Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Store the contents of Rd at the
resulting address.

1 LDR Rd, [SP, #Imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Load the word from the resulting
address into Rd.

NOTE: The offset supplied in #Imm is a full 10-bit address, but must always be word-aligned (ie bits 1:0 set to 0),
since the assembler places #Imm >> 2 in the Word8 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-18. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STR R4, [SP,#492] ; Store the contents of R4 at the address
; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain
; 123 as the Word8 value.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-90

FORMAT 12: LOAD ADDRESS

[7:0] 8-bit Unsigned Constant

[10:8] Destination Register

[11] Source
0 = PC
1 = SP

15 0

1

14 10

0 1

13 12 11

Word 80 SP Rd

78

Figure 3-41. Format 12

OPERATION

These instructions calculate an address by adding an 10-bit constant to either the PC or the SP, and load the
resulting address into a register. The THUMB assembler syntax is shown in the following table.

Table 3-19. Load Address

L THUMB assembler ARM equivalent Action

0 ADD Rd, PC, #Imm ADD Rd, R15, #Imm Add #Imm to the current value of the
program counter (PC) and load the result
into Rd.

1 ADD Rd, SP, #Imm ADD Rd, R13, #Imm Add #Imm to the current value of the stack
pointer (SP) and load the result into Rd.

NOTE: The value specified by #Imm is a full 10-bit value, but this must be word-aligned (ie with bits 1:0 set to 0)
since the assembler places #Imm >> 2 in field Word 8.

Where the PC is used as the source register (SP = 0), bit 1 of the PC is always read as 0. The value of the PC
will be 4 bytes greater than the address of the instruction before bit 1 is forced to 0.

The CPSR condition codes are unaffected by these instructions.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-91

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-19. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD R2, PC, #572 ; R2 := PC + 572, but don't set the
; condition codes. bit[1] of PC is forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.

ADD R6, SP, #212 ; R6 := SP (R13) + 212, but don't
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word 8 value.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-92

FORMAT 13: ADD OFFSET TO STACK POINTER

[6:0] 7-bit Immediate Value

[7] Sign Flag
0 = Offset is positive
1 = Offset is negative

15 0

1

14 10

0 1

13 12 11

SWord 71 0 0

789 6

0 0 S

Figure 3-42. Format 13

OPERATION

This instruction adds a 9-bit signed constant to the stack pointer. The following table shows the THUMB
assembler syntax.

Table 3-20. The ADD SP Instruction

L THUMB assembler ARM equivalent Action

0 ADD SP, #Imm ADD R13, R13, #Imm Add #Imm to the stack pointer (SP).

1 ADD SP, # -Imm SUB R13, R13, #Imm Add #-Imm to the stack pointer (SP).

NOTE: The offset specified by #Imm can be up to -/+ 508, but must be word-aligned (ie with bits 1:0 set to 0)
since the assembler converts #Imm to an 8-bit sign + magnitude number before placing it in field SWord7.
The condition codes are not set by this instruction.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-20. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD SP, #268 ; SP (R13) := SP + 268, but don't set the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S=0.

ADD SP, #-104 ; SP (R13) := SP - 104, but don't set the condition codes.
; Note that the THUMB opcode will contain
; 26 as the Word7 value and S=1.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-93

FORMAT 14: PUSH/POP REGISTERS

[7:0] Register List

[8] PC/LR Bit
0 = Do not store LR/Load PC
1 = Store LR/Load PC

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

0 1

13 12 11

Rlist1 L 0

789

1 R

Figure 3-43. Format 14

OPERATION

The instructions in this group allow registers 0-7 and optionally LR to be pushed onto the stack, and registers 0-7
and optionally PC to be popped off the stack. The THUMB assembler syntax is shown in Table 3-21.

NOTE

The stack is always assumed to be Full Descending.

Table 3-21. PUSH and POP Instructions

L B THUMB assembler ARM equivalent Action

0 0 PUSH { Rlist } STMDB R13!, { Rlist } Push the registers specified by Rlist onto
the stack. Update the stack pointer.

0 1 PUSH { Rlist, LR } STMDB R13!,
{ Rlist, R14 }

Push the Link Register and the registers
specified by Rlist (if any) onto the stack.
Update the stack pointer.

1 0 POP { Rlist } LDMIA R13!, { Rlist } Pop values off the stack into the
registers specified by Rlist. Update the
stack pointer.

1 1 POP { Rlist, PC } LDMIA R13!, {Rlist, R15} Pop values off the stack and load into
the registers specified by Rlist. Pop the
PC off the stack. Update the stack
pointer.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-94

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-21. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

PUSH {R0-R4,LR} ; Store R0,R1,R2,R3,R4 and R14 (LR) at
; the stack pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.

POP {R2,R6,PC} ; Load R2,R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-95

FORMAT 15: MULTIPLE LOAD/STORE

[7:0] Register List

[10:8] Base Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

1 0

13 12 11

Rlist0 L

78

Rb

Figure 3-44. Format 15

OPERATION

These instructions allow multiple loading and storing of Lo registers. The THUMB assembler syntax is shown in
the following table.

Table 3-22. The Multiple Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STMIA Rb!, { Rlist } STMIA Rb!, { Rlist } Store the registers specified by Rlist,
starting at the base address in Rb. Write
back the new base address.

1 LDMIA Rb!, { Rlist } LDMIA Rb!, { Rlist } Load the registers specified by Rlist,
starting at the base address in Rb. Write
back the new base address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-22. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STMIA R0!, {R3-R7} ; Store the contents of registers R3-R7
; starting at the address specified in
; R0, incrementing the addresses for each word.
; Write back the updated value of R0.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-96

FORMAT 16: CONDITIONAL BRANCH

[7:0] 8-bit Signed Immediate

[11:8] Condition

15 0

1

14

1 0

13 12 11

SOffset 81

78

Cond

Figure 3-45. Format 16

OPERATION

The instructions in this group all perform a conditional Branch depending on the state of the CPSR condition
codes. The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4
bytes) ahead of the current instruction.

The THUMB assembler syntax is shown in the following table.

Table 3-23. The Conditional Branch Instructions

L THUMB assembler ARM equivalent Action

0000 BEQ label BEQ label Branch if Z set (equal)

0001 BNE label BNE label Branch if Z clear (not equal)

0010 BCS label BCS label Branch if C set (unsigned higher or same)

0011 BCC label BCC label Branch if C clear (unsigned lower)

0100 BMI label BMI label Branch if N set (negative)

0101 BPL label BPL label Branch if N clear (positive or zero)

0110 BVS label BVS label Branch if V set (overflow)

0111 BVC label BVC label Branch if V clear (no overflow)

1000 BHI label BHI label Branch if C set and Z clear (unsigned higher)

1001 BLS label BLS label Branch if C clear or Z set (unsigned lower or same)

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-97

Table 3-23. The Conditional Branch Instructions (Continued)

L THUMB assembler ARM equivalent Action

1001 BLS label BLS label Branch if C clear or Z set (unsigned lower or same)

1010 BGE label BGE label Branch if N set and V set, or N clear and V clear (greater
or equal)

1011 BLT label BLT label Branch if N set and V clear, or N clear and V set (less
than)

1100 BGT label BGT label Branch if Z clear, and either N set and V set or N clear
and V clear (greater than)

1101 BLE label BLE label Branch if Z set, or N set and V clear, or N clear and V set
(less than or equal)

NOTES:
1. While label specifies a full 9-bit two's complement address, this must always be half-word-aligned (ie with bit 0 set to 0)

since the assembler actually places label >> 1 in field SOffset8.
2. Cond = 1110 is undefined, and should not be used.

Cond = 1111 creates the SWI instruction: see .

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-23. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

CMP R0, #45 ; Branch to over-if R0 > 45.
BGT over ; Note that the THUMB opcode will contain
• ; the number of half-words to offset.
•

over • ; Must be half-word aligned.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-98

FORMAT 17: SOFTWARE INTERRUPT

[7:0] Comment Field

15 0

1

14

1 0

13 12 11

Value 81

7810 9

1 1 1 1

Figure 3-46. Format 17

OPERATION

The SWI instruction performs a software interrupt. On taking the SWI, the processor switches into ARM state and
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown below.

Table 3-24. The SWI Instruction

THUMB assembler ARM equivalent Action

SWI Value 8 SWI Value 8 Perform Software Interrupt:
Move the address of the next instruction into LR,
move CPSR to SPSR, load the SWI vector address
(0x8) into the PC. Switch to ARM state and enter
SVC mode.

NOTE: Value8 is used solely by the SWI handler; it is ignored by the processor.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-24. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

SWI 18 ; Take the software interrupt exception.
; Enter Supervisor mode with 18 as the
; requested SWI number.

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-99

FORMAT 18: UNCONDITIONAL BRANCH

[10:0] Immediate Value

15 0

1

14

1 1

13 12 11

Offset110

10

0

Figure 3-47. Format 18

OPERATION

This instruction performs a PC-relative Branch. The THUMB assembler syntax is shown below. The branch offset
must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead of the current
instruction.

Table 3-25. Summary of Branch Instruction

THUMB assembler ARM equivalent Action

B label BAL label (half-word offset) Branch PC relative +/- Offset11 << 1, where label is
PC +/- 2048 bytes.

NOTE: The address specified by label is a full 12-bit two's complement address,
but must always be half-word aligned (ie bit 0 set to 0), since the assembler places label >> 1 in the Offset11 field.

EXAMPLES

here B here ; Branch onto itself. Assembles to 0xE7FE.
; (Note effect of PC offset).

B jimmy ; Branch to 'jimmy'.
• ; Note that the THUMB opcode will contain the number of
•
• ; half-words to offset.

jimmy • ; Must be half-word aligned.

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-100

FORMAT 19: LONG BRANCH WITH LINK

[10:0] Long Branch and Link Offset High/Low

[11] Low/High Offset Bit
0 = Offset high
1 = Offset low

15 0

1

14

1 1

13 12 11

Offset1

10

H

Figure 3-48. Format 19

OPERATION

This format specifies a long branch with link.

The assembler splits the 23-bit two's complement half-word offset specifed by the label into two 11-bit halves,
ignoring bit 0 (which must be 0), and creates two THUMB instructions.

Instruction 1 (H = 0)

In the first instruction the Offset field contains the upper 11 bits of the target address. This is shifted left by 12 bits
and added to the current PC address. The resulting address is placed in LR.

Instruction 2 (H =1)

In the second instruction the Offset field contains an 11-bit representation lower half of the target address. This is
shifted left by 1 bit and added to LR. LR, which now contains the full 23-bit address, is placed in PC, the address
of the instruction following the BL is placed in LR and bit 0 of LR is set.

The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead
of the current instruction

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-101

INSTRUCTION CYCLE TIMES

This instruction format does not have an equivalent ARM instruction.

Table 3-26. The BL Instruction

L THUMB assembler ARM equivalent Action

0 BL label none LR := PC + OffsetHigh << 12

1 temp := next instruction address

PC := LR + OffsetLow << 1

LR := temp | 1

EXAMPLES

BL faraway ; Unconditionally Branch to 'faraway'
next • ; and place following instruction

• ; address, ie "next", in R14,the Link
; register and set bit 0 of LR high.
; Note that the THUMB opcodes will
; contain the number of half-words to offset.

faraway • ; Must be Half-word aligned.
•

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-102

INSTRUCTION SET EXAMPLES

The following examples show ways in which the THUMB instructions may be used to generate small and efficient
code. Each example also shows the ARM equivalent so these may be compared.

MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS

The following shows code to multiply by various constants using 1, 2 or 3 Thumb instructions alongside the ARM
equivalents. For other constants it is generally better to use the built-in MUL instruction rather than using a
sequence of 4 or more instructions.

Thumb ARM

1. Multiplication by 2^n (1,2,4,8,...)

LSL Ra, Rb, LSL #n ; MOV Ra, Rb, LSL #n

2. Multiplication by 2^n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ; ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2^n-1 (3,7,15,...)

LSL Rt, Rb, #n ; RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by -2^n (-2, -4, -8, ...)

LSL Ra, Rb, #n ; MOV Ra, Rb, LSL #n
MVN Ra, Ra ; RSB Ra, Ra, #0

5. Multiplication by -2^n-1 (-3, -7, -15, ...)

LSL Rt, Rb, #n ; SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

Multiplication by any C = {2^n+1, 2^n-1, -2^n or -2^n-1} * 2^n
Effectively this is any of the multiplications in 2 to 5 followed by a final shift. This allows the following additional
constants to be multiplied. 6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62

(2..5) ; (2..5)
LSL Ra, Ra, #n ; MOV Ra, Ra, LSL #n

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-103

GENERAL PURPOSE SIGNED DIVIDE

This example shows a general purpose signed divide and remainder routine in both Thumb and ARM code.

Thumb code

;signed_divide ; Signed divide of R1 by R0: returns quotient in R0,
; remainder in R1

;Get abs value of R0 into R3
ASR R2, R0, #31 ; Get 0 or -1 in R2 depending on sign of R0
EOR R0, R2 ; EOR with -1 (0×FFFFFFFF) if negative
SUB R3, R0, R2 ; and ADD 1 (SUB -1) to get abs value

;SUB always sets flag so go & report division by 0 if necessary
BEQ divide_by_zero

;Get abs value of R1 by xoring with 0xFFFFFFFF and adding 1 if negative
ASR R0, R1, #31 ; Get 0 or -1 in R3 depending on sign of R1
EOR R1, R0 ; EOR with -1 (0×FFFFFFFF) if negative
SUB R1, R0 ; and ADD 1 (SUB -1) to get abs value

;Save signs (0 or -1 in R0 & R2) for later use in determining ; sign of quotient & remainder.
PUSH {R0, R2}

;Justification, shift 1 bit at a time until divisor (R0 value) ; is just <= than dividend (R1 value). To do this shift
dividend ; right by 1 and stop as soon as shifted value becomes >.

LSR R0, R1, #1
MOV R2, R3
B %FT0

just_l LSL R2, #1
0 CMP R2, R0

BLS just_l
MOV R0, #0 ; Set accumulator to 0
B %FT0 ; Branch into division loop

div_l LSR R2, #1
0 CMP R1, R2 ; Test subtract

BCC %FT0
SUB R1, R2 ; If successful do a real subtract

0 ADC R0, R0 ; Shift result and add 1 if subtract succeeded

CMP R2, R3 ; Terminate when R2 == R3 (ie we have just
BNE div_l ; tested subtracting the 'ones' value).

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-104

Now fixup the signs of the quotient (R0) and remainder (R1)
POP {R2, R3} ; Get dividend/divisor signs back
EOR R3, R2 ; Result sign
EOR R0, R3 ; Negate if result sign = - 1
SUB R0, R3
EOR R1, R2 ; Negate remainder if dividend sign = - 1
SUB R1, R2
MOV pc, lr

ARM Code

signed_divide ; Effectively zero a4 as top bit will be shifted out later
ANDS a4, a1, #&80000000
RSBMI a1, a1, #0
EORS ip, a4, a2, ASR #32

;ip bit 31 = sign of result
;ip bit 30 = sign of a2

RSBCS a2, a2, #0

;Central part is identical code to udiv (without MOV a4, #0 which comes for free as part of signed entry sequence)
MOVS a3, a1
BEQ divide_by_zero

just_l ; Justification stage shifts 1 bit at a time
CMP a3, a2, LSR #1
MOVLS a3, a3, LSL #1 ; NB: LSL #1 is always OK if LS succeeds
BLO s_loop

div_l
CMP a2, a3
ADC a4, a4, a4
SUBCS a2, a2, a3
TEQ a3, a1
MOVNE a3, a3, LSR #1
BNE s_loop2
MOV a1, a4
MOVS ip, ip, ASL #1
RSBCS a1, a1, #0
RSBMI a2, a2, #0
MOV pc, lr

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

3-105

DIVISION BY A CONSTANT

Division by a constant can often be performed by a short fixed sequence of shifts, adds and subtracts.

Here is an example of a divide by 10 routine based on the algorithm in the ARM Cookbook in both Thumb and
ARM code.

Thumb Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

MOV a2, a1
LSR a3, a1, #2
SUB a1, a3
LSR a3, a1, #4
ADD a1, a3
LSR a3, a1, #8
ADD a1, a3
LSR a3, a1, #16
ADD a1, a3
LSR a1, #3
ASL a3, a1, #2
ADD a3, a1
ASL a3, #1
SUB a2, a3
CMP a2, #10
BLT %FT0
ADD a1, #1
SUB a2, #10

0
MOV pc, lr

ARM Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

SUB a2, a1, #10
SUB a1, a1, a1, lsr #2
ADD a1, a1, a1, lsr #4
ADD a1, a1, a1, lsr #8
ADD a1, a1, a1, lsr #16
MOV a1, a1, lsr #3
ADD a3, a1, a1, asl #2
SUBS a2, a2, a3, asl #1
ADDPL a1, a1, #1
ADDMI a2, a2, #10
MOV pc, lr

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

3-106

NOTES

S3F443FX (Preliminary Spec) I/O PORTS

4-1

4 I/O PORTS

OVERVIEW

S3F443FX has 16 general input/output ports.

— Seven ports are dedicated to being I/O ports only(GPIO[6:0])

— Nine ports are shared with other functional pins (Multiplexed I/O ports :GPIO[15:7])

— Three external interrupt input or output pins

Each port can be easily configured by the software to meet various system configuration and design
requirements. The CPU accesses I/O ports by directly writing or reading port register addresses. For this reason,
special I/O instructions are not needed.

Table 4-1. S3F443FX Port Configuration Overview

Port Configuration Options Programmability

0 General C-MOS push-pull I/O port with pull-up resistor Port 0
consists of GPIO[7:0].

GPIO7 is multiplexed with TIN.

Bit programmable

1 General C-MOS push-pull I/O port with pull-up resistor or pull-down
resister. Port 1 consists of GPIO[15:8].

GPIO[15:8] are multiplexed with RXD,TXD and A[17:12].

Bit programmable

2 External interrupt input or output port Bit programmable

I/O PORTS S3F443FX (Preliminary Spec)

4-2

PORT DATA REGISTERS

Table 4-2. Port Data Register Summary

Register Name Mnemonic Offset Reset Value R/W

Port 0 Data Register P0[7:0] 0xb000 xxh R/W

Port 1 Data Register P1[7:0] 0xb001 xxh R/W

Port 2 Data Register P2[7:0] 0xb002 xxh R/W

PORT CONTROL REGISTERS TABLE

Table 4-3. Port Control Register Summary

Register Name Mnemonic ADDR Reset Value R/W

Port 0 Control Register P0CON 0xb010 00h R/W

Port 0 Pull-up Register P0PUR 0xb015 ffh R/W

Port 1 Control Register P1CON 0xb012 0000h R/W

Port 1 Pull-up/down Register P1PUDR 0xb016 ffh R/W

Port 2 Control Register P2CON 0xb014 0h R/W

Port 2 Pull-up Register P2PUR 0xb017 7h R/W

Port 2 External Interrupt Control Register EINTCON 0xb018 0h R/W

Port 2 External Interrupt Mode Register EINTMOD 0xb01a 00h R/W

S3F443FX (Preliminary Spec) I/O PORTS

4-3

Table 4-4. Port 0 Control Register

Name Bit Description

P0CON 0 Setting the GPIO[0] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

1 Setting the GPIO[1] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

2 Setting the GPIO[2] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

3 Setting the GPIO[3] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

4 Setting the GPIO[4] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

5 Setting the GPIO[5] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

6 Setting the GPIO[6] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

7 Setting the GPIO[7] bit of Port 0.

0: TIN / C-MOS input mode
1: C-MOS push-pull output mode

P0PUR 7–0 Setting the GPIO[7:0] pull-up resistor of Port 0.

0: Disable pull-up resistor
1: Enable pull-up resistor

I/O PORTS S3F443FX (Preliminary Spec)

4-4

Table 4-5. Port 1 Control Register

Name Bit Description

P1CON 1:0 Setting the GPIO[8] bit of Port 1.
00: C-MOS input mode
01: C-MOS push-pull output mode
10: A12

3:2 Setting the GPIO[9] bit of Port 1.
00: C-MOS input mode
01: C-MOS push-pull output mode
10: A13

5:4 Setting the GPIO[10] bit of Port 1.
00: C-MOS input mode
01: C-MOS push-pull output mode
10: A14
11: PWM Signal Out

7:6 Setting the GPIO[11] bit of Port 1.
00: C-MOS input mode
01: C-MOS push-pull output mode
10: A15

9:8 Setting the GPIO[12] bit of Port 1.
00: C-MOS input mode
01: C-MOS push-pull output mode
10: A16

11:10 Setting the GPIO[13] bit of Port 1.
00: C-MOS input mode
01: C-MOS push-pull output mode
10: A17

13:12 Setting the GPIO[14] bit of Port 1.
00: C-MOS input mode
01: C-MOS push-pull output mode
10: TXD

15:14 Setting the GPIO[15] bit of Port 1.
00: RXD / C-MOS input mode
01: C-MOS push-pull output mode

P1PUDR 5–0 Setting the GPIO[13:8] pull-down resistor of Port 1.
0: Disable pull-down resistor
1: Enable pull-down resistor
(When P1 is set as an address line, the pull-down resistor is automatically disabled.)

7–6 Setting the GPIO[15:14] pull-up resistor of Port 1.
0: Disable pull-up resistor
1: Enable pull-up resistor

S3F443FX (Preliminary Spec) I/O PORTS

4-5

Table 4-6. Port2 Control Register

Name Bit Description

P2CON 2–0 Setting the EINT[2:0] bit of Port 2.

0: Input or external interrupt input(EINT2:0)
1: C-MOS push-pull output mode

P2PUR 2–0 Setting the EINT[2:0] pull-up resistor of Port 2.

0: Disable pull-up resistor
1: Enable pull-up resistor

EINTMOD 1,0 Setting the external interrupt mode of EINT0

00: Falling edge interrupt enable
01: Rising edge interrupt enable
10: High level interrupt enable
11: Low level interrupt enable

3,2 Setting the external interrupt mode of EINT1

00: Falling edge interrupt enable
01: Rising edge interrupt enable
10: High level interrupt enable
11: Low level interrupt enable

5,4 Setting the external interrupt mode of EINT2

00: Falling edge interrupt enable
01: Rising edge interrupt enable
10: High level interrupt enable
11: Low level interrupt enable

EINTCON 2–0 Setting the EINT[2:0] interrupt enable

0: Disable External Interrupt
1: Enable External Interrupt

I/O PORTS S3F443FX (Preliminary Spec)

4-6

NOTES

S3F443FX (Preliminary Spec) BASIC/WATCHDOG TIMER

5-1

5 BASIC/WATCHDOG TIMER

OVERVIEW

The S3F443FX has an internal Basic Timer/Watch-Dog Timer. This timer can be used to resume controller
operation when it has been disturbed due to noise or other kinds of system error or malfunctions. To configure the
Watch-dog timer, the overflow signal from the 8-bit Basic timer should be fed to the clock input of the 3-bit
Watch-dog timer, as shown in figure below. User can enable or disable the Watch-dog by software, i.e., by
controlling the configuration in BTCON register. If the user does not want to configure the Watch-dog timer, the
8-bit Basic timer can be used as a normal interval timer to request interrupt services. It also can signal the end of
the required oscillation interval after a reset or a Stop mode release. For example, the Basic timer can give the
overflow signal to necessary logic blocks after a reset or release from Stop mode. In this case, the overflow
signal from Basic timer may mean that there is a stable clock from an external oscillator circuit.

Clock DIV

Fin/29

Fin/211

Fin/212

Fin/213

EXTCLK
8-Bit Basic

Counter
(read only)

3-bit WDT nRESET

BTCON.3-.2

CPU Start
INTPEND

INTMASK

OVF

BTCON.0

BTINT

WDT Control Register
(write 10100101b to disable)

BTCON.1

RESET
STOP

Clear

RESET,
STOP, IDLE

Clear

Figure 5-1. Watch-dog Timer Block Diagram

BASIC/WATCHDOG TIMER S3F443FX (Preliminary Spec)

5-2

BASIC TIMER COUNTER REGISTER

The basic timer counter register, BTCNT(Offset address : 0xa007), is used to specify the time out duration, and is
a free-running 8-bit counter. The table below should be kept as reference for determining the duration of timer.
This is the case when the external clock is 20Mhz.

Register Offset Address R/W Description Reset Value

BTCNT 0xa007 R Basic timer count register 00h

Table 5-1. Basic Timer Counter Setting (at EXTCLK = 20 MHz)

BTCON.3 BTCON.2 Clock Source Resolution Interval Time Max. Interval

0 0 EXTCLK/213 409.6 µs 213 / EXTCLK × 28 104.86 ms

0 1 EXTCLK /212 204.8 µs 212 / EXTCLK × 28 52.43 ms

1 0 EXTCLK /211 102.4 µs 211 / EXTCL:K × 28 26.21 ms

1 1 EXTCLK /29 25.6 µs 29 / EXTCLK × 28 6.55 ms

EXTERNAL OSCILLATION STABILIZATION TIME AFTER STOP OR RESET

In Figure 5-1, the CPU Start signal after reset or STOP is activated just after the 8-bit basic timer bit 4 is set to 1.
So, there is delay time before CPU is started after RESET or STOP is released. This delay time may be used for
the oscillation time of an external clock source. This delay time is calculated as in Table 5-2.

Table 5-2. The Delay Time before CPU Time Start (at EXTCLK = 20 MHz)

BTCON.3 BTCON.2 Clock Source WDT Interval Delay Time

0 0 EXTCLK/213 213 / EXTCLK × 24 6.55 ms

0 1 EXTCLK /212 212 / EXTCLK × 24 3.28 ms

1 0 EXTCLK /211 211 / EXTCLK × 24 1.64 ms

1 1 EXTCLK /29 29 / EXTCLK × 24 0.41 ms

WATCH DOG TIMER COUNTER

The watch dog timer counter register, WTCNT, is used to specify the time out duration and is a free-running 3-bit
counter. To enable Watch-dog timer, user should write the data in BTCON[15:8] register except 0xA5, which will
disable the Watch-dog timer. After writing a value in the BTCON[15:8] register the system will reset if there is an
overflow.

Table 5-3. Watch Dog Timer Counter Setting (at EXTCLK = 20 MHz)

BTCON.3 BTCON.2 Clock Source Resolution WDT Interval Interval Time

0 0 EXTCLK/213 409.6 µs 213 / EXTCLK × 28 × 23 838.86 ms

0 1 EXTCLK /212 204.8 µs 212 / EXTCLK × 28 × 23 419.43 ms

1 0 EXTCLK /211 102.4 µs 211 / EXTCLK × 28 × 23 209.72 ms

1 1 EXTCLK /29 25.6 µs 29 / EXTCLK × 28 × 23 52.43 ms

S3F443FX (Preliminary Spec) BASIC/WATCHDOG TIMER

5-3

BASIC TIMER CONTROL REGISTER

The basic timer control register, BTCON, contains watch-dog counter enable bits, clock input setting bits, and
counter clear bit.

Register Offset Address R/W Description Reset Value

BTCON 0xa002 R/W Basic Timer Control register 0000h

The basic timer control register has the following bits:

[0] WDT Counter clear bit This bit clears the watch dog counter. When this bit is set, the
Watch-dog counter register will be cleared to zero.(synchronous reset)
And this bit will be cleared automatically.

[1] Basic Counter clear bit This bit clears the basic counter. When this bit is set, the Basic timer
counter register will be cleared to all zero.(synchronous reset) And this bit
will be cleared automatically.

[3:2] Clock source select These bits select a clock source.
11b = EXTCLK / 29

10b = EXTCLK / 211

01b = EXTCLK / 212

00b = EXTCLK / 213

[15:8] Watch dog timer enable These bits enable or disable the watch-dog timer counting.
When these bits are {10100101b}, watch dog timer counter is stopped.
The other value enable watch-dog timer counting, and reset the system if
there is an overflow.

BASIC/WATCHDOG TIMER S3F443FX (Preliminary Spec)

5-4

FUNCTION DESCRIPTION

INTERVAL TIMER FUNCTION

The primary function of a basic timer is to measure the elapsed time intervals. The standard time interval is equal
to 256 basic timer clock pulses.

The content of the 8-bit counter register, BTCNT, increases every time a clock signal corresponding to the
BTCON selected frequency is detected. The BTCNT continues its counting until an overflow occurs, i.e., the
content reaches 255. An overflow set on the BT interrupt pending flag, which signals elapse of the designated
time interval. Then, an interrupt request is generated; BTCNT is cleared to all zero; and the counting continues
from 00H, again.

Watchdog Timer Function

The basic timer can also be used as a "watch-dog" timer to detect an unexpected program sequence, that is, a
system or program operation error due to an external factor. For example, an external noise can create an this
type of error in which the CPU is running an unexpected code sequence, i.e., malfunction of CPU. To recover the
CPU from the unexpected sequence, the watch-dog timer should reset the CPU for malfunctions. But, during
normal sequence, the instruction, which clears the watch-dog timer within a given period, should be executed at
proper points in a program. If an instruction that clears the watch-dog timer is not executed within the specified
period, meaning an overflow of the watch-dog timer, the reset signal should be generated and the system should
be restarted with reset status. An operation of watch-dog timer is as follows:

— Each time BTCNT overflows, an overflow signal should be sent to the watch-dog timer counter, WDTCNT.

— If WDTCNT overflows, the system reset should be generated.

A reset signal clears the BTCON as #0000H. This value can enable the watch-dog timer because it is not 0xA5.
During the normal operation, the application program should prevent the overflow. To do this, the WDTCNT
value should be cleared (by writing a "1" to BTCON.0) at regular intervals before the overflow occurs.

NOTE

In order to save current consumption, Basic Timer counter is stop by register setting, which is
SYSCON.bit6, default mode ‘0’ is enable to run Basic Timer Counter. For stopping it, SYSCON.bit6
is to be set‘1’.

S3F443FX (Preliminary Spec) TIMER MODULE 0,1,2,3,4,5

6-1

6 TIMER MODULE 0,1,2,3,4,5 (16-BIT TIMERS)

OVERVIEW

The S3F443FX has Six 16-bit timers:T0,T1,T2,T3,T4 and T5. The timers T0-T5 can operate in interval mode, in
capture mode, or in match & overflow mode. The clock source for the timers can be UTCLK or TIN. You can
enable or disable the timers by setting the control bits in the corresponding timer mode register.

The timers 0,1,2,3,4, and 5 have three operating modes. The user can select the mode by having the appropriate
TnCON setting:

— Interval timer mode

— Capture input mode with a rising or falling edge trigger at the input pin(TIN, which is shared by
timer0/1/2/3/4/5)

— Match & Overflow mode

TIMER MODULE 0,1,2,3,4,5 S3F443FX (Preliminary Spec)

6-2

TnCON.6

8-bit
Prescaler

Clear

UTCLK

TnCON.7

MUX
16-bit Up Counter

(TnCNT)

16-bit Comparator

Timer n Buffer Register

Timer n Data Register
(Read/Write)

TnCON.6

INTPND

INTMASK

TnCON.5-.3

TIN

R

Clear

Data Bus TnOVF

INTPND

INTMASK TnINT

TnCON.5-.3

Data Bus

Match Signal
TnCLR
TnOVF

Timer n Control Register
where, n = 0, 1, 2, 3, 4 and 5

Match

TnCON.2

Figure 6-1. 16-Bit Timer Block Diagram

S3F443FX (Preliminary Spec) TIMER MODULE 0,1,2,3,4,5

6-3

TIMER 0,1,2,3,4,5 CONTROL REGISTERS(T0CON,T1CON,T2CON,T3CON,T4CON,T5CON)

Users should have the configuration on the timer 0,1,2,3,4, and 5 control registers, i.e., TnCON, to determine the
following:

— Select the timer n operating mode (interval timer mode, match & overflow mode, or capture mode)

— Select the timer n input clock (UTCLK or TIN)

— Clear the timer n counter, TnCON[6]

— Enable/Disable the timer clock, TnCON[7]

The INTMASK register can control whether the interrupt to CPU should be posted or not when the timer n
reaches to the overflow point in the interval timer mode, match & overflow mode, or capture mode. The
INTPEND register can store the interrupt pending bit if the corresponding interrupt is not serviced. After the
service of interrupt, the S/W should clear the pending bit.

During the system reset, TnCON register is cleared to '00H', automatically, which is a default configuration on the
timer. The default configuration is to have the interval timer mode and UTCLK as the timer input clock source.
User can clear the timer n counter at any time during normal operation by writing a "1" to TnCON[6].

INTERVAL MODE OPERATION

In interval timer mode, a match signal is generated when the counter value reaches to the written value in the Tn
reference data register, TnDATA. The match signal can generate a timer n match interrupt (TnINT) and clear the
counter value.

UTCLK

TnCNT Clock

TnCNT

TnPRE=3

99 100 0 1

The timer match interrupt will occur.

NOTE: If the prescaler value is n, the prescaler factor is n + 1.

Figure 6-2. Interval Mode Example 1 (TnDATA=100, TnPRE=3, UTCLK is a Timer Source)

TIMER MODULE 0,1,2,3,4,5 S3F443FX (Preliminary Spec)

6-4

TIN

TnCNT 99 100 0 1

The timer match interrupt will occur

Figure 6-3. Interval Mode Example 2 (TnD ATA=100, TIN is a Timer Source)

CAPTURE MODE OPERATION

In capture mode, the timer performs the capturing operation, in which the current timer counter value in TnCNT
register is latched to the timer n data register (TnDATA) in synchronization with an external trigger. For every
external trigger signal, the current timer counter value in TnCNT register is latched to the timer n data register
(TnDATA) and the capture interrupt is generated. By using this feature, the user can measure the time difference
between the external trigger signals. If the TnCNT overflows, the overflow interrupt will be sent to the CPU core.
A valid edge detected at the capture input pin is used as the external trigger. When this overflow happens, the
timer counter starts its counting from 0000H.

MATCH & OVERFLOW MODE OPERATION

In match mode, the match signal is generated when the timer counter value (TnCNT) is identical to the value of
the timer n data register (TnDATA), which was written by S/W. However, the match signal does not clear the
counter and can generate a match interrupt, only. It runs continuously, overflowing at FFFFH, and then continues
the increment from 0000H. When an overflow happens, an overflow interrupt is also generated.

S3F443FX (Preliminary Spec) TIMER MODULE 0,1,2,3,4,5

6-5

TIMER SPECIAL REGISTERS

TIMER CONTROL REGISTERS

The timer control registers, T0CON, T1CON, T2CON, T3CON, T4CON, and T5CON are used to control the
operations of the six 16-bit timers.

Register Offset Address R/W Description Reset Value

T0CON 0x9003 R/W Timer 0 control register 00h

T1CON 0x9013 R/W Timer 1 control register 00h

T2CON 0x9023 R/W Timer 2 control register 00h

T3CON 0x9033 R/W Timer 3 control register 00h

T4CON 0x9043 R/W Timer 4 control register 00h

T5CON 0x9053 R/W Timer 5 control register 00h

Three timer mode registers have the following control settings:

[2] Clock source selection This bit determines which clock source should be used as a timer input
clock for the corresponding timer. When this bit is 0, UTCLK should be
used as the timer clock source of the corresponding timer. When 1,
TIN should be used.

[5:3] Timer mode selection This field determines the operation mode of the corresponding timer to
be used(Interval, match & overflow mode, and capture mode) When
the user sets TnCON[5:3] to 000b, the corresponding timer runs in the
interval mode. When 001b, the corresponding timer runs in the match
& overflow mode. When the user sets TnCON[5:3] to 1xx, the
corresponding timer runs in the capture mode. When 100b, the
corresponding timer runs in the capture and the capturing will happen
at the falling edge of external triggering signal (TIN). When 101b, the
corresponding timer runs in the capture mode with the capturing at the
rising edge of external triggering signal (TIN). When 110b, the
corresponding timer runs in the capture mode with the capturing at
both edges of the external triggering signal(TIN).

[6] Counter Clear bit This bit can clear the counter register(TnCNT). When this bit is set the
counter is cleared. Also, this bit is cleared automatically

[7] Timer clock enable/disable User can enable or disable the timer clock by setting or clearing this
bit. When TnCON[7] is 1, the divided UTCLK will be asserted to the
16-bit up-counter through the MUX. Otherwise, the divided UTCLK will
not be fed. However, TIN will not be controlled by this bit. Although
TnCON[7] is 0, the TIN will make the counter count.

TIMER MODULE 0,1,2,3,4,5 S3F443FX (Preliminary Spec)

6-6

[1:0] Reserved to 00b

[2] Timer n Input Clock Selection Bits
0 = EXTCLK
1 = TIN

[5:3] Timer n Operation Mode Selection Bits
000 = Interval mode
001 = Match & Overflow mode (Match &OVF INT can occur)
010 = Reserved
011 = Reserved
100 = Capture mode (Capture on falling edge, counter running, OVF can occur)
101 = Capture mode (Capture on rising edge, counter running, OVF can occur)
110 = Capture mode (Capture on rising or falling edge, counter running, OVF can occur)

[6] Timer n Counter
0 = No
1 = Clear the timer n counter (when write)

[7] Timer n input clock enable bit
0 = Disable timer n input clock
1 = Enable timer n input clock

7 6 25 4 3 01

Figure 6-4. Timer 0,1,2,3,4,5 Control Registers

S3F443FX (Preliminary Spec) TIMER MODULE 0,1,2,3,4,5

6-7

TIMER DATA REGISTERS

The timer data registers, T0DATA, T1DATA, T2DATA, T3DATA, T4DATA and T5DATA, contain values that
specify the time-out duration for each timer. The formula for calculating time-out duration is (Timer data + 1)
cycles. See Figure 6-5 below.

Register Offset Address R/W Description Reset Value

T0DATA 0x9000 R/W Timer 0 data register ffffh

T1DATA 0x9010 R/W Timer 1 data register ffffh

T2DATA 0x9020 R/W Timer 2 data register ffffh

T3DATA 0x9030 R/W Timer 3 data register ffffh

T4DATA 0x9040 R/W Timer 4 data register ffffh

T5DATA 0x9050 R/W Timer 5 data register ffffh

[15:0] Timer Data Value
This field specifies the time-out period the corresponding
timer. The time-out period is calculated as (Timer data + 1)
cycles. Therefore, a maximum time-out period of 2 16 cycles
is possible (when the timer data value is 0xffff). The minimum
time-out period (2 cycles) is obtained by writing the value
0x0001h to the timer data register field.

15 0

Timer Data

Figure 6-5. Timer Data Registers (TnDATA)

TIMER MODULE 0,1,2,3,4,5 S3F443FX (Preliminary Spec)

6-8

TIMER COUNT REGISTERS

The timer count registers, T0CNT, T1CNT, T2CNT, T3CNT, T4CNT and T5CNT, have values which provides the
count value to the current timers 0,1,2,3,4, and 5 during normal operation, respectively (see Figure 6-6).

Register Offset Address R/W Description Reset Value

T0CNT 0x9006 R Timer 0 count register 0000h

T1CNT 0x9016 R Timer 1 count register 0000h

T2CNT 0x9026 R Timer 2 count register 0000h

T3CNT 0x9036 R Timer 3 count register 0000h

T4CNT 0x9046 R Timer 4 count register 0000h

T5CNT 0x9056 R Timer 5 count register 0000h

[15:0] Counting Value
This field specifies the time-out period the corresponding timer.
The time-out period is calculated as (Timer data + 1) cycles.
Therefore, a maximum time-out period of 2 16 cycles is possible
(when the timer data value is 0xffff). The minimum time-out period
(2 cycles) is obtained by writing the value 0x0001h to the timer
data register field.

15 0

Counting Data

Figure 6-6. Timer Count Registers (TnCNT)

S3F443FX (Preliminary Spec) TIMER MODULE 0,1,2,3,4,5

6-9

TIMER PRE-SCALER REGISTERS

The timer pre-scaler registers, T0PRE, T1PRE, T2PRE, T3PRE, T4PRE, and T5PRE, have values which provide
the pre-scaler values (The main clock should be divided by the pre-scaler factor, which is the timer input clock) to
current timers 0/1/2/3/4/5 during normal operation, respectively(see Figure 6-7).

Register Offset Address R/W Description Reset Value

T0PRE 0x9002 R/W Timer 0 pre-scaler register ffh

T1PRE 0x9012 R/W Timer 1 pre-scaler register ffh

T2PRE 0x9022 R/W Timer 2 pre-scaler register ffh

T3PRE 0x9032 R/W Timer 3 pre-scaler register ffh

T4PRE 0x9042 R/W Timer 4 pre-scaler register ffh

T5PRE 0x9052 R/W Timer 5 pre-scaler register ffh

[7:0] Timer 0,1,2,3,4,5 Prescaler Value
This field cotains the timer 0,1,2,3,4,5 prescaler
value during normal timer operation.

7 0

Prescaler Data

Figure 6-7. Timer Pre-scaler Registers (TnPRE)

A pre-scaler register has an 8-bit pre-scaler value. If the pre-scaler value is n, the prescaler factor is n+1.

TIMER MODULE 0,1,2,3,4,5 S3F443FX (Preliminary Spec)

6-10

NOTES

S3F443FX (Preliminary Spec) UART

7-1

7 UART

OVERVIEW

The S3F443FX has an on-chip UART (Universal Asynchronous Receiver/Transmitter) block. The UART can be
operated in the interrupt-based mode

A UART has a programmable baud rate generator with Rx and Tx ports for UART communication, Tx and Rx
shift registers, Tx and Rx buffer registers, Tx and Rx control blocks and control registers. In other words the
UART in S3F443FX supports the programmable baud rate, simultaneous transmit/receive(Full duplex mode), one
or two stop bit insertion, 5-bit, 6-bit, 7-bit, or 8-bit data transmit/receive size, and parity checking capability.

The baud rate generator can generate the suitable bit rate by dividing EXTCLK. The bit rate is fully
programmable by S/W with an appropriate clock division factor, the programmable baud generator can generate
UART bit rates 1200, 2400, 4800, 9600, and so on. The transmitter and the receiver block have Tx and Rx data
buffer registers, and a Tx and a Rx shift register, respectively. The transmission data should be written to the Tx
buffer register, then copied to the Tx shift register, and shifted out through the transmit data pin(Tx). The data to
be received should be shifted in through the receive data pin(Rx), and then copied from shift register to the Rx
buffer register whenever one data byte is received. The control unit provides the selection on UART operation
mode and shows the status/interrupt generation of UART during operation.

NOTE

In order to save current consumption, the operation of UART is stopped by register setting, which is
SYSCON.bit7, default mode ‘0’ is enabled to make UART work. For stopping it, SYSCON.bit7 is to be set
'1'.

UART S3F443FX (Preliminary Spec)

7-2

Tx Control

Tx. Buffer Reg

Data Bus

Tx. Shift Reg

Rx. Shift Reg

Rx. Buffer Reg

Data Bus

LCON/UCON/USSR

Data Bus

Rx Control

Interrupt
Control

Serial Clock
Generator

Tx

Rx

CK

CK

Baud Rate Generater16-bit Prescaler

Status

EXTCLK

UBRDR

Data Bus

Figure 7-1. UART Block Diagram

S3F443FX (Preliminary Spec) UART

7-3

INFRA-RED MODE

The S3F443FX UART block can support the infra-red (IR)-based transmit and receive (IrDA 1.0), which can be
selected by setting the infra-red-mode bit in the line control register (LCON). The implementation of the mode is
shown in Figure 7-2.

In IrDA mode, the transmitted bit data is slightly different from the normal transmitted bit data. In normal
transmitted bit data, the high value(Logic 1) will be maintained during one bit time if the bit data is 1. Otherwise,
the low value(Logic 0) will be maintained during one bit time if the bit data is 0. In IrDA mode, however, the high
value(Logic 1) will be pulsed with the duty of 3/16 during one bit time if the bit data is 1. Otherwise, the low
value(Logic 0) will be maintained during one bit time if the bit data is 0. Similarly with Tx case of IrDA mode, the
bit data of Rx has same bit shape as Tx. In other words, the receiver should detect the 3/16 pulsed-duty signal
when the bit data is 1. The normal operation of Rx is as same as the that of Tx in terms of bit shaping during one
bit time.

URAT
Block

TxD

RxD

IRS

RE
IR Tx

Encoder

0

1

1

0

IR Rx
Decoder

TxD

RxD

Figure 7-2. Infra-red Mode

Start
Bit

Stop
Bit

Data Bits

SIO Frame

0 1 0 1 0 0 1 1 0 1

Figure 7-3. Serial I/O Frame Timing Diagram (Normal UART)

UART S3F443FX (Preliminary Spec)

7-4

0

Start
Bit

Stop
Bit

Data Bits

IR Transmit Frame

Bit
Time Pulse Width = 3/16 Bit Frame

0 0 0 0 11111

Figure 7-4. Infra-Red Transmit Mode Frame Timing Diagram

0

Start
Bit

Stop
Bit

Data Bits

IR Receive Frame

0 0 0 0 11111

Figure 7-5. Infra-Red Receive Mode Frame Timing Diagram

S3F443FX (Preliminary Spec) UART

7-5

UART SPECIAL REGISTERS

UART LINE CONTROL REGISTER

The UART Line control register, LCON, is used to control the UART.

Register Offset Address R/W Description Reset Value

LCON 0x5003 R/W UART line control register 00h

[1:0] Word length (WL) The two-bit word length value indicates the number of data bits to be
transmitted or received per frame. The options are 5-bit, 6-bit, 7-bit,
and 8-bit.

[2] Number of stop bits LCON[2] specifies how many stop bits should be inserted to signal
end-of-frame(EOF). When it is 0, one bit signals the EOF; when it is 1,
two bits signal EOF.

[5:3] Parity mode (PMD) The 3-bit parity mode value specifies how the parity generation and
checking should be performed during UART transmit and receive
operations. There are five options (see Figure 7-3).

[6] Reserved

[7] Infra-Red Mode This bit determines whether or not to use infra-red mode
0 = Normal Mode operation
1 = Infra-red Tx/Rx mode

UART S3F443FX (Preliminary Spec)

7-6

[1:0] Word-length Per Frame (WL)
00 = 5-bit
01 = 6-bit
10 = 7-bit
11 = 8-bit

[2] Number of Stop Bits at End of Frame
0 = One stop bit per frame
1 = Two stop bit per frame

[5:3] Parity Mode
0xx = No parity bit in frame
100 = Odd parity
101 = Even parity
110 = Parity forced/checked as 1
111 = Parity forced/checked as 0

[6] Reserved

[7] Infra-Red Mode Selection
0 = Normal mode operation
1 = Infra-red Tx/Rx mode

7 6 25 4 3 01

PMD WL

Figure 7-3. UART Line Control Register (LCON)

S3F443FX (Preliminary Spec) UART

7-7

UART CONTROL REGISTER

The UART control register, UCON, is used to control the single-channel UART.

Register Offset Address R/W Description Reset Value

UCON 0x5007 R/W UART control register 00h

[1:0] Enable receive interrupt These bits enable the UART to generate a receive interrupt.
00= Disable 01= Interrupt Request or falling mode
10= Reserved 11= Reserved

[2] Rx status interrupt enable This bit enables the UART to generate an interrupt if an exception
(break, frame error, parity error, or overrun error) occurs during a
receive operation. When UCON[2] is set to 1, a receive status interrupt
will be generated each time a Rx exception occurs. When UCON[2] is
0, no receive status interrupt will be generated.

[4:3] Enable transmit interrupt These bits enable the UART to generate a transmit interrupt.
00= Disable 01= Interrupt Request or falling mode
10= Reserved 11= Reserved

[5] Reserved Unknown value will be read.

[6] Send break Setting UCON[6] causes the UART to send a break. The break is
defined as giving the continuous low level signal on the transmit data
output (Tx port) of more than one frame transmission time. When the
transmitter is empty (transmitter empty bit, USSR[7] = 1), the exact
one-frame time can be obtained by using TBR & USSR registers.
When USSR[7] is 1, write dummy data to the transmit buffer register
(TBR). Then poll the USSR[7] value. When it returns to 1, clear (reset)
the send break bit, UCON[6].

[7] Loop-back bit Setting UCON[7] causes the UART to enter into the loop-back mode.
In loop-back mode, the transmit buffer register (TBR) is internally
connected to the receive buffer register (RBR). This mode is provided
for test purposes only.

UART S3F443FX (Preliminary Spec)

7-8

[1:0] Receive interrupt enable
00 = Do not generate a receive interrupt
01 = Generate a receive interrupt
10 = Not used
11 = Not used

[2] Receive status in interrupt enable
0 = Do not generate receive status interrupt
1 = Generate receive status interrupt

[4:3] Transmit interrupt enable
00 = Do not generate a transmit interrupt
01 = Generate a transmit interrupt
10 = Not used
11 = Not used

[5] Reserved (Unknown Value)

[6] Send Break
0 = Do not send break
1 = Send break

[7] Loop break enable
0 = Normal UART operating
1 = Infra-red Tx/Rx mode

7 6 25 4 3 01

TxM RxM

Figure 7-4. UART Control Register (UCON)

S3F443FX (Preliminary Spec) UART

7-9

UART STATUS REGISTER

The UART status register, USSR, is a read-only register that is used to monitor the status of serial I/O operations
in the single-channel UART.

Register Offset Address R/W Description Reset Value

USSR 0x500b R UART status register c0h

[0] Overrun error USSR[0] is automatically set to 1 whenever an overrun error occurs
during a serial data receive operation. If the receive status interrupt
enable bit UCON[2] is 1, a receive status interrupt will be generated if
an overrun error occurs. This bit is automatically cleared to 0
whenever the UART status register (USSR) is read.

[1] Parity error USSR[1] is automatically set to 1 whenever a parity error occurs
during a serial data receive operation. If the receive status interrupt
enable bit UCON[2] is 1, a receive status interrupt will be generated if
a parity error occurs. This bit is automatically cleared to 0 whenever
the UART status register (USSR) is read.

[2] Frame error USSR[2] is automatically set to 1 whenever a frame error occurs
during a serial data receive operation. If the receive status interrupt
enable bit UCON[2] is 1, a receive status interrupt will be generated if
a frame error occurs. The frame error bit is automatically cleared to 0
whenever the UART status register (USSR) is read.

[3] Break interrupt USSR[3] is automatically set to 1 to indicate that a break signal has
been received. If the receive status interrupt enable bit, UCON[2], is 1,
a receive status interrupt will be generated if a break occurs. The
break interrupt bit is automatically cleared to 0 when you read the
UART status register.

[4] – –

[5] Receive data ready USSR[5] is automatically set to 1 whenever the receive data buffer
register (RBR) contains the valid data received over the serial port.
The receive data can then be read from the RBR. When this bit is 0,
the RBR does not contain valid data.

[6] Tx buffer register empty USSR[6] is automatically set to 1 when the transmit buffer register
(TBR) does not contain valid data. In this case, the TBR can be written
with the data to be transmitted. When this bit is 0, the TBR contains
valid Tx data that has not yet been copied to the transmit shift register.
In this case, the TBR cannot be written with new Tx data.

[7] Transmitter empty (T) USSR[7] is automatically set to 1 when the transmit buffer register has
no valid data to be transmitted and when the Tx shift register is empty.
When the transmitter empty bit is 1, it indicates that it can now disable
the transmitter function block if necessary.

UART S3F443FX (Preliminary Spec)

7-10

7 6 25 4 3 01

[0] Overrun Error
0 = No overrun error during receive
1 = Overrun error (Generate receive status interrupt
 if UCON[2] is 1.)

[1] Parity Error
0 = No parity error during receive
1 = Parity error (Generate receive status interrupt
 if UCON[2] is 1.)

[2] Frame Error
0 = No frame error during receive
1 = Frame error (Generate receive status interrupt
 if UCON[2] is 1.)

[3] Break Interrupt
0 = No break receive
1 = Break error (Generate receive status interrupt
 if UCON[2] is 1.)

[5] Receive Data Ready
0 = No valid data in the receive buffer register
1 = Valid data present in the receive buffer register
 (Issue interrupt)

[6] Transmit Holding Register Empty
0 = Valid data present in transmit holding register
 (Issue interrupt)
1 = No valid data in transmit holding register

[7] Transmitter Empty
0 = Transmitter not empty; Tx in progress
1 = Transmitter empty; no data for Tx

x

Figure 7-5. UART Status Register (USSR)

S3F443FX (Preliminary Spec) UART

7-11

UART TRANSMIT BUFFER REGISTER

The UART transmit holding register, TBR, contains an 8-bit data value to be transmitted over the single-channel
UART.

Register Offset Address R/W Description Reset Value

TBR 0x500f W Serial transmit buffer register xxh

[7:0] Transmit data This field contains the data to be transmitted over the single-channel
UART. When this register is written, the transmit buffer register empty
bit in the status register, USSR[6], should be 1. This prevents
overwriting the transmit data which may already be present in the
TBR. Whenever the TBR is written with a new value, the transmit
register empty bit USSR[6] is automatically cleared to 0.

7 0

[7:0] Transmit Data for UART
This field contains the data to be transmitted over the
serial I/O interface. To avoid overwriting data that has
not yet been transmitted, the transmit holding register
empty bit, USSR[6], should be 1. Writing a value to
this register automatically clears USSR[6] to 0.

Transmit Data

Figure 7-6. UART Transmit Buffer Register (TBR)

NOTE

Tx interrupt will be generated only when the TBR register is empty. So, if the TBR register has been
empty and you enable the UTXD interrupt using INTMASK register, the UTXD interrupt will not be
generated. Therefore, to generate the UTXD interrupt, the first character among the characters to be
transmitted should be written into TBR register.

UART S3F443FX (Preliminary Spec)

7-12

UART RECEIVE BUFFER REGISTER

The receive buffer register, RBR, contains an 8-bit field for received serial data.

Register Offset Address R/W Description Reset Value

RBR 0x5013 R Serial receive buffer register xxh

[7:0] Receive data This field contains the data received over the single-channel UART.
When this register is read, the receive data ready bit in the UART
status register, USSR[5], should be 1. This can prevent the reading of
invalid receive data which may already be present in the RBR.
Whenever the RBR is written with a new value, the receive data ready
bit, USSR[5], is automatically cleared to 0.

7 0

[7:0] Receive Data for UART
This field contains the data received over the serial I/O
interface. To avoid reading invalid data, the receive
data ready bit, USSR[5], should be 1. Reading this
register automatically clears the USSR[5] value to 0.

Receive Data

Figure 7-7. UART Receive Buffer Register (RBR)

S3F443FX (Preliminary Spec) UART

7-13

UART BAUD RATE PRESCALER REGISTERS

The value in the baud rate prescaler register, UBRDIV, can be used to determine the UART Tx/Rx clock
rate(baud rate) as follows:

UBRDR = (round_off) { MCLK / (transfer rate × 16) } – 1

Where the divisor should be from 1 to (216 – 1). For example, if the baud-rate is 115200bps and MCLK is 40MHz,
UBRDIV is:

UBRDR = (int) { MCLK / (Transfer rate × 16) + 0.5 } – 1

 = (int) { 40000000 / (115200 * 16) + 0.5 } – 1 = (int) (21.7 + 0.5) – 1

 = 22 – 1 = 21

Register Offset Address R/W Description Reset Value

UBRDR 0x5016 R/W Baud rate divisor register 0000h

15 0

[15:0] Baud-Rate Divisor Vaule
This field contains the baud rate divisor value for
corresponding SIO channel.

Baud-Rate Divisor

NOTE: The value of the baud-rate divisor should be from 0 to (216-1)

Figure 7-8. UART Baud Rate Divisor Registers (UBRDR)

UART S3F443FX (Preliminary Spec)

7-14

NOTES

S3F443FX RISC MICROCONTROLLER INTERRUPT CONTROLLER

8-1

8 INTERRUPT CONTROLLER

OVERVIEW

The S3F443FX interrupt architecture has a total of 21 interrupt sources. Interrupt request can be generated by the
internal functional blocks as well as external pins(External Interrupt Request). The ARM7TDMI core can
recognize two kinds of interrupt: a normal interrupt request (IRQ) and a fast interrupt request (FIQ). Therefore, all
S3F443FX interrupt should be categorized as either IRQ or FIQ. The interrupt sources in S3F443FX can be
serviced, delayed, or not be serviced by the combined configuration on the register INTMODE, INTPEND, and
INTMASK. To determine the service start address, the S3F443FX can support two kinds of mode. One is a
normal interrupt mode and the other is interrupt vector mode. In a case of normal interrupt mode, ARM7TDMI
core by H/W checks an interrupt source is which kind of a sort of one IRQ or FIQ and responds an interrupt
request to jump PC at the start address of IRQ(0x18) or FIQ(0x1C). Since then, in a program how to serve an
interrupt request is decided by user program normally checking the pending bit and the priority among them is
also decided by S/W. following the decision of which one to be served, S/W lets PC jump to the real start address
of corresponding interrupt request. Meanwhile in a case of vector interrupt mode, the start address is fixed by
H/W, regardless that the interrupt source is defined IRQ or FIQ. Which means that the above process by S/W to
search for the real start address of interrupt request is automatically performed by H/W. in other words, the H/W
can support the respective start address corresponding to each interrupt source. Because it will reduce interrupt
latency as possible as it can. To determine the normal interrupt mode or interrupt vector mode, the configuration
on interrupt priority register (INTPRIn) is done properly,

— Interrupt Mode Register: Defines the interrupt mode, IRQ or FIQ, for each interrupt source.

— Interrupt Pending Register: Interrupt pending register indicates that an interrupt request is pending. The
interrupt service routine will start if a pending bit is set and the I-flag or F-flag is cleared to 0,However, the
pending bit should be cleared before exiting on the interrupt service routine in order to clarify that a requested
interrupt service has been finished. As it is known, FIQ interrupt has higher priority than IRQ so that FIQ
interrupt request will be served first even if IRQ and IFQ concurrently request Interrupt service.

— Interrupt Mask Register: Interrupt mask register indicates that the corresponding interrupt request is not
allowable if the corresponding mask bit is 0. If an interrupt mask bit is 1, the interrupt request will be
allowable, normally.

— Interrupt Priority Register: Interrupt priority register has its own priority level which is defined by suffix ‘n’
value of INTPRIn and the total number of interrupt priority registers is 21 corresponding to the above
mentioned 21 interrupt sources contained in S3F443FX. In other words, S3F443FX has 21 priority levels
from 0 to 20 and PRIORITY0 (Level 0) is highest one, while PRIORITY20(Level) is lowest. If you want to
assign an interrupt source into a certain priority level, please write the number of interrupt source on targeting
interrupt-level register of INTPRIn.

INTERRUPT CONTROLLER S3F443FX RISC MICROCONTROLLER

8-2

INTERRUPT SOURCES

S3F443FX has 21 interrupt sources, each an interrupt source has own number which is called interrupt number.
The followings illustrate specific number and interrupt source.

Sources Description Number

INT_URX UART receive interrupt. 0

INT_UTX UART transmit interrupt. 1

INT_UERR UART error. 2

INT_TOF0 Timer 0 Overflow interrupt. 3

INT_TMC0 Timer 0 Match/Capture interrupt 4

INT_TOF1 Timer 1 Overflow interrupt. 5

INT_TMC1 Timer 1 Match/Capture interrupt. 6

INT_TOF2 Timer 2 Overflow interrupt. 7

INT_TMC2 Timer 2 Match/Capture interrupt. 8

INT_TOF3 Timer 3 Overflow interrupt. 9

INT_TMC3 Timer 3 Match/Capture interrupt. 10

INT_TOF4 Timer 4 Overflow interrupt. 11

INT_TMC4 Timer 4 Match/Capture interrupt 12

INT_TOF5 Timer 5 Overflow interrupt. 13

INT_TMC5 Timer 5 Match/Capture interrupt. 14

INT_BT Basic Timer Interrupt 15

EINT0 EINT0 external interrupt. 16

EINT1 EINT1 external interrupt. 17

EINT2 EINT2 external interrupt. 18

INT_PWMOF PWM overflow interrupt. 19

INT_PWMMC PWM match interrupt. 20

S3F443FX RISC MICROCONTROLLER INTERRUPT CONTROLLER

8-3

INTERRUPT CONTROLLER SPECIAL REGISTERS

INTERRUPT MODE REGISTER (INTMOD)

Bits in the interrupt mode register (INTMODE) determine the interrupt mode of requested interrupt. There are two
kinds of interrupt mode, IRQ and FIQ mode. When the bit is set to 1, the corresponding interrupt service should
be serviced by FIQ (Fast Interrupt Mode) in ARM7TDMI. Otherwise, the corresponding interrupt service should
be serviced by IRQ (Normal Interrupt Request) mode in ARM7TDMI.

NOTE

If the interrupt priority control is enabled, a lower priority interrupt source, which is lower than a higher
priority interrupt source configured as IRQ, must not be configured as a FIQ mode.

Register Offset Address R/W Description Reset Value

INTMODE 0xc000 R/W Interrupt mode register
0: IRQ mode
1: FIQ mode

xxx0 0000h

INTMOD BIT Description Initial State

INT_URX [0] 0=IRQ mode 1=FIQ mode 0

INT_UTX [1] 0=IRQ mode 1=FIQ mode 0

INT_UERR [2] 0=IRQ mode 1=FIQ mode 0

INT_TOF0 [3] 0=IRQ mode 1=FIQ mode 0

INT_TMC0 [4] 0=IRQ mode 1=FIQ mode 0

INT_TOF1 [5] 0=IRQ mode 1=FIQ mode 0

INT_TMC1 [6] 0=IRQ mode 1=FIQ mode 0

INT_TOF2 [7] 0=IRQ mode 1=FIQ mode 0

INT_TMC2 [8] 0=IRQ mode 1=FIQ mode 0

INT_TOF3 [9] 0=IRQ mode 1=FIQ mode 0

INT_TMC3 [10] 0=IRQ mode 1=FIQ mode 0

INT_TOF4 [11] 0=IRQ mode 1=FIQ mode 0

INT_TMC4 [12] 0=IRQ mode 1=FIQ mode 0

INT_TOF5 [13] 0=IRQ mode 1=FIQ mode 0

INT_TMC5 [14] 0=IRQ mode 1=FIQ mode 0

INT_BT [15] 0=IRQ mode 1=FIQ mode 0

EINT0 [16] 0=IRQ mode 1=FIQ mode 0

EINT1 [17] 0=IRQ mode 1=FIQ mode 0

EINT2 [18] 0=IRQ mode 1=FIQ mode 0

INT_PWMOF [19] 0=IRQ mode 1=FIQ mode 0

INT_PWMMC [20] 0=IRQ mode 1=FIQ mode 0

INTERRUPT CONTROLLER S3F443FX RISC MICROCONTROLLER

8-4

INTERRUPT PENDING REGISTER (INTPND)

The interrupt pending register (INTPEND) has interrupt pending bits for each interrupt source. When an interrupt
request is generated, it will be masked by the CPU if the I-flag or F-flag in the process status register(PSR) is set
because of previous interrupt. When a pending bit is set, the interrupt service routine can start whenever the I-
flag or F-flag is cleared to 0, which means that the previous service was finished or ARM7TDMI core is ready to
accept other interrupts request during the service of previous interrupt request. The service routine should clear
the corresponding pending bit by writing 0 when CPU is ready to accept other interrupt request, or when the CPU
exit from the corresponding service routine, at least. Because FIQ interrupt has higher priority than IRQ, the FIQ
mode interrupt can be serviced before the complete service of IRQ mode interrupt even if the I-bit in PSR is set
to 1. In other word, The FIQ mode interrupt request can not be pending, if the IRQ mode interrupt service is on
processing.

Register Offset Address R/W Description Reset Value

INTPEND 0xc004 R/W Interrupt pending register
0: Clear the corresponding pending bit.
1: Preserve the previous pending bit status.

xxx0 0000h

INTPEND BIT Description Initial State

INT_URX [0] 0=Not requested 1=Requested 0

INT_UTX [1] 0=Not requested 1=Requested 0

INT_UERR [2] 0=Not requested 1=Requested 0

INT_TOF0 [3] 0=Not requested 1=Requested 0

INT_TMC0 [4] 0=Not requested 1=Requested 0

INT_TOF1 [5] 0=Not requested 1=Requested 0

INT_TMC1 [6] 0=Not requested 1=Requested 0

INT_TOF2 [7] 0=Not requested 1=Requested 0

INT_TMC2 [8] 0=Not requested 1=Requested 0

INT_TOF3 [9] 0=Not requested 1=Requested 0

INT_TMC3 [10] 0=Not requested 1=Requested 0

INT_TOF4 [11] 0=Not requested 1=Requested 0

INT_TMC4 [12] 0=Not requested 1=Requested 0

INT_TOF5 [13] 0=Not requested 1=Requested 0

INT_TMC5 [14] 0=Not requested 1=Requested 0

INT_BT [15] 0=Not requested 1=Requested 0

EINT0 [16] 0=Not requested 1=Requested 0

EINT1 [17] 0=Not requested 1=Requested 0

EINT2 [18] 0=Not requested 1=Requested 0

INT_PWMOF [19] 0=Not requested 1=Requested 0

INT_PWMMC [20] 0=Not requested 1=Requested 0

S3F443FX RISC MICROCONTROLLER INTERRUPT CONTROLLER

8-5

INTERRUPT MASK REGISTER (INTMSK)

The interrupt mask register (INTMASK) has interrupt mask bits for each interrupt source. Each of the interrupt
mask register (INTMASK) corresponds to an interrupt source. When an interrupt source mask bit is 0, the
interrupt request is not allowed by the CPU when the corresponding interrupt request is generated. If the mask bit
is 1, the interrupt is serviced or pending upon request.

Register Offset Address R/W Description Reset Value

INTMASK 0xc008 R/W Interrupt mask register
0: Disable the corresponding interrupt.
1: Enable the corresponding interrupt.

xxx0 0000h

INTMSK BIT Description Initial State

INT_URX [0] 0=Masked 1=Service available 0

INT_UTX [1] 0=Masked 1=Service available 0

INT_UERR [2] 0=Masked 1=Service available 0

INT_TOF0 [3] 0=Masked 1=Service available 0

INT_TMC0 [4] 0=Masked 1=Service available 0

INT_TOF1 [5] 0=Masked 1=Service available 0

INT_TMC1 [6] 0=Masked 1=Service available 0

INT_TOF2 [7] 0=Masked 1=Service available 0

INT_TMC2 [8] 0=Masked 1=Service available 0

INT_TOF3 [9] 0=Masked 1=Service available 0

INT_TMC3 [10] 0=Masked 1=Service available 0

INT_TOF4 [11] 0=Masked 1=Service available 0

INT_TMC4 [12] 0=Masked 1=Service available 0

INT_TOF5 [13] 0=Masked 1=Service available 0

INT_TMC5 [14] 0=Masked 1=Service available 0

INT_BT [15] 0=Masked 1=Service available 0

EINT0 [16] 0=Masked 1=Service available 0

EINT1 [17] 0=Masked 1=Service available 0

EINT2 [18] 0=Masked 1=Service available 0

INT_PWMOF [19] 0=Masked 1=Service available 0

INT_PWMMC [20] 0=Masked 1=Service available 0

INTERRUPT CONTROLLER S3F443FX RISC MICROCONTROLLER

8-6

INTERRUPT VECTOR BASE ADDRESS

The S3F443FX can support two interrupt vector modes. One is a normal interrupt mode and the other is the
vectored interrupt mode.

— Normal Interrupt mode
In normal interrupt mode it has two base addresses to serve IRQ(address: 0x18) and FIQ(address: 0x1C).In
other word, as soon as CPU recognize the interrupt request, there will be branch to fixed address 0x18 or
0x1C. Because the ARM can support just two interrupt mode of FIQ and IRQ, after jumping to destined base
address by H/W the user program tries to identify the interrupt source matched to the requested interrupt.
And then CPU makes PC(program counter) jump to corresponding ISR(interrupt service routine). The
process of searching for the corresponding ISR(interrupt service routine) should be performed by S/W, which
can be flexible but requires interrupt latency.

— Vectored Interrupt mode
To reduce the interrupt latency ,the case of interrupt latency is critical in the system, s3f443fx can support the
concept of interrupt vector base address.Without time latency to branch the real start address of respective
interrupt source by going through IRQ or FIQ base address, it will directly go to its base address matching to
the requested interrupt source.The below shows the fixed start address of corresponding requested interrupt
when it has interrupt vector mode, nor normal interrupt mode. When interrupt vector mode is enabled, the
most high priority interrupt among the requested interrupt sources is serviced by CPU. The CPU will branch
into its vector address as shown below, directly. Address is calculated with being based on IRQ or FRQ
memory address. Because ARM core is recognized all Interrupt Service Routine(ISR) address based on 0x18
or 0x1C.So direct ISR address for user to make the H/W interrupt vector table has to be concerned.
(INT_UTX is the second interrupt source)

B HandlerUTXD (X)
B HandlerUTXD + (INT_MODE_ADD+4*1) (O)

S3F443FX RISC MICROCONTROLLER INTERRUPT CONTROLLER

8-7

<Example> Vectored Interrupt code

AREA Init,CODE,READONLY

ENTRY

B ResetHandler ;for debug

B HandlerUndef ;handlerUndef

B HandlerSWI ;SWI interrupt handler

b HandlerPabort ;handlerPAbort

b HandlerDabort ;handlerDAbort

b . ;handlerReserved

b IsrIRQ

b IsrFIQ

VECTOR_BRANCH ;H/W interrupt vector table

 ;INT_MODE_ADD is defined any proper address by user

 ;Assume INT_MODE_ADD’s value to be 0x20.

b HandlerURXD + (INT_MODE_ADD+4*0)

b HandlerUTXD + (INT_MODE_ADD+4*1)

b HandlerUERR + (INT_MODE_ADD+4*2)

b HandlerT0OVF + (INT_MODE_ADD+4*3)

b HandlerT0MC + (INT_MODE_ADD+4*4)

b HandlerT1OVF + (INT_MODE_ADD+4*5)

b HandlerT1MC + (INT_MODE_ADD+4*6)

b HandlerT2OVF + (INT_MODE_ADD+4*7)

b HandlerT2MC + (INT_MODE_ADD+4*8)

b HandlerT3OVF + (INT_MODE_ADD+4*9)

b HandlerT3MC + (INT_MODE_ADD+4*10)

INTERRUPT CONTROLLER S3F443FX RISC MICROCONTROLLER

8-8

Branch command to be executing

 Sources Address

INT_URX 0x20

INT_UTX 0x24

INT_UERR 0x28

INT_TOF0 0x2c

INT_TMC0 0x30

INT_TOF1 0x34

INT_TMC1 0x38

INT_TOF2 0x3c

INT_TMC2 0x40

INT_TOF3 0x44

INT_TMC3 0x48

INT_TOF4 0x4c

INT_TMC4 0x50

INT_TOF5 0x54

INT_TMC5 0x58

INT_BT 0x5c

EINT0 0x60

EINT1 0x64

EINT2 0x68

INT_PWMOF 0x6c

INT_PWMMC 0x70

S3F443FX RISC MICROCONTROLLER INTERRUPT CONTROLLER

8-9

INTERRUPT PRIORITY REGISTER

The interrupt priority registers (INTPRIn) have information about which kind of interrupt sources are assigned to
the pre-defined interrupt priority fields. For example, If the PRIORITY 3 has 16 (the number of EINT0 is 16), the
EINT0 interrupt source will have priority level 3. The highest priority value is priority level 0, and the lowest value
is priority level 20. 3-bit left side of PRIORITY0 field as called EN has the meaning of determination on vector
interrupt mode or normal interrupt mode as explained in previous page. If 3-bit is 0, it means the normal interrupt
mode for the corresponding interrupt request. Otherwise, it means the interrupt vector mode.

Register Offset Address R/W Description Reset Value

INTPRI0 0xc00c R/W Interrupt priority 0 register 0302 0100h

INTPRI1 0xc010 R/W Interrupt priority 1 register 0706 0504h

INTPRI2 0xc014 R/W Interrupt priority 2 register 0b0a 0908h

INTPRI3 0xc018 R/W Interrupt priority 3 register 0f0e 0d0ch

INTPRI4 0xc01c R/W Interrupt priority 4 register 1312 1110h

INTPRI5 0xc020 R/W Interrupt priority 5 register 1716 1514h

INTPRI6 0xc024 R/W Reserved to 0x1b1a1918 1b1a 1918h

INTPRI7 0xc028 R/W Reserved to 0x1f1e1d1c 1f1e 1d1ch

Register [28:24] [20:16] [12:8] [4:0]

INTPRI0 EN PRIORITY3 X PRIORITY2 X PRIORITY1 X PRIORITY0

INTPRI1 X PRIORITY7 X PRIORITY6 X PRIORITY5 X PRIORITY4

INTPRI2 X PRIORITY11 X PRIORITY10 X PRIORITY9 X PRIORITY8

INTPRI3 X PRIORITY15 X PRIORITY14 X PRIORITY13 X PRIORITY12

INTPRI4 X PRIORITY19 X PRIORITY18 X PRIORITY17 X PRIORITY16

INTPRI5 X X X X X X X PRIORITY20

INTPRI0 Bit Description Initial State

EN [31:29] 000 = Disable interrupt priority other = Enable interrupt priority 000

PRIORITY N 5-bit The priority number for interrupt request source N.

X 3-bit Do not care field.

NOTES:
1. To use the programmable priority, set EN to 000b, then the priority should be determined by SW.
2. The PRIORITYn determines the priority of the corresponding interrupt source. For an instance, if you want to set the

priority of EINT0 highest one, you have to write down 16(interrupt number of EINT0) on PRIORITY0 .On the
contrary you want to set the priority of EINT0 lowest , you should write 16 on RIORITY20. With the above way, you can
control the priority level of a certain interrupt source from 0 to 20

 3. The highest priority is PRIORITY0, and the lowest priority is PRIORITY20.

INTERRUPT CONTROLLER S3F443FX RISC MICROCONTROLLER

8-10

NOTES

S3F443FX (Preliminary Spec) SYSTEM MANAGER

9-1

9 SYSTEM MANAGER

OVERVIEW

The S3F443FX System Manager has the following functions:

— Supports the big-endian mode. The internal system and the external memory are fixed as big-endian mode.

— Memory controller for external memory/IO as well as internal memory.

— Programmable Bank start and Bank end addresses.

— Programmable access time for memory/IO access.

SYSTEM MANAGER S3F443FX (Preliminary Spec)

9-2

SYSTEM MANAGER REGISTERS

The S3F443FX has the SFRs, Special Function Registers, to keep the system control information of system
manager as well as the configuration on peripherals. Among SFRs, there are SMRs (System Manager Register
files), to configure the external memory maps such SRAM, ROM and etc.

By utilizing the SMR, the user can specify the memory type, access cycles, required control signal timings, and
memory bank location. The SMR provides (or accepts) the control signals and addresses which are needed to
access external devices during normal system operation. Three registers control the memory banks

The S3F443FX provides up to 32Mbytes of address space and each bank provides up to 256Kbytes of memory
space because each bank can have 18 address pins.

0x00000000

0x0003FFFF

0x00800000

0x0083FFFF

0x00C00000

0x00C3FFFF

0x01FF0000

0x01FF2000

0x01FFFFFF

Internal 256KB Flash ROM

CS1 (External memory)

CS2 (External memory)

8KB Internal SRAM

SFR

Figure 9-1. S3F443FX Default Memory Map of the Normal Mode (In ROM Mode)

S3F443FX (Preliminary Spec) SYSTEM MANAGER

9-3

0x00000000

0x0003FFFF

0x00800000

0x0083FFFF

0x00C00000

0x01F3FFFF

0x01FF0000

0x01FF2000

0x01FFFFFF

CS0
(External 256KB Flash ROM)

CS1 (External memory)

CS2 (External memory)

8KB Internal SRAM

SFR

256KB Internal Flash ROM

0x00C3FFFF

0x01F00000

Figure 9-2. S3F443FX Default Memory Map of External ROM Mode

The S3F443FX provides 32-MByte memory space and an internal 25-bit system address bus. You can use any of
the bank area addresses from 000_0000h to 1FF_FFFFh in 1M byte address steps. Each bank can be located
anywhere in the 32-MByte address space.

However, the user should allocate the SFRs to the upper 64-kbyte address areas, 1FF0000h -1FFFFFFh.

The configurable memory allocation in the S3F443FX is very effective in meeting user requirement. By
manipulating the SMRs, the user can easily allocate the memory area anywhere user desires and use the
consecutively connected memory space without changing the H/W.

For example, if the user wants to change the size of memory space from 1Mbytes to 2 Mbytes, the user can
expand the memory space by changing the next pointer of the bank and bank end address.

NOTE

Although the size of each bank may be more than 1M bytes, the physical bank size is max 256Kbytes
because the number of the address pins is 18 in total.

SYSTEM MANAGER S3F443FX (Preliminary Spec)

9-4

SYSTEM REGISTER ADDRESS CONFIGURATION REGISTER (SYSCFG)

The SMRs (System Manager Registers) have the SYSCFG (System Register Address Configuration Register),
which determines the start address (base point) of SFR (Special Function Register) files. The SYSCFG has the
start address of SFR. Because the reset value of SYSCFG is 1FF1h, the SYSCFG is mapped to the virtual
address 01FF 1000h.

Register Offset Address R/W Description Reset Value

SYSCFG 0x3000 R/W Special function register to determine the start
address

0x1FF1

[0] Stall Enable (ST)
When set to 1, Stall operation is enabled
0 = Disable; It is recommended for faster operation.
1 = Enable; Insert an internal wait inside the core logic when non-sequential
 memory accesses occur.

[12:4] SYSCFG Address (SFRs Start Address) (READ_ONLY)
These bits are fixed to 1FFH and it means SFRs start address is 1FF0000h

31 1516 12

Start

04 23 1

SE000

1314

000

Figure 9-3. System Register Address Configuration Register (SYSCFG)

S3F443FX (Preliminary Spec) SYSTEM MANAGER

9-5

EXTERNAL MEMORY CONTROL SPECIAL REGISTERS

MEMORY CONTROL REGISTER 0, 1, 2

Register Offset Address R/W Description Reset Value

MEMCON0 0x4000 R/W Memory control register 0 (nCS0) 0800 3000h

MEMCON1 0x4004 R/W Memory control register 1 (nCS1) 0c08 3000h

MEMCON2 0x4008 R/W Memory control register 2 (nCS2) 100c 3000h

[1:0] Reserved Reserved to 00b

[4:2] Tcos 000 = 0 cycles 001 = 1 cycles 010 = 2 cycles
011 = 3 cycles 100 = 4 cycles 101 = 5 cycles
110 = 6 cycles 111 = 7 cycles

[7:5] Tacs 000 = 0 cycles 001 = 1 cycles 010 = 2 cycles
011 = 3 cycles 100 = 4 cycles 101 = 5 cycles
110 = 6 cycles 111 = 7 cycles

[10:8] Tcoh 000 = 0 cycles 001 = 1 cycles 010 = 2 cycles
011 = 3 cycles 100 = 4 cycles 101 = 5 cycles
110 = 6 cycles 111 = 7 cycles

[13:11] Tacc Memory access time (Tacc)
000 = Disable bank 001 = 2 cycles 010 = 3 cycles
011 = 4 cycles 100 = 5 cycles 101 = 6 cycles
110 = 7 cycles 111 = 8 cycles
If nWAIT is used, Tacc ≥ 3

[15:14] Reserved Reserved to 00b

[23:16] Base Address(BA) Indicates Bank start address. User can configure bank size by 1MB
unit. If bank start address is 0x0100000, the base address(BA) field
value of this bank should be 0x01. The available range is 0-0x1e.

[31:24] End Address(EA) Indicates Bank end address. If the end address of the bank is 0x0f3ffff,
the end address (EA) field value of this bank should be
0x10((0f3ffffh>>20) +1). The available range is 0x1-0x1f

NOTES:
1. nCS0 can be used for another external device if the In-ROM mode is selected by MD[1:0]=00b. If the nCS0 area is

overlapped with the internal flash memory, the internal flash ROM will be read by CPU.
2. nCS0 will be used for boot ROM if the external ROM mode is selected by MD[1:0]=01b.

SYSTEM MANAGER S3F443FX (Preliminary Spec)

9-6

MCLK
(CPU CLOCK)

ADDR

nCSn

nOE

nWE

tacs

tcos

tacc

tcoh

Figure 9-4. An Example of S3F443FX nCSn Timing Diagram

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

10-1

10 INTERNAL FLASH ROM

OVERVIEW

The S3F443FX has an on-chip flash ROM, internally. For writing the data in flash ROM, the user can access the
flash ROM by a program or the external serial interface. Because of the full feature of NOR flash memory, user
can program the data in any address and in any time. The size of embedded flash memory in S3F443FX is 256K-
byte and it has the following features:

— Tool program mode (Apply VDD 3.3V externally and the dedicated serial interface)

— User program mode (Use the internal high voltage generator)

— Protection mode: Hardware protection, Read protection

The S3F443FX has 6 pins used for Flash ROM writer to read/write/erase the flash memory (VDD(1.8V), VDD(3.3V),
VSS(3.3V), VSS(1.8V), RESET, VPP , SDAT, SCLK), which is the programming by tool program mode. These six
pins are multiplexed with other functional pins. When the S3F443FX is in VPP (MD1) = VDD~ 3.3V (internal flash

ROM test mode) & RESET (nRESET= L), these six pins can be used for flash programming in tool program
mode.

NOTE

Tool means an equipment such as a ROM writer. One of the tool which is used to program/erase the
internal flash (s3f443fx) is SPW2+.

INTERNAL FLASH ROM S3F443FX (Preliminary Spec)

10-2

PROGRAMMING MODES

The S3F443FX flash memory control block supports two kinds of program mode:

— Tool Program Mode

— User Program Mode

Flash ROM Configuration

The 256KB Flash ROM consists of 512 sectors. Each sector consists of 512 bytes. So, the total size of flash
ROM is 512 x 512 bytes (256KB). User can erase the flash memory a sector unit at a time and write the data into
the flash memory word (4 bytes) unit at a time.

Additionally, there is the option sector, which is different from 256KB memory cell. This optional sector consists
of smart option bits and protection option bits. These bits control the protection features. These bits can be read
only by the FSOREAD/FPOREAD register.

The smart option bits are mapped to the address of 0xe38 (4bytes). The protection option bits are also mapped
to the address of 0xe3c (4 bytes).

Address Alignment

To set an address value in FMADDR register, abide by the following rules.

— Sector Erase : When erasing a sector, the low 9-bit address (FMADDR[8:0]) should be 000000000b because
the size of a sector is 512 bytes.

— Program : When programming the Flash ROM, the lower 2-bit (FMADDR[1:0]) should be 00b because data
should be written to the Flash ROM by a word unit (4 bytes).

NOTE

In the tool program mode, the low 2-bit address also should be 00b.

User Program Mode

User program mode is for erasing and writing internal flash ROM not by a tool writer but by User Program. To
enhance this, S3F443FX has the internal high voltage generator, which is replacing Vpp pin of supplying high
voltage into internal flash cells through tools, MD1 pins may be tied to VSS or VDD (in only MDS mode). More

details are as follows.

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

10-3

The Program Procedure in the User Program Mode

In order to enable User Program Mode, first set FMUCON.3 (Normal Sector Program Enable) and make a
decision of using or not CPU hold function with FAMCON.7 (CPU hold bit) set. For an example, there is about
30us time required for one word data (32-bit) to be written to specific address flash cell. During that time, there
are two kinds of ways to recognize that the operation for erasing and writing of Internal flash ROM is finished.
One is CPU hold function that stops CPU not to work until all process is finished, another one is that while CPU is
running, program code continuously is being executed to check Operation start/stop bit (FMUCON.7 is cleared).
Usually CPU hold function is recommended. Especially CPU hold function must be used, when current running
code is located on Internal flash ROM. Because that during programming internal flash cell the high voltage that
goes around internal flash ROM will affect bad influence on fetching code from internal flash ROM. However
after that, write the data to be written on the data register (FMDATA) and the address into the address register
(FMADDR) respectively. As a next step, the user should write the values (0x5a, 0xa5, 0x5a, 0xa5 in sequence)
on key registers 0/1/2/3 (FMKEY0-3). Finally, by set appropriate configuration on flash memory control
register(FMUCON), one word data (32-bit) can be written into flash memory at the location of the specified
address. After the completion of the write operation, all FMKEY registers and the start bit in FMUCON will be
cleared. To perform the next writing operation, FMKEY0–3 registers and FMUCON register should be written
again as before.
Sector erase procedure is the same as program procedure except setting the Flash memory data register
(FMDATA).

Tool Program Mode

The 6 pins are connected to a tool board and programmed by Serial OTP Tool (SPW). VDD 3.3V should be
applied to the MD1 (VPP) pin. The other modules except the internal flash ROM will be in reset state.

This mode does not support the sector erase. Instead the chip erase is supported. Two protection modes(hard
lock/read protection) can be enabled in this mode.

Address

Flash Cell

CPU

F
M

K
E

Y
0-

3
F

M
U

C
O

N

FMDATAFMADDR

Data Address Data

Data Bus

Address Data

Address Bus

Address Data
Normal Flash
Memory Interface

Tool Program
Interface

User Program
Interface

Figure 10-1. Flash Memory Read/Write Block Diagram

INTERNAL FLASH ROM S3F443FX (Preliminary Spec)

10-4

FLASH MEMORY SPECIAL REGISTERS

FLASH MEMORY KEY REGISTERS

To program data into the flash memory by the user programming mode, 4-key registers with 0x5a,0xa5,0x5a and
0xa5 are required to prevent flash data from being destroyed under undesired situations.

Register Offset R/W Description Access Reset Value

FMKEY0 0x3010 W Flash program / erase Key register0 B 00h

FMKEY1 0x3011 W Flash program / erase Key register1 B 00h

FMKEY2 0x3012 W Flash program / erase Key register2 B 00h

FMKEY3 0x3013 W Flash program / erase Key register3 B 00h

NOTE: The FMKEYn register will be cleared automatically just after the completion of erase/program.

FLASH MEMORY ADDRESS REGISTER

In spite of address configuration In-ROM mode (Internal Flash ROM area: 0000 0000h–0003 FFFFh) or External
ROM (ROM-less) mode (Internal Flash ROM area: 01F0 0000h–01F3 FFFFh), It is fixed for flash writing and
erasing address as like from 0000 0000h to 0003 FFFFh. therefore although External ROM mode is configured,
the address written to FMADDR is from 0000 0000h to 0003 FFFFh.

Register Offset R/W Description Access Reset Value

FMADDR 0x3014 R/W Flash program / sector erase address
register

W 0000 0000h

NOTE: To program the Option Sector area, set FMADDR to 0x0e38 (smart option) or 0xe3c (protection option) and
FMDATA by the appropriate value and start the write operation.

FLASH MEMORY DATA REGISTER

Register Offset R/W Description Access Reset Value

FMDATA 0x3018 R/W Flash program data register W 0000 0000h

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

10-5

FLASH MEMORY USER PROGRAMMING CONTROL REGISTER

The FMUCON can determine the program/erase operation. In user programming mode, the S3F443FX can
support sector erase; flash memory should be programmed by a word unit. However, It requires a consideration
in order to erase option sector area related to protection mode .When Flash erase to be used protection option is
being executed, at the same time all normal sectors are being erased as it called “chip erase”. In a consequence
Internal flash ROM is to be initialized data status. There are 4 enable bits in FMUCON, in which only one has to
be set enabled in one time. If more than 2 bits are concurrently set enabled, it will produce configuration error. In
this case, clear the error register and start the operation again.

Register Offset R/W Description Access Reset Value

FMUCON 0x301f R/W Flash memory program/sector erase
control register

B 00h

[0] Chip Erase Enable(CERS)

(by using protection option)

0 = Disable 1 = Enable

[1] Normal Sector Erase Enable (NSERS) 0 = Disable 1 = Enable

[2] Option (smart option) Sector Program
Enable(OSPGM)

0 = Disable 1 = Enable

[3] Normal Sector Program Enable (NSPGM) 0 = Disable 1 = Enable

[6:4] Not used Not used

[7] Operation Start/Stop 0 = Stop 1 = Start
This bit will be cleared automatically just after the
corresponding operation is completed.

The FMACON can control the cycle of read access for flash memory. This register setting is effective for reading
flash memory.

Register Offset R/W Description Access Reset Value

FMACON 0x3027 R/W Flash memory access control register B 03h

[1:0] Flash Memory Access Cycles 11b= 3 cycles 10b = 2 cycle
01b= 1 cycles 00b = Not used
The internal Flash ROM access time is 25ns. So,
the access cycles will be configured as follows.
@ 40Mhz: 1 cycle
@ 80Mhz: 2 cycles

[6:2] Reserved

[7] CPU hold during Flash operation 0 = CPU working during Flash programming/erasing
In this case, the flash programming/erasing code
should not be on the internal flash ROM. The
completion of an operation is checked using
FMUCON register. The advantage is that CPU can
perform other tasks until the completion of an
operation.
1 = CPU hold during Flash programming/erasing

INTERNAL FLASH ROM S3F443FX (Preliminary Spec)

10-6

FLASH MEMORY ERROR REGISTER

If an error occurs during flash memory program / erase, the corresponding bit will be set. Then, user can check
the error type that had occurred.

Register Offset R/W Description Access Reset Value

FMERR 0x3023 R/W Flash memory error register B 01h

[0] clear FMKEY / FMUCON 0: clear FMKEY and FMUCON register.
1: no operation.

This bit clears the FMKEYn & FMUCON registers. After the clear
operation, this bit will be restored to 1, automatically.

[6:1] Reserved

[7] configuration
error(CFGERR)

0: No error
1: Configuration error occurred.

This bit indicates that the command is invalid in the FMUCON register.
(For example, Program and Erase are active at the same time)

NOTE: To verify the erase/write operation, FMERR[7] will not be used. The completion of data should be verified by
reading the data.

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

10-7

FLASH MEMORY SMART OPTION BITS READ REGISTER

Be cautious of reading the Smart option / Protection option bits. It is possible only through FSOREAD /
FPOREAD registers because the bits of Smart option / Protection option cannot be read like normal cell.

Register Offset Address R/W Description Initial Value
(at Fabrication)

FSOREAD 0x3028 R Smart Option bits read register MSB xxxx_xxxx [31:24]
 xxxx_xxxx
 1111_1111
LSB 1111_1111b [7:0]

FLASH MEMORY PROTECTION OPTION BITS READ REGISTER

Register Offset Address R/W Description Initial Value
(at Fabrication)

FPOREAD 0x302C R Protection Option bits read register MSB xxxx_1xxx
 xxxx_xx1x
 xxxx_xxx1
LSB xxxx_xxxxb

NOTE

If any bit of FMERR register is set, the user must clear the FMERR register and write (erase) the flash
memory again at first.

INTERNAL FLASH ROM S3F443FX (Preliminary Spec)

10-8

 FMADDR 20-bit Address
 FMDATA 32-bit Data

Start

; Address set
; Data set

; Key value set whenenver starts

; Mode select & start programming

; Compare end address

; Error during programming

; Next address/data set

 FMKEY0-3 0x5a, a5, 5a, a5

 FMUCON 0x08

 FMUCON 0x88

FMERR[7]=0?

Finish

Clear FMERR

 Increase FMADDR
 FMDATA 32-bit Data

No

Yes

NoFMUCON[7]=0?

YesNo

COUNT=END?

Yes

No

Figure 10-2. Normal Sector Program Flowchart in a User Program Mode

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

10-9

Start

; Option Address set

; Function set

; Set key value

; Mode select & start programming

; Error during programming

; If error, write one word again

 FMADDR Smart option: 0x0e38
 Protection option: 0x0e3C

 FMDATA 32-bit Data

 FMKEY0-3 0x5a, a5, 5a, a5

 FMUCON 0x04

 FMUCON 0x84

FMERR[7]=0?

Finish

Clear FMERR

No

NoFMUCON[7]=0?

YesNo

Yes

Figure 10-3. Option Sector Program Flowchart in a User Program Mode

INTERNAL FLASH ROM S3F443FX (Preliminary Spec)

10-10

Start

; Set key value

; Mode select & start programming

; Error during erasing?

; If error, erase again

 FMADDR 20-bit Address
; Set sector Start Address to be
erased

 FMKEY0-3 0x5a, a5, 5a, a5

 FMUCON 0x02

 FMUCON 0x82

FMERR[7]=0?

Finish

Clear FMERR

 Increase FMADDR
 FMDATA 32-bit Data

No

Yes

NoFMUCON[7]=0?

YesNo

COUNT=END?

Yes

No

Figure 10-4. Normal Sector Erase Flowchart

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

10-11

Start

; Set key value

; Mode select & start programming

; Error during erasing?

; If error, erase again

 FMADDR 0x0e3c ; Set Address to smart option

 FMKEY0-3 0x5a, a5, 5a, a5

 FMUCON 0x01

 FMUCON 0x81

FMERR[7]=0?

Finish

Clear FMERR

No

NoFMUCON[7]=0?

YesNo

Yes

Figure 10-5. Full Chip Erase Flowchart (In User Program Mode)

INTERNAL FLASH ROM S3F443FX (Preliminary Spec)

10-12

DATA PROTECTION

S3F443FX provides two kinds of protection mechanism.

— Hardware protection

— Read protection

These protection modes can be enabled by the configuration in the option sector. User can select it in the tool
program mode or the protection option bit/smart option bit in a user program mode.

The protection option bits (0x0e3c) can be enabled/disabled in terms of hardware protection and read protection.
The smart option bits (0x0e38) can adjust the area of hardware protection.

PROTECTION OPTION

Protection Bit table

FMADDR value FMDATA bit Description Initial Value (at Fabrication)

0x0e3c bit[7:0] Not used undefined

bit[8] 1: fixed value ,do not change 1

bit[16:9] Not used undefined

bit [17] 0: Enable the hardware protection
1: Disable the hardware protection

1

bit[26:18] Not used undefined

bit [27] 0: Enable the read protection
1: Disable the read protection

1

bit[31:28] Not used undefined

Read Protection bit 27

In order to prevent Internal Flash data from being read by tools, S3F443FX supports Read Projection which
disables JTAG port and hampers being read serially in the tool program equipments. Hence trying to read or
verify internal flash data in the tool program mode will result in all zero read-out. However if Hardware Protection
is not activated, user could set Read Protection in user program mode and tool program mode. In terms of user
program mode, the procedure of setting Read Protection is as follows, first set FMUCON.2(Option Sector
Program Enable Bit), decide whether to set FMACON.7,write 0x0e3c to the FMADDR, 0x00ffffff to FMDATA and
then follow the flowchart of Figure 10-3.By the tool this protection is set possible. Please refer to the manual of
serial program writer tool provided by the manufacturer. Meanwhile if the user intends to release protection,
make chip erase chip erase the option sector erase which is described in detail at Fig10-5. But it should be noted
that if Hardware Protection is not activated, Chip erase using Protection Option Option Sector Erase can release
all kinds of protections and erase all the data in the internal flash ROM as like chip erase supported by tool
program mode.

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

10-13

Hardware Protection (hard lock) bit 17

If this function is enabled, the user cannot write or erase the data in a flash memory area and option sector area.
Hardware Protection is available in tool program mode as well as in user program mode. This protection can be
released by the chip erase execution (in the tool program mode or user program mode). Refer to smart option
about hard lock protection of blocks.

User could set Hardware Protection in user program mode and tool program mode. In terms of user program
mode, the procedure of setting Hardware Protection is that set FMUCON.2(Option Sector Program Enable Bit),
decide whether to set FMACON.7, write 0x0e3c to the FMADDR, 0xff00ffff to FMDATA and then follow the
flowchart of Figure 10-3, Whereas in tool mode the manufacturer of serial tool writer could support Hardware
Protection. Please refer to the manual of serial program writer tool provided by the manufacturer.

INTERNAL FLASH ROM S3F443FX (Preliminary Spec)

10-14

 SMART OPTION FOR H/W PROTECTION

In the Hardware protection function, the certain block area can be free of protection according to corresponding
smart option bits set, which are allocated in the address of smart option (0x0e38) for this function.

To enable the protection function on a certain block,

— Configure the smart option bits,

— Configure the H/W protection option bits (0x0e3c).

If the smart option bits are not configured (as default set), full 256K bytes flash memory will be protected.

FMADDR
Value

FMDATA
Bit

Operation after Program Erased Value
(initial)

0x0e38 Bit [0] 0: H/W protection is disabled at the area of 0K–16K 1

Bit [1] 0: H/W protection is disabled at the area of 16K–32K 1

Bit [2] 0: H/W protection is disabled at the area of 32K–48K 1

Bit [3] 0: H/W protection is disabled at the area of 48K–64K 1

Bit [4] 0: H/W protection is disabled at the area of 64K–80K 1

Bit [5] 0: H/W protection is disabled at the area of 80K–96K 1

Bit [6] 0: H/W protection is disabled at the area of 96K–112K 1

Bit [7] 0: H/W protection is disabled at the area of 112K–128K 1

Bit [8] 0: H/W protection is disabled at the area of 128K–144K 1

Bit [9] 0: H/W protection is disabled at the area of 144K–160K 1

Bit [10] 0: H/W protection is disabled at the area of 160K–176K 1

Bit [11] 0: H/W protection is disabled at the area of 176K–192K 1

Bit [12] 0: H/W protection is disabled at the area of 192K–208K 1

Bit [13] 0: H/W protection is disabled at the area of 208K–224K 1

Bit [14] 0: H/W protection is disabled at the area of 224K–240K 1

Bit [15] 0: H/W protection is disabled at the area of 240K–256K 1

NOTE: The flash programming tips is as follows; Characteristic of flash memory cell, a bit can be changed from 1 to 0 but
not the vice versa by writing data into flash memory cell. If users do not want to change the certain cell, the user
only needs to write the bit as 1.

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

10-15

FLASH MEMORY MAP

The S3F443FX can support two operating modes, the Normal operating mode(In-ROM mode) and the External
ROM(ROM-less) mode.

In the normal operating mode, the program as well as boot program should exist in the internal flash memory. In
the External ROM(ROM-less) mode, the internal flash memory will be mapped to the other addresses as shown
in the below figure.

01FF FFFFh
SFR Area

SRAM Area
01FF 2000h

01FF 0000h

External
Memory Area

Flash Memory Area

0003 FFFFh

0000 0000h

01FF FFFFh
SFR Area

SRAM Area
01FF 2000h

01FF 0000h

External
Memory Area

Flash Memory Area

0000 0000h

8K-byte

256K-byte

01F3 FFFFh

01F0 0000h

8K-byte

256K-byte

Figure 10-6. Flash Memory Map according to Operating Mode

INTERNAL FLASH ROM S3F443FX (Preliminary Spec)

10-16

TOOL PROGRAM MODE

The tool program mode is the flash memory program mode, which uses an equipment such as a ROM writer

Table 10-1. The Pins Used to Read/Write/Erase the Flash ROM in Tool Program Mode

Pin Name Function Name Pin No. I/O Function

RXD/GPIO15 SDAT 9 I/O Serial DATA pin. (Output when reading, Input when
writing.) Input & push-pull output port can be assigned

TXD/GPIO14 SCLK 10 I Serial CLOCK, input only (Write speed: Max 1 MHz,
Read speed : Max 5 MHz)

MD1 VPP (VDD3.3V) 14 I When this pin is supplied with Vdd (3.3V), Tool flash
writing mode enters. Don't link it with 12.5 volt of VPP
generated from tools. The internal Voltage pumping
circuit is built in S3F443FX in replace of high voltage
outside, which can be possible to make the internal
circuit broken.

NRESET RESET 13 I Chip Initialization

VDD(3.3V) VDD(3.3V) 4,30 I 3.3Volt supplied port

VSS(3.3V) VDD(3.3V) 3,29 I 3.3Volt ground pin

VDD(1.8V) VDD(1.8V) 12,44,60 I 1.8Volt supplied port

VSS(1.8V) VSS(1.8V) 11,43,59 I 1.8Volt ground pin

S3F443FX (Preliminary Spec) 8-BIT PWM

11-1

11 8-BIT PWM

OVERVIEW

The S3F443FX has an eight bit PWM (Pulse Width Modulation) counter, the clock signal supplied to 8 bit PWM
is driven from external clock divided by 1 or 2 and when the counter is stop , counting value will be retained until
the counter is restarted and running. If the counting value exceeds 256 or 127, it will be set to zero and resumed.

— 8 BIT resolution PWM (Pulse Width Modulation)

— Clock source is driven from external clock (EXTCLK)

— PWM_out shares PIN20 with A14/GPIO10

— Counter is an 8 bit up counter which can reach 256 or 127

— Overflow interrupt

— Match interrupt

8-BIT PWM S3F443FX (Preliminary Spec)

11-2

8-BIT PWM
(PWMDAT)

8-BIT COUNTER

8-BIT COMPARATOR

8-BIT BUFFER

MATINT

OVFINT

PWM_OUT

0 MUX 1

PWMCON.1

PWMCON.0

EXTCLK/2

EXTCLK

PWMCON.4

1 When REG > Counter
 0 When REG <= Counter

When overflow,update

8

8

8

Clear

Figure 11-1. 8-Bit PWM Functional Block Diagram

S3F443FX (Preliminary Spec) 8-BIT PWM

11-3

8-BIT PWM CONTROL

In order to control 8 bit PWM, first define counter size 256 (8-bit counter) or 127 (7-bit counter) by setting
corresponding register bit (PWMCON.2) and select a divider by 1/1 or by 1/2 (PWMCOM.3) As you know, PWM
signals high in the range from 0 to PWM data value and in turn low in rest of counts till reaching at the
maximum value of counter register. Please set the proper value for the PWMDAT to define pulse width and then
for initializing PWM, and then clear PWM Counter (PWMCON.1). The above setting makes PWM ready to start.
If you want to trigger PWM counter, Please set PWMCON.0.

Required more details regarding to handling Match/ Overflow interrupt in PWM, please refer to Chapter 8
Interrupt Controller. In a brief, a match interrupt will be occurred at the point of matching with PWM counter and
PWMDATA where the pulse turns over. An overflow interrupt is taking place right on the point of rolling over.

8-BIT PWM SPECIAL REGISTERS

PWM CONTROL REGISTER

The PWM control register, PWMCON, is used to control the 8 bit PWM.

Register Offset Address R/W Description Size Reset Value

PWMCON 0x6003 R/W PWM control register B 00h

[0] PWM enable This bit is set to’1’ makes PWM run, whereas cleared to ‘0’ then PWM
stops.

[1] PWM counter clear PWMCON[1] bit is set to 1, which makes PWM counter cleared and
after one clock later automatically PWMCON[1] bit is returned to ‘0’,

[2] PWM counter size
selection

This bit PWMCON[2] indicates the total size of counting that reaches
top value of PWM counter. When it is 0, 8bits of counter register are
fully used, in other words, PWM counter is counting to 256 then rolls
over to zero. But it is 1, only 7bits is used to count 127, and then the
counter cleared to zero.

[4] PWM clock selection When PWMCON[4] is 0, PWM clock is selected as non-divided source
of the external clock. When it is 1, PWM clock is selected to the
divided one of external clock by 2

8-BIT PWM S3F443FX (Preliminary Spec)

11-4

[0] PWM enable
0 = stop
1 = resume

[1] PWM counter clear
0 = default value
1 = makes the counter clear and then return to 0

[2] PWM counter bit selection
0 = 8bit- counter(256 counting number)
1 = 7bit- counter(127 counting number)

[3] PWM counter bit selection
0 = divide external clock by 1
1 = divide external clock by 2

7 6 25 4 3 01

NOT USED

Figure 11-2. PWM Control Register (PWMCON)

S3F443FX (Preliminary Spec) 8-BIT PWM

11-5

PWM DATA REGISTER

The PWM data register, PWMDAT, is used to control pulse width.

Register Offset Address R/W Description Size Reset Value

PWMDAT 0x6007 R/W PWM data register B 00h

[7:0] PWMDAT
This field specifies the pulse width in a period decided by
counter size, for example a period is defined as 256 counter
size, pulse width can be modulated from 0~255 counter
size,The other case a period is 127, pulse width is from
0~126

7 0

PWMDAT

Figure 11-3. PWM Data Registers (PWMDAT)

8-BIT PWM S3F443FX (Preliminary Spec)

11-6

8-BIT PWM WAVE MODULATION

One period of 8 BIT PWM counter, if mode set 8-bit counter, is composed of 256 clocks while maximum width of
PWM Signal is 255 (Pulse width = PWMDAT-1), which generates one clock gap between one period and
another one. It means that even if PWMDAT is set maximized, there is one clock low signal included in a period.
PWM mode set as 7-bit counter has such a gap too. Look up the following wave form diagram to modulate the
proper signal.

Period0 Period1 Period2

0<PWMDATA<256 or 127

PWMDATA= 256 or 127

PWMDATA=0

match int

ovf int
one clock gap

Figure 11-4. PWM Wave

S3F443FX (Preliminary Spec) SYSTEM CONTROL

12-1

12 SYSTEM CONTROL

POWER-DOWN MODE

In STOP mode, all logic will be stopped. The external interrupts (EINT0,1,2) can wake up the MCU. In IDLE
mode, the CPU and the internal flash ROM will be stopped. All enabled interrupts can wake up the MCU.

GLOBAL INTERRUPT CONTROL

All interrupt requests can be disabled by global interrupt control bit.

EXTCLK

/16

CLKDIVSEL

MCLK

UTCLK (UART & Timer Clock)

/1024

/2

/8
M
U
X

Figure 12-1. Clock Circuit Diagram

SYSTEM CONTROL S3F443FX (Preliminary Spec)

12-2

ENTERING THE STOP MODE

To enter the stop mode, do the following steps.

1. Set the SYSCON[0] to enter the STOP mode.

2. There has to be at least 4 NOP instructions following the instruction to enter the STOP mode

3. S3F443FX is in STOP mode now.

EXITING FROM THE STOP MODE

To exit from the stop mode, the following steps should be executed. To configure the STOP exiting condition,
configure EINTMOD,EINTCON,INTMASK and SYSCON[8] registers.

1. EINT[2:0] will be issued to exit from the STOP mode.

IDLE MODE AND INTERNAL FLASH ROM

In the IDLE mode, the internal flash ROM will be stopped together. Just after exiting the IDLE mode, the interval
time (32 MCLKs) for start-up time of the internal flash ROM should be available. This 32 MCLK interval is
inserted automatically by H/W logic.

S3F443FX (Preliminary Spec) SYSTEM CONTROL

12-3

SYSTEM CONTROL REGISTER

The system control register (SYSCON) can be used to control the system operation of chip.

Register Offset Address R/W Description Reset Value

SYSCON 0xd002 R/W System Control register 000h

[0] STOP bit This bit determines whether the stop mode is enabled or disabled. In
STOP mode, all logic will be stopped. The external interrupts
(EINT0,1,2) can wake up MCU. This bit will be cleared automatically.

[1] IDLE bit This bit determines whether the idle mode is enabled or disabled. In
IDLE mode, the CPU and the internal flash ROM will be stopped. All
enabled interrupts can wake up MCU. This bit will be cleared
automatically

[2] UNUSED

[5:3] CLKDIVSEL The clock(EXTCLK) is divided by 1,2,8,16, or 1024. This bit
determines the divide ratio.

000: 1/16, 001: 1/8, 010: 1/2 011: 1/1 100: 1/1024

[6] Basic Timer stop bit 0: resume 1: stop bit

[7] UART stop bit 0: resume 1: stop bit

[8] Global Interrupt Control Global Interrupt Enable bit. This bit can mask all interrupt request.
When 0, all interrupt request will not be acceptable.

0: Disable all interrupt request
1: Enable the interrupt requests, which are enabled on INTMASK.

NOTE: To make CPU enter into STOP/IDLE mode perfectly, there have to be 4 NOP instructions after the activation of the
Stop or Idle mode.

SYSTEM CONTROL S3F443FX (Preliminary Spec)

12-4

 NOTES

S3F443FX (Preliminary Spec) SPECIAL FUNCTION REGISTERS

13-1

13 SPECIAL FUNCTION REGISTERS

OVERVIEW

This chapter describes the S3F443FX Special function registers. 64KB SFR block has an 8KB SRAM area for
stack or data memory and special registers to control peripheral blocks.

Internal 256KB Flash ROM

CS1 (External memory)

CS2 (External memory)

8KB Internal SRAM

Special Function Registers

0x00000000

0x0003ffff

0x00800000

0x0083ffff

0x00c00000

0x00C3ffff

0x01ff0000

0x01ff2000

0x01ffffff

Figure 13-1. S3F443FX Default Memory Map of the Normal Mode (In-ROM mode)

SRAM (8KB)

Peripheral Control Registers

0000H (Offset)

1FFFH (Offset)

FFFFH (Offset)

2000H (Offset)

Figure 13-2. Special Function Register

SPECIAL FUNCTION S3F443FX (Preliminary Spec)

13-2

S3F443FX SPECIAL REGISTERS

Table 13-1. S3F443FX Special Registers

Group Registers Offset R/W Description Access Reset Value

System SYSCFG 0x3000 R/W System Configuration register W 1ff1h

Manager MEMCON0 0x4000 R/W Memory Bank 0 control register W 0800 3000h

MEMCON1 0x4004 R/W Memory Bank 1 control register W 0c08 3000h

MEMCON2 0x4008 R/W Memory Bank 2 control register W 100c 3000h

Internal FMKEY0 0x3010 W Flash program/erase Key register0 B 00h

Flash FMKEY1 0x3011 W Flash program/erase Key register1 B 00h

ROM FMKEY2 0x3012 W Flash program/erase Key register2 B 00h

FMKEY3 0x3013 W Flash program/erase Key register3 B 00h

FMADDR 0x3014 R/W Flash user program address register W 0 0000h

FMDATA 0x3018 R/W Flash user program data register W 0000 0000h

FMUCON 0x301f R/W Flash program/erase control register B 00h

FMACON 0x3027 R/W Flash access cycle control register B 03h

FMERR 0x3023 R/W Flash error register B 01h

FSOREAD 0x3028 R Smart Option bits read register W 0000 ffffh

FPOREAD 0x302C R Protection Option bits read register W 0802 01ffh

UART LCON 0x5003 R/W UART line control register B 00h

UCON 0x5007 R/W UART control register B 00h

USSR 0x500b R UART status register B c0h

TBR 0x500f W UART transmit buffer control register B xxh

RBR 0x5013 R UART receive buffer control register B Xxh

UBRDR 0x5016 R/W UART baud rate divisor register H 0000h

PWM PWMCON 0x6003 R/W PWM Control Register B 00h

PWMDAT 0x6007 R/W PWM data B FFh

NOTE: B: byte (8-bit), H: half-word (16-bit), W: word (32-bit)

S3F443FX (Preliminary Spec) SPECIAL FUNCTION REGISTERS

13-3

Table 13-1. S3F443FX Special Registers (Continued)

Group Registers Offset R/W Description Access Reset Value

Timer 0 T0DATA 0x9000 R/W Timer 0 data register H ffffh

T0PRE 0x9002 R/W Timer 0 prescaler register B ffh

T0CON 0x9003 R/W Timer 0 control register B 00h

T0CNT 0x9006 R Timer 0 counter register H 0000h

Timer 1 T1DATA 0x9010 R/W Timer 1 data register H ffffh

T1PRE 0x9012 R/W Timer 1 prescaler register B ffh

T1CON 0x9013 R/W Timer 1 control register B 00h

T1CNT 0x9016 R Timer 1 counter register H 0000h

Timer 2 T2DATA 0x9020 R/W Timer 2 data register H ffffh

T2PRE 0x9022 R/W Timer 2 prescaler register B ffh

T2CON 0x9023 R/W Timer 2 control register B 00h

T2CNT 0x9026 R Timer 2 counter register H 0000h

Timer 3 T3DATA 0x9030 R/W Timer 3 data register H ffffh

T3PRE 0x9032 R/W Timer 3 prescaler register B ffh

T3CON 0x9033 R/W Timer 3 control register B 0000h

T3CNT 0x9036 R/W Timer 3 counter register H 00h

Timer 4 T4DATA 0x9040 R/W Timer 4 data register H ffffh

T4PRE 0x9042 R/W Timer 4 prescaler register B ffh

T4CON 0x9043 R/W Timer 4 control register B 00h

T4CNT 0x9046 R/W Timer 4 counter register H 0000h

Timer 5 T5DATA 0x9050 R/W Timer 5 data register H ffffh

T5PRE 0x9052 R/W Timer 5 prescaler register B ffh

T5CON 0x9053 R/W Timer 5 control register B 00h

T5CNT 0x9056 R/W Timer 5 counter register H 0000h

NOTE: B: byte (8-bit), H: half-word (16-bit), W: word (32-bit)

SPECIAL FUNCTION S3F443FX (Preliminary Spec)

13-4

Table 13-1. S3F443FX Special Registers (Continued)

Group Registers Offset R/W Description Access Reset Value

BT & BTCON 0xa002 R/W Basic timer control register H/B 0000h

WDT BTCNT 0xa007 R Basic timer counter register B 00h

I/O Port P0 0xb000 R/W Port 0 data register B xxh

P1 0xb001 R/W Port 1 data register B xxh

P2 0xb002 R/W Port 2 data register B xh

EINTCON 0xb018 R/W Port 2 external Interrupt Control register B 0h

EINTMOD 0xb01a R/W Port 2 external Interrupt Mode register B 00h

I/O Port P0CON 0xb010 R/W Port 0 control register B 00h

Control P1CON 0xb012 R/W Port 1 control register H 0000h

Register P2CON 0xb014 R/W Port 2 control register B 0h

I/O Port P0PUR 0xb015 R/W Port 0 pull-up resister control register B 00h

Resistor P1PUDR 0xb016 R/W Port 1 pull-up/down resister control. B ffh

Control P2PUR 0xb017 R/W Port 2 pull-up resister control register B ffh

Interrupt INTMODE 0xc000 R/W Interrupt Mode register W xxx0 0000h

Contro- INTPEND 0xc004 R/W Interrupt Pending register W xxx0 0000h

ller INTMASK 0xc008 R/W Interrupt Mask register W xxx0 0000h

INTPRI0 0xc00c R/W Interrupt priority 0 register W 0302 0100h

INTPRI1 0xc010 R/W Interrupt priority 1 register W 0706 0504h

INTPRI2 0xc014 R/W Interrupt priority 2 register W 0b0a 0908h

INTPRI3 0xc018 R/W Interrupt priority 3 register W 0f0e 0d0ch

INTPRI4 0xc01c R/W Interrupt priority 4 register W 1312 1110h

INTPRI5 0xc020 R/W Interrupt priority 5 register W 1716 1514h

System SYSCON 0xd002 R/W System Control register H 000h

Control PLLCON 0xd004 R/W System Control register W 38080h

Internal
SRAM

SRAM 0x0000
– 0x1fff

R/W Internal 8KB SRAM area B,H,W xxh

NOTE: B: byte (8-bit), H: half-word (16-bit), W: word (32-bit)

S3F443FX (Preliminary Spec) ELECTRICAL DATA

14-1

14 ELECTRICAL DATA

DC ELECTRICAL CHARACTERISTICS

Table 14-1. Absolute Maximum Ratings

(TA = 25°C)

Parameter Symbol Conditions Rating Unit

Supply voltage 1.8V VDD – 2.7 V

3.3V VDD 3.8

Input voltage VIN – 3.8 V

Latch up current ILatch – ± 200 mA

Storage temperature TSTG – - 65 to + 150 °C

ELECTRICAL DATA S3F443FX (Preliminary Spec)

14-2

Table 14-2. D.C. Electrical Characteristics

(TA = 0°C to + 70°C, VDD = 2.7–3.6V)

Parameter Symbol Conditions Min Typ Max Unit

Operating Voltage VDD Fosc=80MHz 64Pins 2.7 – 3.6 V

Operating temperature TA 0 – 70 °C

High level input voltage VIH MD1,MD0,nRESET,EXTCLK
Schmitt Pad,COMS pad

2.0 – – V

Low level input voltage VIL MD1,MD0,nRESET,EXTCLK
Schmitt Pad,COMS pad

– – 0.8 V

High level input current 1 IIH1 VIN =VSS, no pull-up resistor -10 – 10 uA

High level input current 2 IIH2 VIN =VSS, with pull-up resistor 10 33 60 uA

Low level input current 1 IIL1 VIN =VDD, no pull-down resistor -10 – 10 uA

Low level input current 2 IIL2 VIN=VDD, with pull-down resistor -60 -33 -10 uA

High level output voltage VOH Port0,port1,port2,A0–A11,D0–D7 2.2 – – V

Low level output voltage VOL Port0,port1,port2,A0–A11, D0–D7 – – 0.4 V

Operating current IDD1 VDD = 3.3V, VDDin =1.8V – 50 mA

IDLE mode current IDD2 VDD = 3.3V, VDDin =1.8V – 10 mA

STOP mode current IDD3 VDD = 3.3V, VDDin =1.8V – 1 mA

Internal core voltage VDDIN Volt for core block 1.65 1.8 1.95 V

NOTE: nRESET (pin #13) has 250Kohm pull-up resistor. So typical high level input current is 13.2 uA.

S3F443FX (Preliminary Spec) ELECTRICAL DATA

14-3

Table 14-3. Typical Quiescent Supply Current on VDD @IDLE Mode, Flash Tacc=1

Power Mode 30MHz 40MHz 50MHz 60MHz 70MHz 80MHz Unit

IDLE Core_1.8 0.056 0.073 0.090 0.106 0.121 0.136 mA

System_3.3 0.207 0.226 0.185 0.174 0.184 0.194 mA

IDLE Current 0.263 0.299 0.275 0.280 0.305 0.330 mA

NOTE: The above current measurement is done in the case that the code is running on internal flash ROM & internal
SRAM.

Table 14-4. Typical Quiescent Supply Current on VDD @IDLE Mode, Flash Tacc=2

Power Mode 30MHz 40MHz 50MHz 60MHz 70MHz 80MHz Unit

IDLE Core_1.8 2.529 3.3645 4.1800 4.994 5.822 6.62 mA

System_3.3 0.1958 0.2258 0.2055 0.204 0.1836 0.15 mA

IDLE Current 2.7248 3.5903 4.3855 5.198 6.0056 6.77 mA

NOTE: The above current measurement is done in the case that the code is running on internal flash ROM & internal
SRAM.

Table 14-5. Typical Quiescent Supply Current on VDD @STOP Mode

Power Mode 30MHz 40MHz 50MHz 60MHz 70MHz 80MHz Unit

STOP Core_1.8 0.056 0.073 0.090 0.106 0.121 0.136 mA

System_3.3 0.207 0.226 0.185 0.174 0.184 0.194 mA

STOP Current 0.263 0.299 0.275 0.280 0.305 0.330 mA

NOTES:
1. The above current measurement is done in the case that the code is on internal flash ROM & internal SRAM.
2. The STOP mode current consumption is not independent to the internal flash memory Tacc.

ELECTRICAL DATA S3F443FX (Preliminary Spec)

14-4

AC ELECTRICAL CHARACTERISTICS

EXTCLK

MCLK
(internal clock)

tMCLKDLY

Figure 14-1. EXTCLK and MCLK (Internal Clock) When PLL is not Used.

NOTE

In the figure 14-1, MCLK is the simulated waveform for the case of not using PLL. Because the
MCLK can't be shown, all the timing diagram should be drawn only for the case that EXTCLK is
signaled by an external clock source without using PLL. Also, all the timing diagram are drawn using
the EXTCLK instead of MCLK as a reference clock because only the EXTCLK can be shown.

S3F443FX (Preliminary Spec) ELECTRICAL DATA

14-5

EXTCLK

nCS

ADDR

nOE

nWAIT

DATA(R)

tADDR

tNCS
tNCS

tNOEtNOE

tADDR

'H'
tDS

tDH

Figure 14-2. SRAM Read Access Timing without nWAIT (tCOS=1,tACS=0,tCOH=0,tACC=3)

EXTCLK

nCS

ADDR

nOE

nWAIT

DATA(R)

tADDR

tNCS
tNCS

tNOEtNOE

tADDR

tDS

tDH

2 wait
cycle

tACC = 3

tNWTH
tNWTStNWTS

nWAIT sampling points

Figure 14-3. SRAM Read Access Timing with nWAIT (tCOS=1, tACS=0, tCOH=0, tACC=3, external wait=2)

ELECTRICAL DATA S3F443FX (Preliminary Spec)

14-6

EXTCLK

nCS

ADDR

nWE

nWAIT

DATA(W)

tADDR

tNCS
tNCS

tNWEtNWE

tADDR

'H'

tWD
tWD

tACC = 3

Figure 14-4. SRAM Write Access Timing without nWAIT (tCOS=1, tACS=0, tCOH=0, tACC=3)

EXTCLK

nCS

ADDR

nWE

nWAIT

DATA(W)

tADDR

tNCS
tNCS

tNWEtNWE

tADDR

tWD

2 wait cycletACC = 3

tNWTH
tNWTStNWTS

nWAIT sampling points

tWD

Figure 14-5. SRAM Write Access Timing with nWAIT (tCOS=1, tACS=0, tCOH=0, tACC=3, external wait=2)

S3F443FX (Preliminary Spec) ELECTRICAL DATA

14-7

EXTCLK

nCS

ADDR

nOE

nWAIT

DATA(R)

2 wait
cycle

tACC = 3

nWAIT Sampling Points

tACS = 1 tCOH = 1

Figure 14-6. SRAM Read Access Timing with nWAIT
(tCOS=0, tACS=1, tCOH=1, tACC=3, external wait = 2)

EXTCLK

nCS

ADDR

nOE

nWAIT

DATA(R)

2 wait
cycle

tACC = 3

nWAIT Sampling Points

tACS = 1

Figure 14-7. SRAM Read Access Timing with nWAIT
at the Last Cycle of Half-Word/Word Access and Byte Access

(tCOS=0, tACS=1, tCOH=0, tACC=3, external wait = 2)

ELECTRICAL DATA S3F443FX (Preliminary Spec)

14-8

EXTCLK

nCS

ADDR

nOE

nWAIT

2 wait
cycle

tACC = 3

nWAIT Sampling Points

tACS = 1

DATA(R)

Figure 14-8. SRAM Read Access Timing with nWAIT
During Half-Word/Word Access, except the Last Cycle

(tCOS=0, tACS=1, tCOH=0, tACC=3, external wait = 2)

NOTES:
1. External nWAIT is synchronized at the falling edge of EXTCLK.
 That is, CPU recognizes the internal nWAIT as external memory wait signal.
2. Internal CPU fetches the data at the falling edge of internal clock, MCLK.

EXTCLK

nWAIT

DATA(R)

(1) Internal nWAIT

MCLK
(Internal Clock)

(2) Data Fetch Time

Figure 14-9. NWAIT Data Fetch Timing

S3F443FX (Preliminary Spec) ELECTRICAL DATA

14-9

Table 14-6. Timing Constants

(VDD= 2.7V–3.6V, TA = 0 °C to + 70 °C, operating frequency = 80 MHz)

Parameter Symbol Min Typ Max Unit

EXTCLK input frequency when not using PLL fEXTCLK 0 – 80 MHz

EXTCLK to MCLK delay time tMCLKDLY 5 ns

Address delay time tADDR – 16

nCS (chip select) delay time tNCS – 14

nOE (read enable) delay time tNOE – 14

nWE (write enable) delay time tNWE – 14

nWAIT sampling setup time tNWTS 0 –

nWAIT sampling hold time tNWTH 10 –

Write data delay time tWD – 14.5

Data setup time tDS 0

Data hold time tDH 10

Table 14-7. AC Electrical Characteristics for Internal Flash ROM
 (TA = 0 °C to + 70 °C , VDD = 2.7 V–3.6 V)

Parameter Symbol Conditions Min Typ Max Unit

Programming
time (1)

Ftp 30 40 50 µS

Chip Erasing
Time (2)

Ftp1 37 50 63 mS

Sector Erasing
time (3)

Ftp2 37 50 63 mS

Data access time FtRS – 25 – nS

Number of writing
/erasing

FNwe – – 1,000 Times

NOTES:
1. The programming time is the time during which one word (32-bit) is programmed.
2. The Chip erasing time is the time during which all 256K-byte block is erased.
3. The Sector erasing time is the time during which all 512-byte block is erased.
4. The chip erasing is available in Tool Program Mode only.

ELECTRICAL DATA S3F443FX (Preliminary Spec)

14-10

NOTES

S3F443FX RISC MICROCONTROLLER MECHANICAL DATA

15-1

15 MECHANICAL DATA

PACKAGE DIMENSIONS

64-LQFP-1010-AN

#64

10.00 BSC

12.00 BSC

10
.0

0
B

S
C

12
.0

0
B

S
C

#1

0.50 BSC

0.20
+ 0.07
- 0.03

0.45-0.75

1.
60

 M
A

X

0.08 MAX

0.
09

-0
.2

0

0-
7

1.
40

 ±
 0

.0
5

0.
10

 ±
 0

.0
5

0.08 MAX

Figure 15-1. 64-LQFP-1010 Package Dimensions (unit: mm)

MECHANICAL DATA S3F443FX RISC MICROCONTROLLER

15-2

NOTES

