

CY62146V MoBL™ CY62146V18 MoBL2™

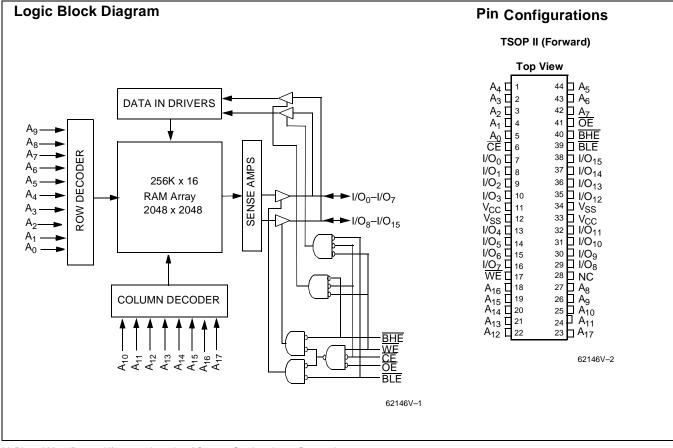
Features

- Low voltage range:

 - CY62146V: 2.7V-3.6V
- Ultra-low active, standby power
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

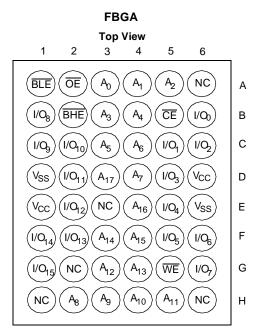
The CY62146V and CY62146V18 are high-performance CMOS static RAMs organized as 262,144 words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBLTM) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (\overline{CE} HIGH). The in-


256K x 16 Static RAM

put/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (\overline{OE} HIGH), \overline{BHE} and \overline{BLE} are disabled (\overline{BHE} , \overline{BLE} HIGH), or during a write operation (\overline{CE} LOW, and \overline{WE} LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₆). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).

Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.


The CY62146V and CY62146V18 are available in 48-Ball FBGA and standard 44-Pin TSOP Type II (forward pinout) packaging.

MoBL and More Battery Life are trademarks of Cypress Semiconductor Corporation.

Pin Configuration (continued)

62146V-3

Maximum Ratings

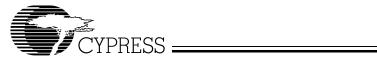
(Above which the useful life may be impaired. For user guide-lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.5V to +4.6V
DC Voltage Applied to Outputs in High Z State ^[1] –0.5V to V_{CC} + 0.5V
DC Input Voltage ^[1] 0.5V to V _{CC} + 0.5V

Output Current into Outputs (LOW)20 mAStatic Discharge Voltage>2001V(per MIL-STD-883, Method 3015)>200 mALatch-Up Current>200 mA

Operating Range

Device	Range	Ambient Temperature	v _{cc}
CY62146V18	Industrial	-40°C to +85°C	1.65V to 1.95V
CY62146V	Industrial	-40°C to +85°C	2.7V to 3.6V

Product Portfolio


						Power Dis	sipation (In	dustrial)
	V _{CC} Range				Operat	ing (I _{CC})	St	andby (I _{SB2})
Product	V _{CC(min)}	V_{CC(typ)} ^[2]	V _{CC(max)}	Speed	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62146V	2.7V	3.0V	3.6V	70 ns	7 mA	15 mA	2 μΑ	20 µA
CY62146V18	1.65V	1.80V	1.95V	70 ns	3 mA	7 mA		20 µA

Shaded areas contain preliminary information.

Notes:

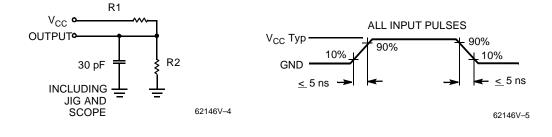
1. $V_{IL}(min) = -2.0V$ for pulse durations less than 20 ns.

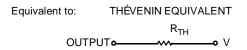
2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

Electrical Characteristics Over the Operating Range

				CY62146V			
Parameter	Description	Test Condi	Min.	Typ. ^[2]	Max.	Unit	
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	$V_{CC} = 2.7V$	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage		$V_{\rm CC} = 3.6 V$	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V
I _{IX}	Input Load Current	$GND \leq V_{I} \leq V_{CC}$		-1	<u>+</u> 1	+1	μA
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}, Ou$	$GND \leq V_O \leq V_{CC}$, Output Disabled			+1	μA
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ f = f _{MAX} = 1/t _{RC} , CMOS Levels	V _{CC} = 3.6V		7	15	mA
		I _{OUT} = 0 mA, f = 1 M CMOS Levels	Hz,		1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:constraint} \begin{array}{ c c } \hline \overline{CE} \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \text{ or} \\ V_{IN} \leq 0.3V, \ f = f_{MAX} \end{array}$				100	μA
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:constraint} \begin{array}{ c c } \hline \overline{CE} \geq V_{CC} - 0.3V \\ V_{IN} \geq V_{CC} - 0.3V \\ or \ V_{IN} \leq 0.3V, \ f = 0 \end{array}$	V _{CC} = LL 3.6V		2	20	μA

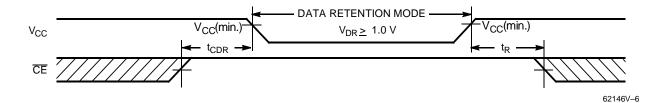
					CY62146V1		
Parameter	Description	Test Condit	Min.	Typ. ^[2]	Max.	Unit	
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	V _{CC} = 1.65V	1.5			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{CC} = 1.65V$			0.2	V
V _{IH}	Input HIGH Voltage		$V_{\rm CC} = 1.95 V$	1.4		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 1.65V$	-0.5		0.4	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	-1	<u>+</u> 1	+1	μA	
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Out	-1	+1	+1	μA	
ICC	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ f = f _{MAX} = 1/t _{RC} , CMOS Levels	V _{CC} = 1.95V		3	7	mA
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels			1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:constraint} \begin{array}{ c c } \hline \overline{CE} \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \text{ or} \\ V_{IN} \leq 0.3V, \text{ f} = f_{MAX} \end{array}$			100	μΑ	
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:constraint} \begin{split} \overline{CE} \geq V_{CC} - 0.3V \\ V_{IN} \geq V_{CC} - 0.3V \\ \text{or } V_{IN} \leq 0.3V, f = 0 \end{split}$	V _{CC} = LL 1.95V		2	20	μΑ


Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

 Note:
 3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


Parameters	3.0V	1.8V	Unit
R1	1105	15294	Ohms
R2	1550	11300	Ohms
R _{TH}	645	6500	Ohms
V _{TH}	1.75V	0.85V	Volts

Shaded areas contain preliminary information.

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention (CY62146V18)			1.0		1.95	V
V _{DR}	V _{CC} for Data Retention (CY62146V)			1.0		3.6	V
I _{CCDR}	Data Retention Current	$\label{eq:constraint} \begin{split} & \frac{V_{CC}}{CE} = 1.0V \\ & \overline{CE} \ge V_{CC} - 0.3V, \\ & V_{IN} \ge V_{CC} - 0.3V \text{ or} \\ & V_{IN} \le 0.3V \\ & \text{No input may exceed} \\ & V_{CC} + 0.3V \end{split}$	LL		0.2	5.5	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R ^[4]	Operation Recovery Time			100			μs

Data Retention Waveform

Note:

4. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC}(min) \geq 100 µs or stable at V_{CC}(min) \geq 100 µs.

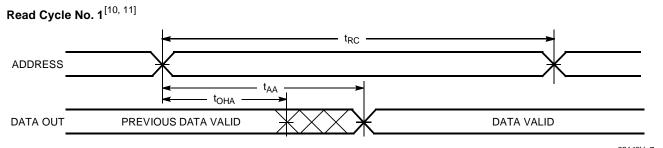
Switching Characteristics Over the Operating Range^[5]

		70	70 ns		
Parameter	Description	Min.	Max.	Unit	
READ CYCLE	· ·		•		
t _{RC}	Read Cycle Time	70		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		35	ns	
t _{LZOE}	OE LOW to Low Z ^[6, 7]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[7]		25	ns	
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns	
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns	
t _{PU}	CE LOW to Power-Up	0		ns	
t _{PD}	CE HIGH to Power-Down		70	ns	
t _{DBE}	BLE / BHE LOW to Data Valid		35	ns	
t _{LZBE}	BLE / BHE LOW to Low Z ^[6, 7]	5		ns	
t _{HZBE}	BLE / BHE HIGH to HIGH Z ^[6]		25	ns	
WRITE CYCLE ^[8, 9]			•		
t _{WC}	Write Cycle Time	70		ns	
t _{SCE}	CE LOW to Write End	60		ns	
t _{AW}	Address Set-Up to Write End	60		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	50		ns	
t _{BW}	BLE / BHE LOW to Write End	60		ns	
t _{SD}	Data Set-Up to Write End	30		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns	
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns	

Note:

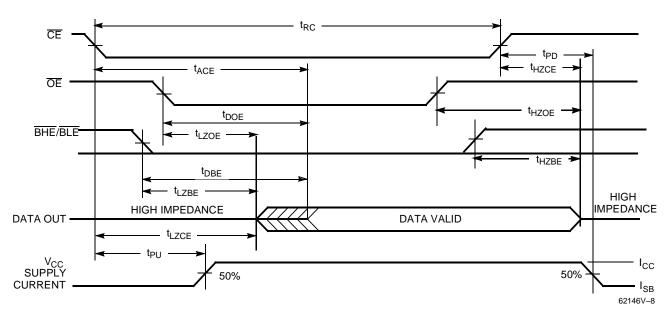
Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the 5.

specified I_{OL}/I_{OH} and 30-pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , t_{HZBE} is less than t_{LZBE} and t_{HZWE} is less than t_{LZWE} for 6. any given device.


7.

any given device. t_{HZOE} , t_{HZEE} , t_{HZEE} , t_{HZBE} and t_{HZWE} are specified with $C_L = 5 \text{ pF}$ as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of \overline{CE} LOW and \overline{WE} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input <u>set-</u>up and hold <u>tim</u>ing should be referenced to the rising edge of the signal that terminates the write. The minimum write cycle time for write cycle #3 (WE controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD} . 8.

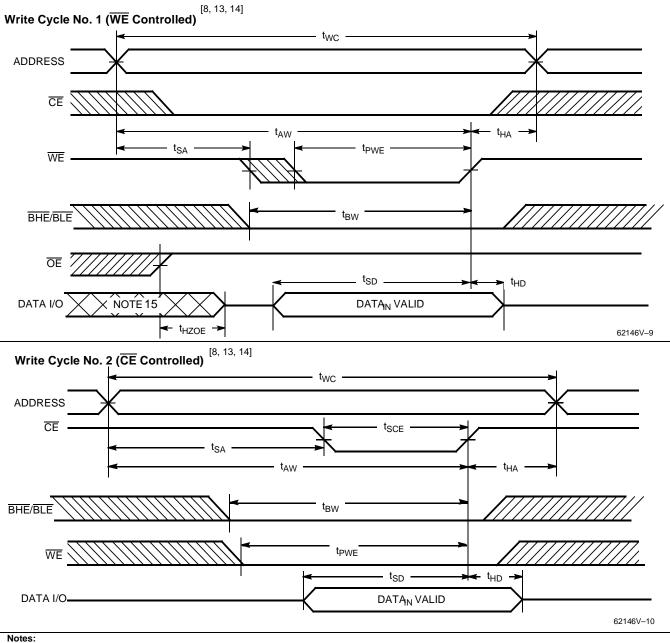
9.



Switching Waveforms

62146V-7

Read Cycle No. 2 [11, 12]

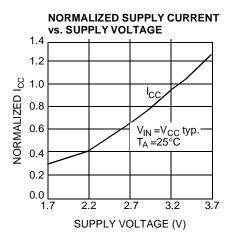


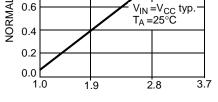
Notes:

- 10. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 11. \overline{WE} is HIGH for read cycle. 12. Address valid prior to or coincident with \overline{CE} transition LOW.

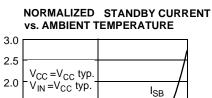
Switching Waveforms (continued)

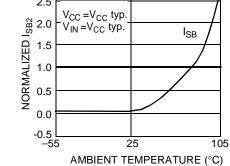
13. Data I/O is high-impedance if $\overline{OE} = V_{IH}$. 14. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state. 15. During this period, the I/Os are in output state and input signals should not be applied.


Switching Waveforms (continued)

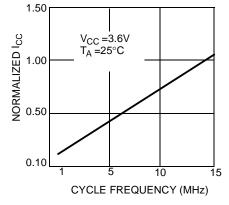

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[9, 14]

Typical DC and AC Characteristics


NORMALIZED STANDBY CURRENT vs. SUPPLY VOLTAGE 1.4 1.2 0.1 SB 1.0 0.7 0 0 I_{SB2}



SUPPLY VOLTAGE (V)

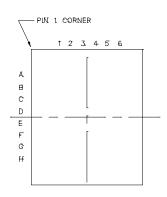

Truth Table

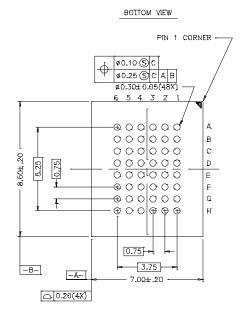
CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power	
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})	
L	н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})	
L	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})	
L	н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Data Out (I/O ₈ –I/O ₁₅); Read I/O ₀ –I/O ₇ in High Z		
L	Н	L	Н	Н	High Z	Output Disabled	Active (I _{CC})	
L	н	Н	Х	Х	High Z	Output Disabled	Active (I _{CC})	
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})	
L	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})	
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})	
L	L	Х	Н	Н	High Z	Output Disabled	Active (I _{CC})	

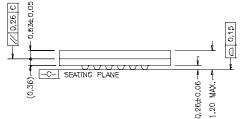
NORMALIZED ICC vs.CYCLETIME

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62146VLL-70ZI	Z44	44-Pin TSOP II	Industrial
	CY62146VLL-70BAI	BA49	48-Ball Fine Pitch BGA	
70	CY62146V18LL-70BAI	BA49	48-Ball Fine Pitch BGA	


Shaded areas contain preliminary information.


Document #: 38-00647-B

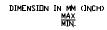

Package Diagrams

48-Ball (7.00 mm x 8.5 mm x 1.5 mm) FBGA BA49

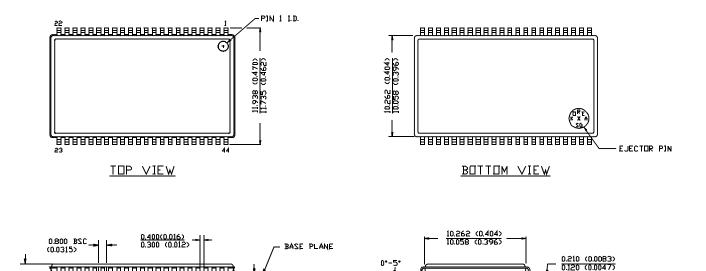
TOP VIEW

* THE BALL DIAMETER, BALL PITCH, STAND-OFF & PACKAGE THICKNESS ARE DIFFERENT FROM JEDEC SPEC M0192 (LOW PROFILE BGA FAMILY)

51-85106-A

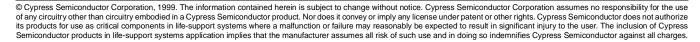


Package Diagrams (continued)


18.517 (0.729) 18.313 (0.721)

4

1.194 (0.047) 0.991 (0.039) 44-Pin TSOP II Z44


51-85087-A

0.597 (0.0235)

SEATING PLANE

0.150 (0.0059) 0.050 (0.0020)

