10-CHARACTER 3-LINE DOT MATRIX LCD CONTROLLER DRIVER #### ■ GENERAL DESCRIPTION The NJU6424 is a Dot Matrix LCD controller driver for 10-character 3-line with icon display in single chip. It contains voltage tripler, bleeder resistance, bias control circuit, CR oscillator, microprocessor interface circuits, instruction decoder controller, character generator ROM/RAM, high voltage operation common and segment drivers. The voltage tripler and bleeder resistance generates about triple voltage (8V) and bias voltage for LCD driving waveform internally from single power supply (3V). Consequently, high-contrast display can be performed though the simple power supply circuits. The bias control circuit can change the output current of Voltage follower, therefore COM/SEG driveability can be increased. The CR oscillator incorporates C and R, therefore no external components for oscillation are required. The microprocessor interface circuits which operate by 1MHz, can be connected directly to 4/8bit microprocessor. The character generator consists of 9,600 bits ROM and 64 bytes RAN. The 26-common (24 for character, 2 for icon) and 50-segment drivers are operated up to 13.5V, and the icon common driver display up to 100 icons. #### ■ PACKAGE OUTLINE NJU6424FC1 NJU6424FG1 # **FEATURES** - 10-character 3-line Dot Matrix LCD Controller Driver - Maximum 100 icon Display (COMMK1, COMMK2) - 4/8 Bit Nicroprocessor Direct Interface - Display Data RAM 30 x 8 bits : Maximum 10-character 3-line Display - Character Generator ROM 9,600 bits : 240 Characters for 5 x 7 Dots - Character Generator RAM 32 x 5 bits : 4 Patterns(5 x 7 Dots) - High Voltage LCD Driver : 26-common / 50-segment - Useful Instruction Set : Clear Display, Return Home, Display ON/OFF Cont, Cursor ON/OFF Cont, Display Blink, Cursor Shift, Character Shift - Power On Initialize / Hardware Reset Function - Voltage Tripler On-chip - Bleeder Resistance with voltage follower On-chip - Bias control circuit of voltage follower On-chip - Oscillation Circuit On-chip - Low Power Consumption -- (150 µA TYP.) - Operating Voltage -- 2.4 to 3.6 V (Except LCD Driving Voltage) - Package Outline --- Chip / QFP 100 / TQFP 100 - C-MOS Technology # ■ PIN CONFIGURATION (NJU6424FC1) # **■ PIN CONFIGURATION (NJU6424FG1)** Note) Pin configuration of "FG1" package is different from "FC1" package. # PAD LOCATION CHIP SIZE : $5.78 \text{mm} \times 4.18 \text{mm}$ CHIP CENTER : $X=0 \, \mu\text{m}$, $Y=0 \, \mu\text{m}$ PAD SIZE : $92 \, \mu\text{m} \times 92 \, \mu\text{m}$ # ■ PAD COORDINATES CHIP SIZE 5.78mm x 4.18mm (CHIP CENTER X=0 \(mm\), Y=0 \(mm\) | | | | | _CHIP SIZE_ | | | | <u>μm, Y=Uμm</u>) | |-----------|----------------------|------------|-------------|----------------|-----------|--------------------|-------------|--------------------| | PAD No | PAD NAME | X=(μm) | Y=(μm) | | PAD No | PAD NAME | X=(μm) | Y=(μm) | | 1 | SEG ₄₀ | -2220 | -1895 | | 51 | DB ₅ | 2174 | 1896 | | 2 | SEG ₄₁ | -2000 | -1895 | | 52 | DB _G | 1954 | 1896 | | 3 | SEG ₄₂ | -1800 | -1895 | _ | 53 | DB ₇ | 1784 | 1896 | | 4 | SEG ₄₃ | -1600 | -1895 | | 54 | COM ₉ | 1547 | 1896 | | 5 | SEG ₄₄ | -1420 | -1895 | | 55 | COM ₁₀ | 1367 | 1896 | | 6 | SEG ₄₅ | -1280 | -1895 | | 56 | COM _{1 1} | 1187 | 1896 | | 7 | SEG ₄₆ | -1140 | -1895 | | 57 | COM ₁₂ | 1027 | 1896 | | 8 | SEG ₄₇ | -1000 | -1895 | | 58 | COM ₁₃ | 887 | 1896 | | 9 | SEG ₄₈ | -860 | -1895 | | 59 | COM ₁₄ | 747 | 1896 | | 10 | SEG ₄₉ | -720 | -1895 | | 60 | COM ₁₅ | 607 | 1896 | | 11 | SEG ₅₀ | -580 | -1895 | | 61 | COMis | 467 | 1896 | | 12 | COMMK2 | -254 | -1895 | | 62 | SEG ₁ | 228 | 1896 | | 13 | COM ₂₄ | -114 | -1895 | | 63 | SEG ₂ | -4 | 1896 | | 14 | COM ₂₃ | 26 | -1895 | | 64 | SEG₃ | -164 | 1896 | | 15 | COM22 | 166 | -1895 | _ | 65 | SEG ₄ | -304 | 1896 | | 16 | COM21 | 306 | -1895 | | 66 | SEG ₅ | -444 | 1896 | | 17 | COM ₂₀ | 446 | -1895 | | 67 | SEG ₆ | -584 | 1896 | | 18 | COM ₁₉ | 606 | -1895 | | 68 | SEG ₇ | -724 | 1896 | | 19 | COM ₁₈ | 766 | -1895 | | 69 | SEG ₈ | -864 | 1896 | | 20 | COM ₁₇ | 926 | -1895 | _ | 70 | SEG ₉ | -1004 | 1896 | | 21 | COMs | 1086 | -1895 | | 71 | SEG ₁₀ | -1144 | 1896 | | 22 | COM ₇ | 1226 | -1895 | | 72 | SEG ₁₁ | -1284 | 1896 | | 23 | COM ₆ | 1366 | -1895 | | 73 | SEG ₁₂ | -1424 | 1896 | | 24 | COM5 | 1506 | -1895 | | 74 | SEG ₁₃ | -1564 | 1896 | | 25 | COM ₄ | 1646 | -1895 | | 75 | SEG ₁₄ | -1704 | 1896 | | 26 | COM ₃ | 1786 | -1895 | | 76 | SEG ₁₅ | -1864 | 1896 | | 27 | COM ₂ | 1946 | -1895 | _ | 77 | SEG ₁₆ | -2024 | 1896 | | 28 | COM1 | 2106 | -1895 | | 78 | SEG ₁₇ | -2184 | 1896 | | 29 | COMMK1 | 2266 | -1895 | | 79 | SEG ₁₈ | -2344 | 1896 | | 30 | BIAS | 2426 | -1895 | | 80 | SEG ₁₉ | -2504 | 1896 | | 31 | OSC ₂ | 2688 | -1794 | | 81 | SEG ₂₀ | -2688 | 1561 | | 32 | 0SC ₁ | 2688 | -1485 | | 82 | SEG ₂₁ | -2688 | 1281 | | 33 | V ₅ | 2688 | -1220 | | 83 | SEG ₂₂ | -2688 | 1031 | | 34 | Vss | 2688 | -1080 | | 84 | SEG ₂₃ | -2688 | 831 | | 35 | Vss | 2688 | -801 | - - | 85 | SEG ₂₄ | -2688 | 631 | | 36 | C2 | 2688 | -661 | | 86 | SEG ₂₅ | -2688 | 491 | | 37 | C2 ⁺ | 2688 | -382 | | 87 | SEG ₂₆ | -2688 | 351 | | 38 | C1 ⁻ | 2688 | -242 | | 88 | SEG ₂₇ | -2688 | 211 | | 39 | C1 ⁺ | | 38 | | | SEG ₂₈ | -2688 | 71 | | | | 2688 | | | 89 | SEG ₂₉ | -2688 | -69 | | 40 | Vcı | 2688 | 178 | | 90 | | -2688 | | | 41 | VDD | 2688 | 378 | | 91 | SEG ₃₀ | | -209 | | 42 | RESET | 2688 | 578 | | 92 | SEG ₃₁ | -2688 | -349 | | 43 | RS | 2688 | 718 | | 93 | SEG ₃₂ | -2688 | -489 | | 44 | R/W | 2688 | 858 | | 94 | SEG ₃₃ | -2688 | -629 | | 45 | E | 2688 | 998 | | 95
00 | SEG ₃₄ | -2688 | -769 | | 46 | DB ₀ | 2688 | 1138 | | 96 | SEG ₃₅ | -2688 | -909
1040 | | 47 | DB ₁ | 2688 | 1278 | - | 97 | SEG36 | -2688 | -1049 | | 48 | DB ₂ | 2688 | 1418 | | 98 | SEG ₃₇ | -2688 | -1249 | | 49 | DB ₃ | 2688 | 1558 | | 99 | SEG38 | -2688 | -1449 | | 50 | DB4
 side PAD of | 2688 | 1698 | | 100 | SEG ₃₉ | -2688 | -1649 | | X INP 1et | r side PAD of | NOT PAULIS | DUMMV PAD (| Loordinate | ら スポーノコしし | . t=~ixyn). | NO DEED BOD | OINE. | ^{*} The left side PAD of No1 PAD is Dummy PAD (Coordinates X=-2500, Y=-1895), No need Bonding. #### ■ BLOCK DIAGRAM # ■ TERMINAL DESCRIPTION | PIN | NO. | | | |----------------|------------------|--|--| | FC1
Package | FG1
Package | SYMBOL | FUNCTION | | 41 | 38 | V _{DD} | Power Source (+ 3V) | | 34 | 31 | Vss | Power Source (OV) | | 33 | 30 | Vs | LCD Driving Voltage Output | | 32
31 | 29
28 | OSC 1
OSC 2 | Oscillation Frequency Adjust Terminals. Normally Open. (Oscillation C and R are incorporated, Osc Freq.=80kHz) For external clock operation, the clock should be input on OSC: | | 43 | 40 | RS | Register selection signal input(Pull-up resistance On-chip) "0": Instruction Register (Writing) Busy Flag, Address Counter (Reading) "1": Data Register (Writing/Reading) | | 44 | .41 | R/W | Read/Write selection signal input(Pull-up Resistance On-chip) "O": Write, "1": Read | | 45 | 42 | E | Read/Write activation signal input | | 50~53 | 47~50 | DB₄~DB ₇ | 3-state Data Bus(Upper) to transfer the data between MPU and NJU6424.
DB7 is also used for the Busy Flag reading. | | 46~49 | 43~46 | DB _o ~DB ₃ | 3-state Data Bus(Lower) to transfer the data between MPU and NJU6424. These bus are not used in the 4-bit operation. | | 28~13 | 25~10 | COM ₁ | LCD Common Driving Signal | | 54~61 | 51~58 | ~COM ₂₄ | COD COMMICT DE LA LIE OF PRINCE | | 29 | 26 | COMMK1 | Icon Common Driving Signal | | 12 | 9 | COMMK2 | Tooli Common Strang State | | 62~100 | 59~100 | SEG₁~ | LCD Segment Driving Signal | | 1~11 | 1~8 | SEG ₅₀ | | | 39,37
38,36 | 36, 34
35, 33 | C1 ⁺ ,C2 ⁺
C1 ⁻ ,C2 ⁻ | Step up capacitor connecting terminals
Connect the step up capacitors between C1 ⁺ and C1 ⁻ , C2 ⁺ and C2 ⁻
respectively. | | 40 | 37 | Vci | Input Terminal for Voltage Tripler (Normally V _{c1} = V _{DD}) | | 35 | 32 | V _{50UT} | Voltage Tripler Output Terminal | | 30 | 27 | BIAS | COM/SEG output current adjust terminal To increase output current of the voltage follower, connect a resistance(R _{BIAS}) between this terminal and V _{SS} . Normally Open. | | 42 | 39 | RESET | Reset Terminal. When the "L" level input over than 1.2ms to this terminal, the system will be reset(fosc=80kHz) | #### **■ FUNCTIONAL DESCRIPTION** ## (1) Description for each blocks #### (1-1) Register The NJU6424 incorporates two 8-bit registers, an Instruction Register (IR) and a Data Register(DR). The Register(IR) stores instruction codes such as "Clear Display", "Return Home", and address data for Display Data RAM(DD RAM) and Character Generator RAM(CG RAM). The MPU can write the instruction code and address data to the Register(IR), but it cannot read out from the Register(IR). The Register(DR) is a temporary stored register, the data stored in the Register(DR) is written into the DD RAM or CG RAM and read out from the DD RAM or CG RAM. The data in the Registed(DR) written by the MPU is transferred automatically to the DD RAM or CG RAM by internal operation. When the address data for the DD RAM or CG RAM is written into the Register(IR), the addressed data in the DD RAM or CG RAM is transferred to the Register(DR). By the MPU read out the data in the Register(DR), the data transmitting process is performed completely. After reading the data in the Register(DR) by the MPU, the next address data in the DD RAM or CG RAM is transferred automatically to the Register(DR) to provide for the next MPU reading. These two registers are selected by the selection signal RS as shown below. Table 1. shows register operation controlled by RS and R/W signals. Table 1. Register Operation | RS | R/W | Selected Register | Operation |
----|-----|-------------------|--| | 0 | 0 | ! D | Write | | 0 | 1 | IR | Read busy flag(DB7) and address counter(DB0~DB6) | | 1 | 0 | nn. | Write (DR to DD RAM or CG RAM) | | 1 | 1 | DR | Read (DD or CG RAM to DR) | #### (1-2) Busy Flag (BF) When the internal circuits are in the operation mode, the busy flag (BF) is "1", and any instruction reading is inhibited. The busy flag (BF) is output at DB_7 when RS="0" and R/W="1" as shown in Table 1. The next instruction should be written after the busy flag(BF) goes to "O". #### (1-3) Address Counter (AC) The address counter(AC) addressing the DD RAM and CG RAM. When the address setting instruction is written into the Register(IR), the address information is transferred from Register(IR) to the Counter(AC). The selection of either the DD RAM or CG RAM is also determined by this instruction. After writing (or reading) the display data to (or from) the DD RAM or CG RAM, the Counter (AC) increments (or decrements) automatically. The address data in the Counter(AC) is output from $DB_6 \sim DB_0$ when RS="0" and R/W="1" as shown in Table 1. #### (1-4) Display Data RAM (DD RAM) The display data RAM (DD RAM) consists of 30 x 8 bits stores up to 30-character display data represented in 8-bit code. The DD RAM address data set in the address counter(AC) is represented in Hexadecimal. | | ←Hi gh | er ord | der bit | : | Lower | r order | bit→ | (| Exam | ple) (| DD RAM | addres | s " 0 | 3 " | | |-----|-----------------|-----------------|-----------------|--------------|-----------------|-----------------|-----------------|---|-------------|--------|--------------|-------------|-------|-----|---| | AC | AC ₆ | AC ₅ | AC ₄ | AСз | AC ₂ | AC ₁ | AC _o | [| 0 | 0 | 0 | 1 | 0 | 0 | 0 | | * . | ← He | xadeci | imal → | - | Hexad | ecimal | -> | - | | 0 | - | | | 8 - | | The relation between DD RAM address and display position on the LCD is shown below. Note: The 1st, 2nd and 3rd line address are defined as (00)_H to (09)_H, (0C)_H to (15)_H and (40)_H to (49)_H. Please note that the end of 1st line address and the beginning of 2nd line address are not consecutive. When the display shift is performed, the DD RAM address changes as follows: (Left Shift Display) | | | | | | | | | | 9 | | |-------|----|----|----|----|----|----|----|----|----|----| | (00)← | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 00 | | (00)← | OD | 0E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 0C | | (40)← | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 40 | (Right Shift Display) | _ | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |---------------|----|----|----|----|----|----|----|----|-----|----| | → (09) | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | -00 | 09 | | → (15) | 14 | 13 | 12 | 11 | 10 | 0F | 0E | OD | 0C | 15 | | → (49) | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 49 | #### (1-5) Character Generator ROM (CG ROM) The Character Generator ROM (CG ROM) generates 5 x 7 dots character pattern represented in 8-bit character codes. The storage capacity is up to 240 kinds of 5 x 7 dots character pattern. The correspondence between character code and standard character pattern of NJU6424 is shown in Table 2-1. User-defined character patterns (Custom Font) are also available by mask option. Table 2-1. CG ROM Character Pattern (ROM version -02) | | | | | | | | Üpt | per 4- | bit (| Hexad | lecima | .1) | | | | | | |---------------------------|---|-------------------|---|---------------|-------|------|-------------|-------------|-------------|---------|--------|---------|-------|-------------|---------------|---------------|-------------| | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | Е | F | | | 0 | CG
RAM
(01) | | | | | : | •• | :::- | | :::: | | | ::: | , | :::: | !::: | | | 1 | (02) | | | : | | | ·:::i | -::: | 1 | :::: | ::: | .:- | :::: | :: | : | ::: | | | 2 | (03) | : | :: | .: | | | i: | : | :::: | | : | .: | ::: | .:: ' | ::::: | :::: | | | 3 | (04) | | | : | | :; | : | :::. | | :::: | : | :::: | | :::: | :::. | ::-:: | | | 4 | (01) | : <u></u> : | | :: | | | | . | : | :::: | ٠. | | ! ·. | ::: | ļi | ::: | | imal) | 5 | (02) | | | | | | :::: | | | :::: | :: | :: | : | | :::: | 1 | | Lower 4-bit (Hexadecimal | 6 | (03) | ::::::::::::::::::::::::::::::::::::::: | | i:::; | •••• | . ,! | ::" | i.,: | .::: | | ::: | | ••• | | : :::: | :: | | 4-bit (| 7 | (04) | | :: | : | | | :: | 11 | :::- | | ::: | ::::: | ::: | | :::: | ::: | | Lower | 8 | (01) | | : | | | | | : :: | :::: | •• | ·:; | ::: | | i.i | ٠,:" | ::: | | | 9 | (02) | | .: | · | | !!
:: | i. | :::! | | | • | • | .! | ! !. : | : | •• | | | A | (03) | : | : : :: | :: | | •••• | | | | | | | : : | | : | | | | В | (04) | : | | :: | | | ! :: | • | : ::::: | :::: | ::: | | | | ∷ | | | | С | (01) | • | :: | | | | • | | ::-:: | | ::: | ::: | | ::: | :::. | | | | D | (02) | | ••••• | | | | " " | | | | | : | • | | • | | | | Е | (03) | ::: | :: | | | ••• | i"i | ••• | | | ::: | | | ••• | | | | | F | (04) | :::- | •••• | | | •••• | :::: | •••• | | | • : : : | ·• | :: | ::: | | | #### (1-6) Character Generator RAM (CG RAM) The character generator RAM (CG RAM) can store any kind of character pattern in 5 x 7 dots written by the user program to display user's original character pattern and icon data. The CG RAM can store 4 kinds of character in 5 x 7 dots mode. Using CG RAM for an icon display, the usable character number in 5 x 7 dots mode is changed (refer to 1-7 Icon Display Function). To display user's original character pattern stored in the CG RAM, the address data (00)H -(03)_H should be written to the DD RAM as shown in Table 2-1. Table 3. shows the correspondence among the character pattern, CG RAM address and Data. Table 3. Correspondence of CG RAM address, DD RAM character code and CG RAM character pattern(5 x 7 dots). | Character Code
(DD RAM Data) | CG
RAM Address | Character
Pattern
(CG RAM Data) | | |---------------------------------|--|---|---| | 7 6 5 4 3 2 1 0
← | $\begin{array}{cccc} 4 & 3 & 2 & 1 & 0 \\ \leftarrow - & - \rightarrow & \\ \text{Upper Lower} & \text{bit bit} \end{array}$ | $\begin{array}{ccccc} & 4 & 3 & 2 & 1 & 0 \\ \longleftarrow & & \longrightarrow \\ \text{Upper Lower} & \text{bit bit} \end{array}$ | | | 0000**00 | 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 1 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Character Pattern
Example(1)
←Cursor Position | | 0000**01 | 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 | | Character Pattern
Example(2)
←Cursor Position | | : | 0 0 0
0 0 1 | | | | | | | | | 0000**11 | 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 | | * : Don't Care | Notes: 1. Character code bit 0, 1 correspond to the CG RAM address 3, 4(2bits:4 patterns). 2. CG RAM address 0 to 2 designate character pattern line position. The 8th line is the cursor position and the display is performed by logical OR with cursor. Therefore, in case of the cursor display, the 8th line should be "0". If there is "1" in the 8th line, the bit "1" is always displayed on the cursor position regardless of cursor existence. 3. Character pattern row position correspond to the CG RAM data bits 0 to 4 are shown above. 4. CG RAM character patterns are selected when character code bits 4 to 7 are all "0" and it is addressed by character code bits 0 and 1. Therefore, the address (00)_H, (04)_H, (08)_H and (0c)_H select the same character pattern as shown in Table 2-1. "1" for CG RAM data corresponds to display On and "0" to display Off. 6. CG RAM address (OC)H to (1F)H are using for both of character pattern memory and icon data memory. #### (1-7) Icon Display Function The NJU6424 can display not only 5 x 7 bits character pattern but also maximum 100 icons. The icon can display by writing bit "1" to each data bit 0 to 4 in the address (OC) $_{\rm H}$ to (1F) $_{\rm H}$ of CG RAM. The fixed character display code is not affected except CG RAM writing and display ON/OFF instruction. The relation between CG RAM address and icon display position on the LCD is fixed even if the display shift is executed. The relation is shown below: NOTE) The 1F4 corresponds bit 4 of (1F)H in CG RAM. < CG RAM vs. SEG terminal for icon display > | | for | icon di | iŝplay > | |--------|---------|---------|----------| | | CG RA | AM . | SEG | | | address | data | terminal | | | 0C | 00110 | 46~50 | | | OD | 11100 | 41~45 | | | OE | | 36~40 | | | OF | | 31~35 | | COMMK2 | 10 | | 26~30 | | | 11 | | 21~25 | | | 12 | | 16~20 | | | 13 | | 11~15 | | | 14 | | 6~10 | | | 15 | | 1~5 | | | 16 | | 46~50 | | | 17 | | 41~45 | | | 18 | | 36~40 | | | 19 | | 31~35 | | COMMK1 | 1 A | | 26~30 | | | 1B | | 21~25 | | | 1C | 00100 | 16~20 | | | 1D | 00000 | 11~15 | | | 1E | 00100 | 6~10 | | | 1F | 00000 | 1~5 | Maximum Character Number and Icon Display Number in CG RAM | riaaimum | Character 1 | Number and reon bispray number in co tent | |----------------------|----------------------|---| | Icon Disp.
Number | Max. Chara
Number | Note | | No Use | 4 Chara. | | | Up to 40 | 3 Chara. | $(03)_{\rm H},(07)_{\rm H},(0B)_{\rm H}$ and $(0F)_{\rm H}$ can not use for Character Memory. | | Up to 80 | 2 Chara. | $(02)_{\rm H}, (03)_{\rm H}, (06)_{\rm H}, (07)_{\rm H}, (0A)_{\rm H}, (0B)_{\rm H}, (0E)_{\rm H}$ and $(0F)_{\rm H}$ can not use for
Character Memory. | | Up to 100 | 1 Chara. | $(01)_{\rm H}, (02)_{\rm H}, (03)_{\rm H}, (05)_{\rm H}, (06)_{\rm H}, (07)_{\rm H}, (09)_{\rm H}, (0A)_{\rm H}, (0B)_{\rm H}, (0D)_{\rm H}, (0E)_{\rm H}, (0F)_{\rm H} $ can not use | NOTE) When the icon display function using, the system should be initialized by the software initialization because of the CG RAM does not initialize except the software initialization. # (1-8) Timing Generator The timing generator generates a timing signals for the DD RAM, CG RAM, CG ROM and other internal circuits operation. RAM read timing for the display and internal operation timing for MPU access are separately generated, so that they may not interfere with each other. Therefore, when the data write to the DD RAM for example, there will be no undesirable influence, such as flickering, in areas other than the display area. ### (1-9) LCD Driver LCD driver consist of 26-common driver and 50-segment driver. The 50 bits of character pattern data are shifted in the shift-register and latched when the 50 bits shift performed completely. This latched data controls display driver to output LCD driving waveform. ### (1-10) Cursor Blinking Control Circuit This circuits controls cursor On/Off and the cursor position character blinks. The cursor or blinks appear in the digit residing at the DD RAM address set in the address counter (AG). When the address counter is $(08)_{\rm H}$, a cursor position is shown as follows: | | AC ₆ | AC ₅ | AC4 | AСз | AC ₂ | AC ₁ | ACo | | | | | |------|-----------------|-----------------|-----|-----|-----------------|-----------------|-----|----|----|----|--------------------| | (AC) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ← Display position | | | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | DD DAN adduses | | | OC | OD | 0E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | DD RAM address | | | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | (Hexadecimal) | ↑ Cursor position (Note) The cursor or blinks also appear when the address counter (AC) selects the CG RAM. But the displayed cursor and blink are meaningless. If the AC storing the CG RAM address data, the cursor and blink are displayed in the meaningless position. ### (2) Power on Initialization by internal circuits # (2-1) Initialization By Internal Reset Circuit The NJU6424 is automatically initialized by internal power on initialization circuits when the power is turned on. In the internal power on initialization, following instructions are executed. During the Internal power on initialization, the busy flag (BF) is "1" and this status is kept 10 ms after $V_{\rm DD}$ rises to 2.4V. Initialization flow is shown below: NOTE If the condition of power supply rise time described in the Electrical Characteristics is not satisfied, the internal Power On Initialization Circuits will not operated and initialization will not performed. In this case the initialization by MPU software is required. # (2-2) Initialization By Hardware The NJU6424 incorporates RESET terminal to initialize the all system. When the "L" level input over than 1.2ms to the RESET terminal, reset sequence is executed. In this time, busy signal output during 10ms after RESET terminal goes to "H". #### · Reset Circuit #### (3) Instructions The NJU6424 incorporates two registers, an Instruction Register (IR) and a Data Register (DR). These two registers store control information temporarily to allow interface between NJU6424 and MPU or peripheral IC's operating different cycles. The operation of NJU6424 is determined by this control signal from MPU. The control information includes register selection signals (RS), read/write signals (R/W) and data bus signals (DB₀ to DB₇). Table 4. shows each instruction and its operating time. Note 1) The execution time mentioned in Table 4. based on fcp or fosc=80kHz. If the oscillation frequency is changed, the execution time is also changed. Table 4. Table of Instructions | INSTRUCTIONS | RS | R/W | | DB ₆ | 0
DB5 | $\overset{D}{\text{DB}_4}$ | $\underset{\text{DB}_{\Im}}{\text{E}}$ | DB ₂ | DB ₁ | DBo | DESCRIPTION | EXEC
Time | |---|----|-----|-----|-----------------|---------------|----------------------------|--|-----------------|-----------------|--------------|--|--------------| | Maker Testing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | All "0" code is using for maker testing. | | | Clear Display | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Display clear and sets DD RAM address 0 in AC. | 2.0ms | | Return Home | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | * | Sets DD RAM address 0 in AC and
returns display being shifted to
original position.
DD RAM contents remain unchanged | 125us | | Entry Mode Set | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1/0 | S | Sets cursor move direction and specifies shift of display are performed in data read/write. I/D=1:Increment, I/D=0:Decrement S=1:Accompanies display shift | 125us | | Display On/Off
Control | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D | С | В | Sets of display On/Off(D),
cursor On/Off(C) and blink of
cursor position character(B). | 125us | | Cursor or
Display Shift | 0 | 0 | 0 | 0 | 0 | 1 | S/C | R/L | . * | * | Moves cursor and shifts display without changing DD RAM contents S/C=1: Display shift S/C=0: Cursor shift R/L=1: Shift to the right R/L=0: Shift to the left | 188us | | Function Set | 0 | 0 | 0 | 0 | 1 | DL | . * | * | * | * | Sets interface data length(DL),
number of display lines(N) and
display character number.
Character font is fixed 5 X 7.
DL=1: 8 bits, DL=0: 4 bits | 125us | | Set CG RAM
Address | 0 | 0 | , 0 | 1 | * | * | · | Acc | ; | > | Sets CG RAM address. After this instruction, the data is transferred to/from CG RAM. | 125us | | Set DD RAM
Address | 0 | 0 | 1 | ← | | • | ADD | 1 | | → | Sets DD RAM address. After this instruction, the data is transferred to/from DD RAM. | 125us | | Read Busy Flag
& Address | 0 | 1 | Bl | - | | • | Ac | | | > | Reads busy flag and AC contents.
BF=1 : Internally operating
BF=0 : Can accept instruction | 0us | | Write Data to | 1 | 0 | * | V | I rite | e Dat | ta (C | D R | AM) | - → | Writes data into DD or CG RAMs. | 125us | | CG or DD RAM | 1 | 0 | * | * | * | 4 | - Wri | te l | | → | : | | | Read Data from | 1 | 1 | * | | Read | Da Da | ta (I | D R | AM) | - | Reads data from DD or CG RAMs. | 188us | | CG or DD RAM | 1 | 1 | * | * | * | + | | ead
CG R | Data
AM) | → | | | | Explanation of Abbreviation DD RAM: Display data RAM, CG RAM: Character generator RAM Acc: CG RAM address, Address, Corresponds to cursor address AC: Address counter used for both of DD and CG RAMs | | | | | | | | | | | | | * = Don't care #### (3-1) Description of each instructions #### (a) Maker Testing | | RS | R/W | DB7 | DB e | DB ₅ | DB₄ | DВз | DB ₂ | DB ₁ | DBo | |------|----|-----|-----|------|-----------------|-----|-----|-----------------|-----------------|-----| | Code | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | All "0" code in 4-bit length is using for device testing mode (only for maker). Therefore, please avoid all "0" input or no meaning Enable signal input at data "0". (Especially please pay attention the output condition of Enable signal when the power turns on.) All "O" code in 8-bit length is operated only for NOP (Not Operating instruction). #### (b) Clear Display | | RS | R/W | DB ₇ | DB ₆ | DB ₅ | DB4 | DВз | DB ₂ | DB ₁ | DBo | |------|----|-----|-----------------|-----------------|-----------------|-----|-----|-----------------|-----------------|-----| | Code | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Clear display instruction is executed when the code "1" is written into DBo. When this instruction is executed, the space code (20)_H is written into every DD RAM address, the DD RAM address 0 is set into the address counter and entry mode is set increment. If the surger or blink are displayed, they are returned to the left and, of the left line. If the cursor or blink are displayed, they are returned to the left end of the 1st line. The S of entry mode does not change. Note: The character pattern for character code $(20)_{\rm H}$ must be blank code in the user-defined character pattern (Custom font). #### (c) Return Home | | RS | R/W | DB7 | DB_6 | DB ₅ | DB₄ | DВз | DB_2 | DB 1 | DBo | | |------|----|-----|-----|--------|-----------------|-----|-----|--------|------|-----|----------------| | Code | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | * | * = Don't care | Return home instruction is executed when the code "1" is written into DB₁. When this instruction is executed, the DD RAM address 0 is set into the address counter. Display is returned its original position if shifted, the cursor or blink are returned to the left end of the 1st line if the cursor or blink are on the display. The DD RAM contents do not change. (d) Entry Mode Set | | | | | | | | | | DB ₁ | | |------|---|---|---|----|---|---|---|---|-----------------|---| | Code | 0 | 0 | 0 | 0. | 0 | 0 | 0 | 1 | 1/D | S | Entry mode set instruction which sets the cursor moving direction and display shift On/Off, is executed when the code "1" is written into DB_2 and the codes of (I/D) and (S) are written into $DB_1(I/D)$ and $DB_0(S)$, as shown below. (I/D) sets the address increment or decrement, and the (S) sets the entire display shift in the DD RAM writing. | 1/D | Function | |-----
--| | 1 | Address increment: The address of the DD RAM or CG RAM increment (+1) when the read/write, and the cursor or blink move to the right. | | 0 | Address decrement: The address of the DD RAM or CG RAM decrement (-1) when the read/write, and the cursor or blink move to the left. | | | | | _ | | | S | Function | | 1 | Entire display shift. The shift direction is determined by I/D.: shift to the left at I/D=1 and shift to the right at the I/D=0. The shift is operated only for the character, so that it looks as if the cursor stands still and the display moves. The display does not shift when reading from the DD RAM and writing/reading into/from CG RAM. | #### (e) Display On/Off Control | | RS | R/W | DB ₇ | DB ₆ | DB ₅ | DB ₄ | DВз | DB ₂ | DB 1 | DBo | |------|----|-----|-----------------|-----------------|-----------------|-----------------|-----|-----------------|------|-----| | Code | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D | C | В | Display On/Off control instruction which controls the whole display On/Off, the cursor On/Off and the cursor position character blink, is executed when the code "1" is written into DB_3 and the codes of (D), (C) and (B) are written into DB_2 (D), DB_1 (C) and DB_0 (B), as shown below. | | · · | |----|--| | D | Function | | 1 | Display On. | | 0 | Display Off. In this mode, the display data remains in the DD RAM so that it is retrieved immediately on the display when the D change to 1. | | | to the same of | | C. | Function | | 1 | Cursor On. The cursor is displayed by 5 dots on the 8th line. | | 0 | Cursor Off. Even if the display data write, the I/D etc does not change. | | | | | В | Function | | 1 | The cursor position character is blinking. Blinking rate is 520ms at fosc=80kHz. The cursor and the blink can be displayed simultaneously. | | 0 | The character does not blink. | Character Font 5 x 7 dots (1) Cursor display example Alternating display (2) Blink display example #### (f) Cursor/Display Shift | | RS | R/W | DB→ | DB ₆ | DB ₅ | DB₄ | DВз | DB ₂ | DB 1 | DBo | | |------|----|-----|-----|-----------------|-----------------|-----|-----|-----------------|------|-----|----------------| | Code | 0 | 0 | 0 | 0 | 0 | 1 | S/C | R/L | * | * | * = Don't care | The Cursor/Display shift instruction shifts the cursor position or display to the right or left without writing or reading display data. This function is used to correct or search the display. For example the cursor moves to the 2nd line when it passes the 10th digit of the 1st line. Notice that the 1st and 2nd line displays will shift at the same time. When the displayed data is shifted repeatedly, each line moves only horizontally. For example the 2nd line display does not shift into the 1st line position. The contents of address counter(AC) does not change by operation of the display shift only. This instruction is executed when the code "1" is written into DB_4 and the codes of (S/C) and (R/L) are written into DB_3 and DB_2 , as shown below. | S/C | R/L | Function | |-----|-------------|---| | 0 | 0
1
0 | Shifts the cursor position to the left ((AC) is decremented by 1) Shifts the cursor position to the right ((AC) is incremented by 1) Shifts the entire display to the left and the cursor follows it. Shifts the entire display to the right and the cursor follows it. | #### (g) Function Set | | | | DB7 | | | | | | | | | |------|---|---|-----|---|---|----|---|---|---|---|----------------| | Code | 0 | 0 | 0 | 0 | 1 | DL | * | * | * | * | * = Don't care | Function set instruction which sets the interface data length is executed when the code "1" is written into DB_5 and the code of (DL is written into DB_4 (DL), as shown below (character font is fixed 5 x 7 dots). (DL) sets the interface data length. This function set instruction must be performed at the head of the program prior to all other existing instructions(except Busy flag/Address read). This function set instruction can not be executed afterwards unless the interface data length change. | DL | Function | |----|---| | 1 | Set the interface data length to 8 bits (DB7 to DB0) | | 0 | Set the interface data length to 4 bits (DB7 to DB4)
The data must be sent or received twice in this mode. | #### (h) Set CG RAM Address Set CG RAM address set instruction is executed when the code "1" is written into DB₆ and the address is written into DB₄ to DB₀ as shown above. The address data mentioned by binary code "AAAAA" is written into the address counter (AC) together with the CG RAM addressing condition. After this instruction execution, the data writing/reading is performed into/from the CG RAM. #### (i) Set DD RAM Address Set DD RAM address instruction is executed when the code "1" is written into DB_7 and the address is written into DB_6 to DB_0 as shown above. The address data mentioned by binary code "AAAAAAA " is written into the address counter (AC) together with the DD RAM addressing condition. After this instruction execution, the data writing/reading is performed into/from the DD RAM. Note: The "AAAAAAA " is addressed $(00)_{\rm H}$ to $(09)_{\rm H}$ for the 1st line, the $(00)_{\rm H}$ to $(15)_{\rm H}$ for the 2rd line, and the $(40)_{\rm H}$ to $(49)_{\rm H}$ for the 3rd line. # (j) Read Busy Flag & Address This instruction reads out the internal status of the NJU6424. When this instruction is executed, the busy flag (BF) which indicate internal operation is read out from DB_7 and the address of the CG RAM or DD RAM is read out from DB_6 to DB_0 (the address for the CG RAM or DD RAM is determined by the previous instruction). (BF)="1" indicates that internal operation is in progress. The next instruction is inhibited when (BF)="1". Check the (BF) status before the next write operation. #### (k) Write Data to CG RAM or DD RAM · Write Data to DD RAM | | RS | R/W | DB7 | DB^e | DB_5 | DB₄ | DВз | DB ₂ | DB 1 | DBo | | |------|----|-----|---------------|--------|--------|-----|-----|-----------------|--------|--------|---| | Code | 1 | 0 | D | D | D | D | D | D | D | D | | | | | | ← ig | ner or | der bi | t | | Lowe | rjorde | r bit→ | - | Write Data to DD RAM instruction is executed when the code "1" is written into (RS) and code "0" is written into (R/W). By the execution of this instruction, the binary 8 bit data "DDDDDDDD" are written into the DD RAM. The selection of the DD RAM is determined by the previous instruction (DD RAM must be selected before). After this instruction execution, the address increment (+1) or decrement (-1) is performed automatically according to the entry mode set. And the display shift is also executed according to the previous entry mode set. · Write Data to CG RAM Write Data to CG RAM instruction is executed when the code "1" is written into (RS) and code "0" is written into (R/W). By the execution of this instruction, the binary 5 bit data "DDDDD" are written into the CG RAM. The selection of the CG RAM is determined by the previous instruction (CG RAM must be selected before). After this instruction execution, the address increment(+1) or decrement (-1) is performed automatically according to the entry mode set. And the display shift is also executed according to the previous entry mode
set. ### (1) Read Data from CG RAM or DD RAM · Read Data from DD RAM | | RS | R/W | DB7 | DBe | DBs | DB₄ | DВз | DB ₂ | DB 1 | DBo | _ | |------|----|-----|------|--------|--------|-----|-----|-----------------|--------|--------|----------| | Code | 1 | 1 | D | D | D | D | D | D | D | D | | | | | | ←Hig | ner or | der bi | t | | Lowe | r orde | r bit→ | - | Read Data from DD RAM instruction is executed when the code "1" is written into (RS) and (R/W). By the execution of this instruction, the binary 8 bit data "DDDDDDDD" are read out from the DD RAM. Read Data from CG RAM Read Data from CG RAM instruction is executed when the code "1" is written into (RS) and (R/W). By the execution of this instruction, the binary 5 bit data "DDDDD" are read out from the CG RAM. The CG RAM or DD RAM is determined by previous instruction. Before executing this instruction, either the CG RAM address set or DD RAM address set must be executed, otherwise the first read out data are invalidated. When this instruction is serially executed, the next address data is normally read from the second read. The address set instruction is not required if the cursor shift instruction is executed just beforehand (only DD RAM reading). The cursor shift instruction has same function as the DD RAM address set, so that after reading the DD RAM, the address increment or decrement is executed automatically according to the entry mode. But display shift does not occur regardless of the entry mode. Note: The address counter(AC) is automatically incremented or decremented by 1 after write instruction to either of the CG RAM or DD RAM. Even if the read instruction is executed after this instruction, the addressed data can not be read out correctly. For a correct data read out, either the address set instruction or cursor shift instruction (only with DD RAM) must be implemented just before this instruction or from the second time read out instruction execution if the read out instruction is executed 2 times consecutively. #### (3-2) Initialization using the internal reset circuits (a) 8-bit operation (Using internal reset circuits) At 8-bit operation, the Function set, Display On/Off Control and Entry Set Instruction must be executed before the data input, as shown below. The DD RAM of the NJU6424 can store up to 30 characters, as explained before, therefore the advertising moving display is available when combined with the display shift operation. Since the display shift operation changes only display position and the DD RAM contents remain unchanged, display data which are entered first can be output when the return home operation is performed. (b) 4-bit operation (Using internal reset circuits). In the 4-bit operation, the function set must be performed by the user programming. When the power is turned on, 8-bit operation is selected automatically, therefore the first input is performed under 8-bit operation. In this operation, full instruction can not input because of terminals DB_0 to DB_3 are no connection. Therefore, same instruction must be rewritten on the RS, R/W and DB_7 to DB_4 , as shown below. Since one operation is completed by the two accesses in the 4-bit operation mode, rewrite is required to set the instruction code in full. 4-bit operation is shown as follows: Initialized. No display appears. Set the 4-bit operation. This step is executed in 8-bit mode set by the initialization. Set the 4-bit operation. The 4-bit operation starts from this step. Turn on display and cursor. Entire display is in space mode set by the initialization. Example for set address increment and cursor right shift when the data write to the DD RAM or CG RAM. (3-3) Initialization by instruction If the power supply conditions for the correct operation of the internal reset circuits are not met, the NJU6424 must be initialized by the instruction. (a) Initialization by Instruction in 8-bit interface length. # (b) Initialization by Instruction in 4-bit interface length #### (4) LCD DISPLAY ### (4-1) Power Supply for LCD Driving NJU6424 incorporate voltage tripler to generate LCD driving high voltage and bleeder resistance. The voltage tripler generate about triple voltage from the $V_{\rm cl}$ input voltage (7.8V typ at lout=1mA and $V_{\rm cl}$ =3V) and bleeder resistance generate each LCD driving voltage. The bleeder resistance is set 1/5 bias suitable for 1/26 duty ratio and 1M Ω per resistance. Furthermore, the bleeder resistance output the LCD Driving bias level through the voltage follower OP-AMP to get a enough display characteristics with low power consumption. LCD Driving Voltage vs Duty Ratio | Power supply | Duty Ratio | 1/26 | | | | | |--------------|------------|--------------------------------------|--|--|--|--| | Supply | Bias | 1/5 | | | | | | ٧ | rcp | V _{DD} to V _{50UT} | | | | | Voltage Tripler used example #### (4-2) Relation between oscillation frequency and LCD frame frequency. As the NJU6424 incorporate oscillation capacitor and resistance for CR oscillation, 80kHz oscillation is available without any external components. The LCD frame frequency is able to be calculated as follows. 1 frame frequency = fosc / (50×26) = 61.5 (Hz) # (5) Interface with MPU NJU6424 can be interfaced with both of 4/8-bit MPU and the two-time 4-bit or one-time 8-bit data transfer is available. # (5-1) 4-bit MPU interface When the interface length is 4-bit, the data transfer is performed by 4 lines connected to DB₄ to DB₇ (DB₀ to DB₃ are not used). The data transfer with the MPU is completed by the two-time 4-bit data transfer. The data transfer is executed in the sequence of upper 4-bit (the data DB_4 to DB_7 at 8-bit length) and lower 4-bit (the data DB_0 to DB_3 at 8-bit length). The busy flag check must be executed after two-time 4bit data transfer (1 instruction execution). In this case the data of busy flag and address counter are also output twice. #### (5-2) 8-bit MPU interface # ■ ABSOLUTE MAXIMUM RATINGS (Ta=25℃) | PARAMETER | SYMBOL | RATINGS | UNIT | |-----------------------|-----------------|------------------------------|------| | Supply Voltage | V _{DD} | - 0.3 ~ + 7.0 | ٧ | | Input Voltage | Vin | - 0.3 ~ V _{DD} +0.3 | ٧ | | Operating Temperature | Topr | - 30 ~ + 80 | r | | Storage Temperature | Tstg | - 55 ~ + 125 | ဗ | - Note 1) If the LSI are used on condition above the absolute maximum ratings, the LSI may be destroyed. Using the LSI within electrical characteristics is strongly recomended for normal operation. Use beyond the electric characteristics conditions will cause malfunction and poor riliability. - Note 2) All voltage values are specified as $V_{ss} = 0V$ - Note 3) The relation: VDD≧Vci>Vss, VDD>Vss≧VsŏuT, Vss=0V must be maintained. Turn on VDD and Vci at same time or turn on VDD first then turn on Vci must be required. If the turn on sequence does not meet above conditions, latch up will occur. - Note 4) Decoupling capacitor should be connected between V_{c:} and V_{ss} due to the stabilized operation for the voltage Doubler. # ■ ELECTRICAL CHARACTERISTICS (V_{DD} =3V±20% , Ta=-20 ~ +75°C) | PARA | METER | SYMBOL | CONDITIONS | MIN | TYP . | MAX | UNIT | NOTE | |-------------------------------|-----------------------|-----------------|--|--------------------------|-------|----------------------------|----------|------| | Operating Voltage | | V _{DD} | | 2.4 | 3.0 | 3.6 | ٧ | | | 1 V-1 | 4 | Vih | | 0.8V _{DD} | | VDD | v | 1 | | Input Vol | tage | VIL | | | | 0.2V _{DD} | <u> </u> | 4 | | 0 | | Vон | -l _{он} =0.205mA | 2.0 | | | v | _ | | Output Vo | Itage | Vol | 1 _{0L} =1.6mA | | | 0.5 | | J | | Driver On | -resist.(COM) | Rсом | 土ld=5uA(All common term.) | | | 20 | ا | | | Driver On | -resist.(SEG) | Rseg | ±ld=5uA(All seg. term.) | | | 30 | K75 | 0 | | Input Lea | Input Leakage Current | | $V_{IN}=0 \sim V_{DD}$ | - 1 | | 1 | uA | 6 | | Pull-up Resistance
Current | | - _P | VDD=3V,RS,R/W,RESET,
and DB Terminals | 10 | 25 | 50 | uA | | | Operating | Operating Current | | V _{DD} =3V, fosc=Internal freq | | 150 | 250 | uА | 7 | | V-14 | Output Volt. | Vup | Vup Vci=3V, louT=1mA, Ta=25°C | | - 1.8 | | ٧ | | | Voltage | Input Volt. | Vci | - | 1.8 | | VDD | ٧ | | | Doubler | Volt. Effiec | V _{ef} | R _L =∞ | 95.0 | 99.9 | 0.2V _{DD} V 4 | | | | V-14 | Output Volt. | Vup | V _{с i} =3V, I _{о∪т} =1mA, Та=25°С | - 4.6 | - 4.8 | | ٧ | | | Voltage | Input Volt. | Vci | - | 1.8 | | V _{DD} | ٧ | | | Tripler | Volt. Effiec | V _{ef} | R _L =∞ | 95.0 | 99.9 | | % | | | Bleeder r | esistance | R₃ | V _{DD} -V5=3V | | 1.0 | | MΩ | | | Oscillati | on Frequency | fosc | V _{DD} =3V, Ta=25℃ | 56 | 80 | 104 | kHz | | | LCD Driving Voltage | | VLCD | V ₅ Terminal, V _{DD} =3V | V _{DD} -
3.0 | | V _{DD} -
13.5 | ٧ | 10 | | V ₅ Termin | al Current | 15 | V _{DD} =V _{c1} =3V | | | 170 | uA | | # Note 5) Input/Output structure except LCD driver are shown below: Input Terminal Structure E Terminal RS, R/W and RESET Terminals DBo to DB7 Terminals Input/Output Terminal Structure Note 6) Apply to the Input/Output Terminal. Note 7) Except pull-up resistance current and output driver current. Note 8) Except Input/output current but including the current flow on bleeder resistance. If the input level is medium, current consumption will increase due to the penetration current. Therefore, the input level must be fixed to "H" or "L". Operating Current Measurement Circuit - Note 9) R_{COM} and R_{SEG} are the resistance values between power supply terminals (V_{DD} , V_{SOUT}) and each common terminal(COM_1 to COM_{24} , COMMK1 and COMMK2), and supply voltage (V_{DD} , V_{SOUT}) and each segment terminal(SEG_1 to SEG_{SO}) respectively, and measured when the current I_4 is flown on every common and segment terminals at a same time. - Note 10) R_{COM} or R_{SEG} are able to be decreased by the resistance
connected between BIAS and VSS terminal. - Note 11) Apply to the output voltage from each COM and SEG are less than ± 0.15 V against the LCD driving constant voltage (V_{DD} , V_5) at no load condition. Voltage Doubler Measurement Circuit Voltage Tripler Measurement Circuit Voltage Doubler/Tripler Internal Clock Frequency = 10kHz typ. BIAS Terminal Performance measurement circuit (Output current of Voltage Follower) Internal Bleeder Resistance and Voltage Follower BIAS Terminal Performance • Bus timing characteristics (V_{DD} = 3.0V \pm 20%, V_{SS} = 0V, Ta = -20 \sim +75°C) Write operation (Write from MPU to NJU6424) | PARAMETER | SYMBOL | MIN | MAX | CONDITION | UNIT | |-----------------------------|------------------|-----|-----|-----------|----------| | Enable Cycle Time | tcyce | 1 | | | us | | Enable Pulse Width "High" | level Pweh | 400 | | fig.1 | | | Enable Rise Time, Fall Time | ter, ter | | 20 | | | | Set up Time RS, R/W | , E tas | 40 | | | ns | | Address Hold Time | tan | 10 | | | | | Data Set up Time | t _{Dsw} | 60 | | _] | | | Data Hold Time | t _H | 10 | | | <u> </u> | Timing Characteristics (Write operation) fig. 1 # Read operation (Read from NJU6424 to MPU) | PARAMETER | SYMBOL | MIN | MAX | CONDITION | UNIT | |--------------------------------|----------|-----|-----|-----------|------| | Enable Cycle Time | tcyce | 1 | | | us | | Enable Pulse Width "High" leve | el Pwen | 600 | | | | | Enable Rise Time, Fall Time | ter, ter | | 20 | | | | Set up Time RS, R/W, E | tas | 40 | | fig.2 | ns | | Address Hold Time | tan | 10 | | | | | Data Delay Time | todw | | 600 | | | | Data Hold Time | tоон | 20 | | | | DBo~DB7 Load Condition: CL=100pF Timing Characteristics (Read operation) fig. 2 • The Input Condition when using the Hardware Reset Circuit | PARAMETER | SYMBOL | CONDITION | MIN | MAX | UNIT | |-----------------------------|--------|------------|-----|-----|------| | Reset Input "L" Level Width | trsL | fosc=80kHz | 1.2 | - | ms | • Power Supply Condition when using the internal initialization circuit (V_{DD} = 3.0V \pm 20%, V_{SS} = 0V, Ta = -20 \sim +75°C) | PARAMETER | SYMBOL | CONDITION | MIN | MAX | UNIT | |------------------------|--------|-----------|-----|-----|------| | Power Supply Rise Time | trdd | | 0.1 | 5 | ms | | Power Supply OFF Time | toff | | 1 | | illo | Since the internal initialization circuits will not operate normally unless the above conditions are met, in such a case initialize by instruction. (Refer to initialization by the instruction) toff specifies the power off time in a short period off or cyclical on/off. # LCD DRIVING WAVE FORM # 1/26 Duty Driving # ■ APPLICATION CIRCUITS (1) 10-character 3-line WITH ICON Display Example # ■ APPLICATION CIRCUITS (2) 8 bit MPU interface example (LCD driving voltage is generated by NJU6424) # NJU6424 # **MEMO** [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.