June 2001 Revised June 2003

NC7SZ11 TinyLogic UHS 3-Input AND Gate

FAIRCHILD

SEMICONDUCTOR

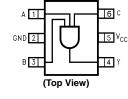
NC7SZ11 TinyLogic® UHS 3-Input AND Gate

General Description

The NC7SZ11 is a single 3-input AND Gate from Fairchild's Ultra High Speed Series of TinyLogic®. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad $V_{\mbox{\scriptsize CC}}$ operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range. The inputs and output are high impedance when $V_{CC}\xspace$ is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.

Features

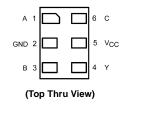
- Space saving SC70 6-lead package
- Ultra small MicroPak[™] leadless package
- Ultra High Speed; t_{PD} 2.7 ns Typ into 50 pF at 5V V_{CC}
- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented


Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZ11P6X	MAA06A	Z11	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SZ11L6X	MAC06A	E7	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Logic Symbol

Connection Diagrams



Pin One Orientation Diagram ннь

AAA represents Product Code Top Mark - see ordering code. Note: Orientation of Top Mark determines Pin One location. Read the Top

MicroPak is a trademark of Fairchild Semiconductor Corporation. © 2003 Fairchild Semiconductor Corporation DS500465

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation.

www.fairchildsemi.com

(Top \ Pin One

Product Code Mark left to right, Pin One is the lower left pin (see diagram)

Pin Descriptions

Pin Names	Description
A, B, C	Inputs
Y	Output

Function Table

	١	r = ABC	
	Inputs	Output	
Α	В	С	Y
Х	Х	L	L
Х	L	Х	L
L	Х	Х	L
н	Н	Н	н

H = HIGH Logic Level

L = LOW Logic Level X = Either LOW or HIGH Logic Level

Absolute Maximum Ratings(Note 1)

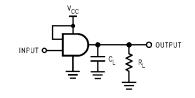
Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to +6V
DC Input Diode Current (IIK)	
@V _{IN} < -0.5V	–50 mA
@ V _{IN} > 6V	+20 mA
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–50 mA
@ $V_{OUT} > 6V$, $V_{CC} = GND$	+20mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SC70–5	150 mW

Recommended Operating Conditions (Note 2)

()	
Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Input Rise and Fall Time (t_r, t_f)	
$V_{CC} = 1.8V, 2.5V \pm 0.2V$	0 ns/V to 20 ns/V
$V_{CC} = 3.3 V \pm 0.3 V$	0 ns/V to 10 ns/V
$V_{CC} = 5.0V \pm 0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	
SC70–5	425°C/W

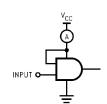
Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

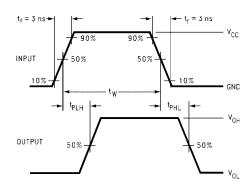

DC Electrical Characteristics

Symbol	Parameter	V _{CC}		$T_A = 25^{\circ}C$;	$T_A = -40^{\circ}$	C to +85°C	Units	Co	nditions
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	0	lations
VIH	HIGH Level Input Voltage	1.8 ± 0.15	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Input Voltage	1.8 ± 0.15			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{ОН}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		2.3	2.2	2.3		2.2			$V_{IN} = V_{IH}$	I _{OH} = -100 μA
		3.0	2.9	3.0		2.9			$v_{IN} = v_{IH}$	$I_{OH} = -100 \mu A$
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29		V		$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.5	2.80		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.4	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.9	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1		V _V	I _{OI} = 100 μA
		3.0		0.0	0.1		0.1		$V_{IN} = V_{IL}$ $I_{OL} = 1$	$I_{OL} = 100 \mu A$
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24	V		$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±1		±10	μΑ	V _{IN} = 5.5V,	GND
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	VIN or VOUT	_r = 5.5V
Icc	Quiescent Supply Current	1.65 to 5.5			2.0		20	μA	V _{IN} = 5.5V,	GND

Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$			T _A = -40°	C to +85°C	Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH} ,	Propagation Delay	1.8 ± 0.15	2.0	9.0	18.5	2.0	19.0			
t _{PHL}		2.5 ± 0.2	0.8	4.9	10.5	0.8	11.0	ns	$C_L = 15 \text{ pF},$	Figures
		3.3 ± 0.3	0.5	3.5	8.5	0.5	9.0	115	$R_L = 1 \ M\Omega$	1, 3
		5.0 ± 0.5	0.5	2.5	6.5	0.5	7.0			
t _{PLH} ,	Propagation Delay	3.3 ± 0.3	1.5	4.1	8.5	1.5	9.0	ns	$C_{L} = 50 \text{ pF},$	Figures 1, 3
t _{PHL}		5.0 ± 0.5	0.8	2.9	7.5	0.8	8.0	115	$R_L=500\Omega$	
CIN	Input Capacitance	0		4				pF		
C _{PD} Power	Power Dissipation Capacitance	3.3		20				pF	(Note 3)	Figure 2
		5.0		25				рг	(14018-3)	Figure 2

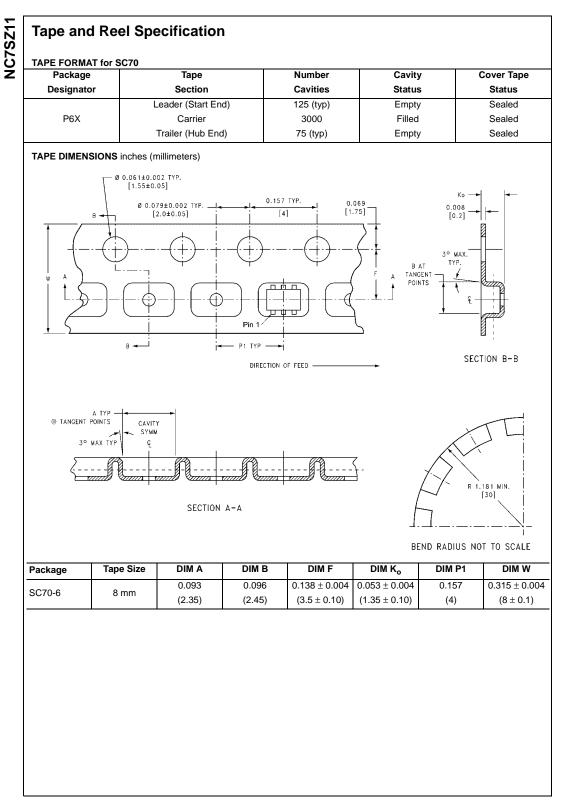

Note 3: CPD is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD}) (V_{CC}) (f_{N}) + (I_{CC} static)$

AC Loading and Waveforms



 $\rm C_L$ includes load and stray capacitance Input PRR = 1.0 MHz, $\rm t_w$ = 500 ns

FIGURE 1. AC Test Circuit


Input = Ac Waveform; t_r = t_f = 1.8 ns; PRR = 10 MHz; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit

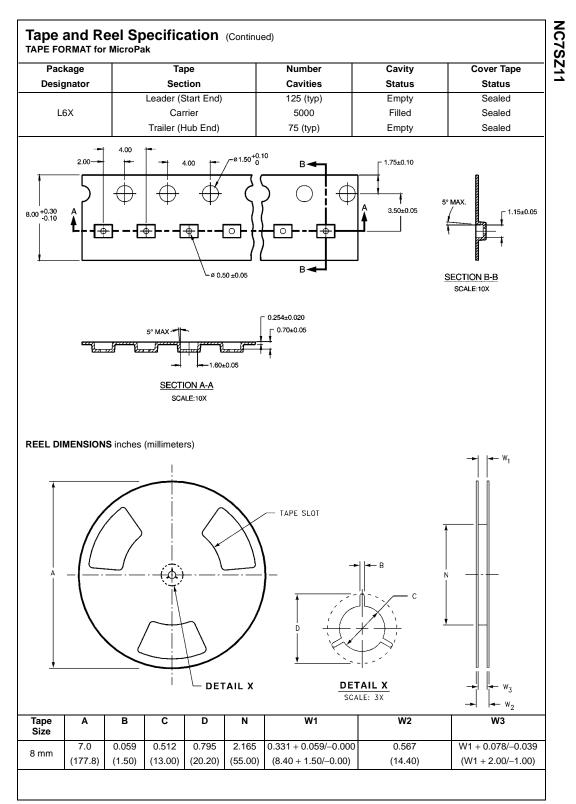
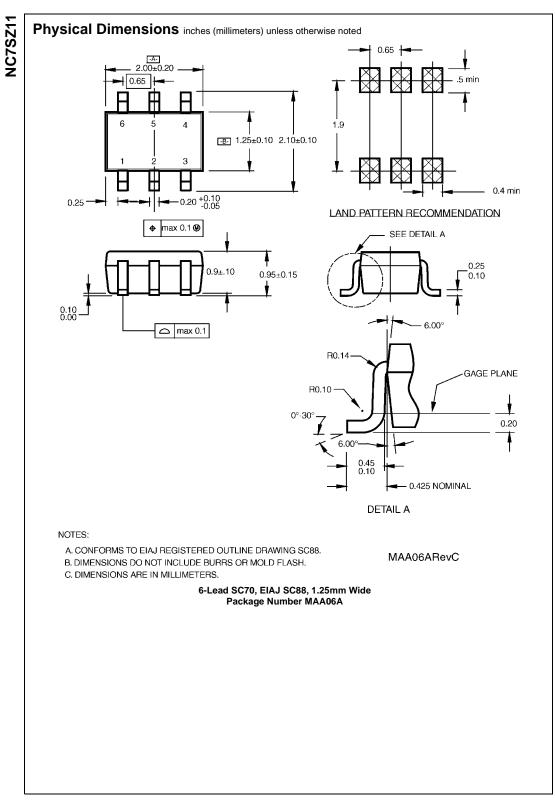
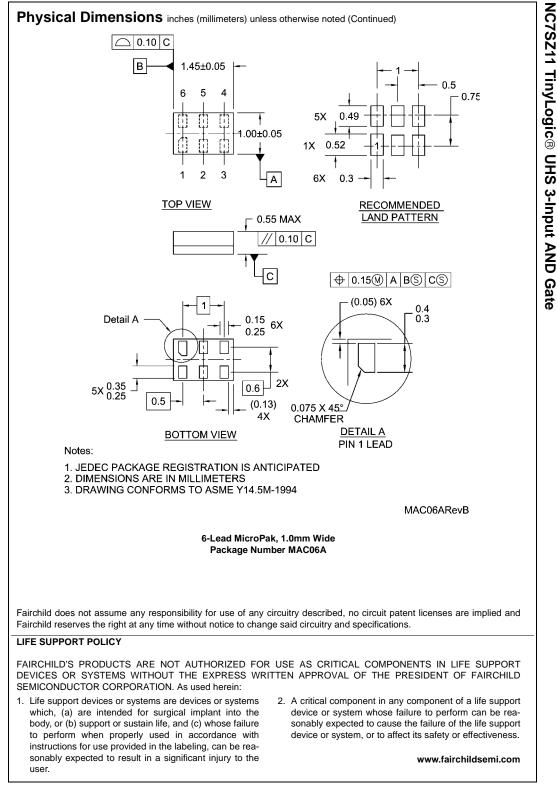


FIGURE 3. AC Waveforms

www.fairchildsemi.com


3



5

www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com