
- 7 A Continuous Collector Current
- 15 A Peak Collector Current
- 60 W at 25°C Case Temperature

TO-220 PACKAGE (TOP VIEW)

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
Collector-base voltage (I _F = 0)	BU406	V	400	V	
Collector-base voltage (IE = 0)	BU407	V _{CBO}	330	V	
Collector-emitter voltage (V _{BF} = -2 V)	BU406	V	400	V	
Collector-entitler voltage (V _{BE} = -2 V)	BU407	V _{CEX}	330	V	
Collector-emitter voltage (I _B = 0)	BU406	V	200	V	
Collector-entitler voltage (IB = 0)	BU407	V _{CEO}	150	V	
Emitter-base voltage		V _{EB}	6	V	
Continuous collector current		I _C	7	Α	
Peak collector current (see Note 1)		I _{CM}	15	Α	
Continuous base current			4	Α	
Continuous device dissipation at (or below) 25°C case temperature			60	W	
Operating junction temperature range	Tj	-55 to +150	°C		
Storage temperature range	T _{stg}	-55 to +150	°C		

NOTE 1: This value applies for $t_p \le 10$ ms, duty cycle $\le 2\%$.

BU406, BU407 NPN SILICON POWER TRANSISTORS

AUGUST 1978 - REVISED MARCH 1997

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS					MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C =	30 mA	I _B = 0			140			٧
		V _{CE} =		$V_{BE} = 0$		BU406			5	
		V _{CE} =	330 V	$V_{BE} = 0$		BU407			5	
1	Collector-emitter	V _{CE} =	250 V	$V_{BE} = 0$		BU406			0.1	mA
ICES	cut-off current	V _{CE} =	200 V	$V_{BE} = 0$		BU407			0.1	ША
		V _{CE} =	250 V	$V_{BE} = 0$	$T_C = 150$ °C	BU406			1	
		V _{CE} =	200 V	$V_{BE} = 0$	$T_C = 150$ °C	BU407			1	
I _{EBO}	Emitter cut-off	V _{FB} =	6 V	I _C = 0					1	mA
iEBO	current	v _{EB} =	0 0 1	IC - 0					'	ША
h _{FE}	Forward current	V _{CE} =	10 V	$I_C = 4 A$	(see Notes 2 and	4 3)	12			
''FE	transfer ratio	V _{CE} =	10 V	$I_C = 0.5 A$	(See Notes 2 and 3)		20			
V _{CE(sat)}	Collector-emitter	I _B =	0.5 A	I _C = 5 A	(see Notes 2 and 3)				1	V
VCE(sat)	saturation voltage	ıB –	0.5 A	ic = 3A	(500 110105 2 4114 5)			'	V	
Ver	Base-emitter	I _B =	0.5 A	I _C = 5 A	(see Notes 2 and 3)			1.2	V	
V _{BE(sat)}	saturation voltage		0.5 A	10 - 071				1.2	v	
f _t	Current gain	V _{CF} =	5 V	$I_{\rm C} = 0.5 {\rm A}$	f = 1 MHz	(see Note 4)		6		MHz
't	bandwidth product	V CE -	J V	10 = 0.5 A	(555 14016 4)		J		1711 12	
C _{ob}	Output capacitance	V _{CB} =	20 V	I _E = 0	f = 1 MHz			60		pF

NOTES: 2. These parameters must be measured using pulse techniques, $t_p = 300 \mu s$, duty cycle $\leq 2\%$.

thermal characteristics

	PARAMETER			MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			2.08	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			70	°C/W

inductive-load-switching characteristics at 25°C case temperature (unless otherwise noted)

		PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
Γ	t _s	Storage time	Ic = 5 A	I 0.5A	(see Figures 1 and 2)		2.7		μs
Ī	t _(off)	Turn off time	IC = 2 K	$I_{B(end)} = 0.5A$	(see rigules railu z)			750	ns

 $^{\ ^{\}dagger}\ \ \text{Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.}$

^{3.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

^{4.} To obtain f_t the $[h_{FE}]$ response is extrapolated at the rate of -6 dB per octave from f = 1 MHz to the frequency at which $[h_{FE}] = 1$.

PARAMETER MEASUREMENT INFORMATION

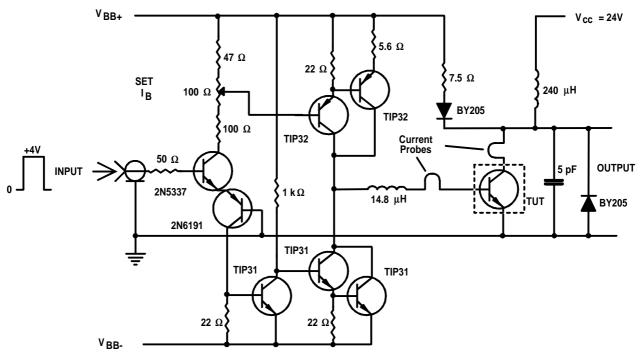
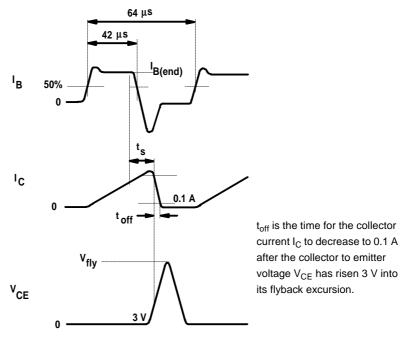
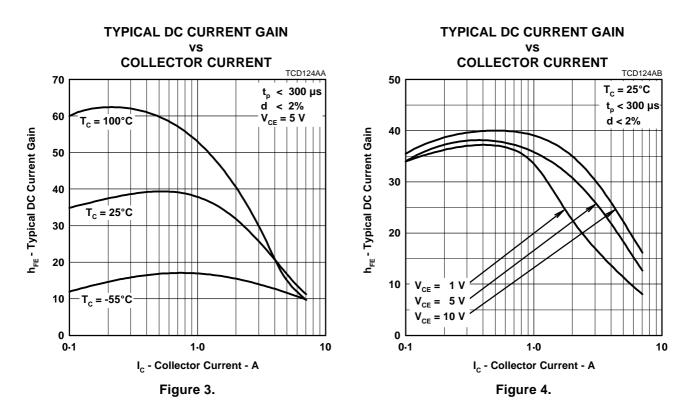
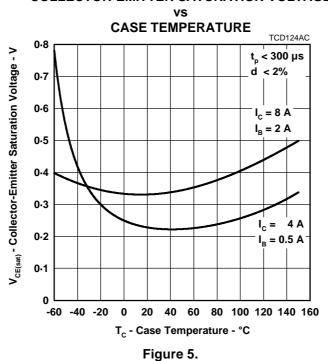


Figure 1. Inductive-Load Switching Test Circuit

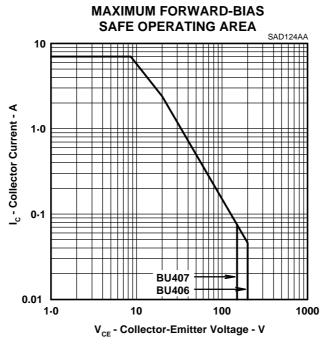



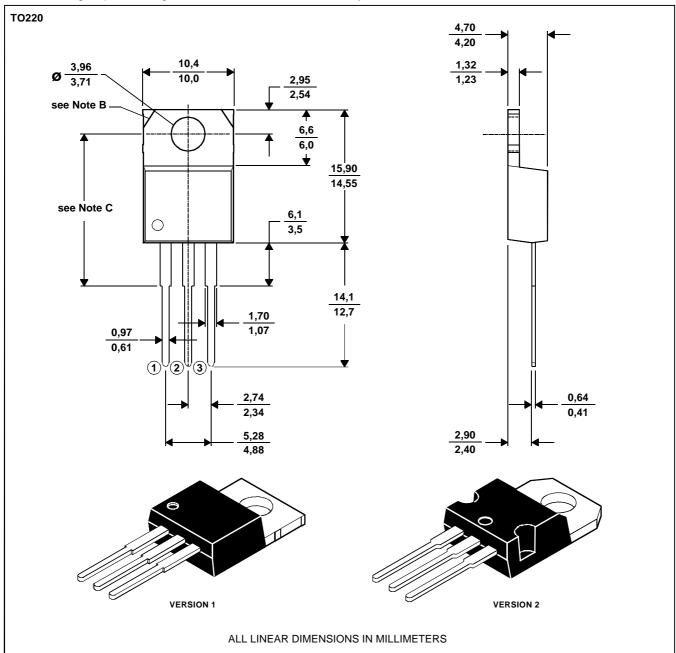

Figure 2. Inductive-Load Switching Waveforms

TYPICAL CHARACTERISTICS

COLLECTOR-EMITTER SATURATION VOLTAGE

MAXIMUM SAFE OPERATING REGIONS




Figure 6.

MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. The centre pin is in electrical contact with the mounting tab.

B. Mounting tab corner profile according to package version.

C. Typical fixing hole centre stand off height according to package version. Version 1, 18.0 mm. Version 2, 17.6 mm. **MDXXBE**

AUGUST 1978 - REVISED MARCH 1997

IMPORTANT NOTICE

Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current.

PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except as mandated by government requirements.

PI accepts no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.

Copyright © 1997, Power Innovations Limited

