
Technical Data Advance Information

MSC8102/D Rev. 2, 4/2003

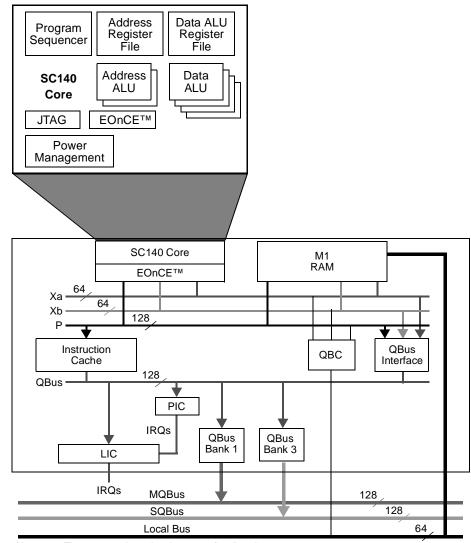
Quad Core 16-Bit Digital Signal Processor

*There is a single memory controller that controls access to both the local bus and the system bus.

Figure 1. MSC8102 Block Diagram

The MSC8102 is a highly integrated system-ona-chip that combines four StarCore SC140 extended cores with an RS-232 serial interface, four time-division multiplexed (TDM) serial interfaces, thirty-two general-purpose timers, a flexible system interface unit (SIU), and a multi-channel DMA engine. The four extended cores can deliver a total 4400 DSP MMACS performance at 275 MHz.

Each core has four arithmetic logic units (ALUs), internal memory, a write buffer, and two interrupt controllers. The MSC8102 targets high-bandwidth highly computational DSP applications and is optimized for wireless transcoding and packet telephony as well as high-bandwidth base station applications. The MSC8102 delivers enhanced performance while maintaining low power dissipation and greatly reduces system cost.


Table of Contents

		Features	iv			
		Product Documentation	viii			
Chapter 1	Signal/ Connection Description					
-	1.1	Power Signals	1-3			
	1.2	Clock Signals	1-3			
	1.3	Reset and Configuration Signals	1-4			
	1.4	Direct Slave Interface, System Bus, and Interrupt Signals	1-4			
	1.5	Memory Controller Signals	1-12			
	1.6	GPIO, TDM, UART, and Timer Signals				
	1.7	EOnCE Event and JTAG Test Access Port Signals	1-22			
	1.8	Reserved Signals	1-22			
Chapter 2	Spe	ecifications				
-	2.1	Introduction	2-1			
	2.2	Maximum Ratings	2-2			
	2.3	Recommended Operating Conditions	2-3			
	2.4	Thermal Characteristics	2-3			
	2.5	DC Electrical Characteristics	2-4			
	2.6	AC Timings	2-5			
Chapter 3	Pac	ckaging				
-	3.1	Pinout and Package Information	3-1			
	3.2	FC-CBGA (HCTE) Package Description	3-1			
	3.3	FC-CBGA (HCTE) Package Mechanical Drawing	3-34			
	3.4	FC-PBGA Package Mechanical Drawing	3-35			
Chapter 4	Des	sign Considerations				
-	4.1	Thermal Design Considerations	4-1			
	4.2	Power Supply Design Considerations	4-1			
	4.3	Connectivity Guidelines	4-2			
	4.4	Power Considerations	4-3			
	4.5	Layout Practices	4-4			

Data Sheet Conventions

OVERBAR	Used to indicate a signal tow.)	hat is active when pulled	low (For example, the \overline{RESI}	ET pin is active when
"asserted"	Means that a high true (ad	ctive high) signal is high o	r that a low true (active low)	signal is low
"deasserted"	Means that a high true (ad	ctive high) signal is low or	that a low true (active low) :	signal is high
Examples:	Signal/Symbol	Logic State	Signal State	Voltage
	PIN	True	Asserted	V_{IL}/V_{OL}
	PIN	False	Deasserted	V_{IH}/V_{OH}
	PIN	True	Asserted	V _{IH} /V _{OH}
	PIN	False	Deasserted	V_{IL}/V_{OL}

Note: Values for V_{IL} , V_{OL} , V_{IH} , and V_{OH} are defined by individual product specifications.

Notes: 1. The arrows show the data transfer direction.
2. The QBus interface includes a bus switch, write buffer, fetch unit, and a control unit that defines four QBus banks. In addition, the QBC handles internal memory contentions.

Figure 2. SC140 Extended Core Block Diagram

Features

- Four high-performance StarCore SC140 Digital Signal Processor (DSP) extended cores delivering up to 4400 MMACS using 16 ALUs running at up to 275 MHz, delivering a performance equivalent to a single SC140 core running at 1.1 GHz
- Each extended core includes:
 - SC140 core processor.
 - Local 224 KB memory space (M1) accessed by the SC140 core with no wait states and atomic access.
 - 16 KB, 16-way instruction cache (ICache).
 - Programmable interrupt controller (PIC).
 - Local interrupt controller (LIC).
- Each SC140 core provides the following:
 - Up to 1100 million multiply-accumulates per second (MMACS) using an internal 275 MHz clock at 1.6 V. A multiply-accumulate operation includes a multiply-add instruction with the associated data move and pointer update.
 - 4 ALUs per SC140 core.
 - 16 data registers, 40 bits each.
 - 27 address registers, 32 bits each.
 - Hardware support for fractional and integer data types.
 - Very rich 16-bit wide orthogonal instruction set.
 - Up to six instructions executed in a single clock cycle.
 - Variable-length execution set (VLES) that can be optimized for code density and performance.
 - IEEE 1149.1 JTAG port.
 - Enhanced on-device emulation (EOnCE) module with real-time debugging capabilities.
- Large internal memory spaces (1.440 MB total).
 - 224 KB of M1 memory per core (896 KB total).
 - 16 KB of ICache per core (64 KB total).
 - 476 KB shared memory (M2) operating at the core frequency, accessible from all four SC140 cores via the MQBus, and accessible from the local bus.
 - 4 KB boot ROM accessible from all four SC140 cores via the MQBus.
- Internal PLL for generating up to 275 MHz clock for the SC140 cores and up to 91.67 MHz for the 60x-compatible system bus, the local bus and other modules. PLL values are determined at reset based on configuration signal values.
- Very flexible System Interface Unit (SIU) with a memory controller to support a 32/64-bit wide 60x-compatible system bus to access memory and memory-mapped devices:
 - Reset controller.
 - Real-time clock register.
 - Periodic interrupt timer (PIT).
 - Hardware bus monitors for the 60x-compatible system bus and local bus.
 - Software watchdog timer function.
- Flexible eight-bank memory controller:
 - Three user-programmable machines (UPMs), general-purpose chip-select machine (GPCM), and a page-mode SDRAM machine.
 - Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, FLASH and other user-definable peripherals.
 - Byte enables for either 64-bit or 32-bit bus width mode.
 - Eight external memory banks (banks 0–7). Two additional memory banks control IPBus peripherals and internal memories (banks 9, 11). Each bank has the following features:

- 32-bit address decoding with programmable mask.
- Variable block sizes (32 KB to 4 GB).
- Selectable memory controller machine.
- Two types of data errors check/correction (on 60x-compatible system bus only): Normal odd/even parity and Read-modify-write (RMW) odd/even parity for single accesses.
- Write-protection capability.
- Control signal generation machine selection on a per-bank basis.
- Flexible chip-select assignment between the 60x-compatible system bus and local bus.
- Support for internal or external masters on the 60x-compatible system bus.
- Data buffer controls activated on a per-bank basis.
- Atomic operation.
- RMW data parity check (on 60x-compatible system bus only).
- Extensive external memory-controller/bus-slave support.
- Parity byte select signal, which enables a fast, glueless connection to RMW-parity devices (on 60x-compatible system bus only).
- Data pipeline to reduce data set-up time for synchronous devices.
- Direct Slave Interface (DSI) that provides a 32/64-bit wide slave host interface. It is part of a dual-system bus architecture shared with the external system bus. The dual architecture allows the DSI data bus to be 32 or 64 bits wide and the system data bus to be 64 or 32 bits wide, respectively. It operates only as a slave device under the control of an external host processor.
- Multi-channel DMA controller:
 - 16 time-multiplexed unidirectional channels with infrastructure of 32 channels.
 - Services up to four external peripherals.
 - Supports DONE or DRACK protocol on two external peripherals.
 - Each channel group services 16 internal requests generated by eight internal FIFOs. Each FIFO generates:
 - a watermark request to indicate that the FIFO contains data for the DMA to empty and write to the destination
 - a hungry request to indicate that the FIFO can accept more data.
 - Priority-based time-multiplexing between channels using 16 internal priority levels
 - A flexible channel configuration:
 - All channels support all features.
 - All channels connect to the 60x-compatible system bus or local bus.
 - Flyby transfers in which a single data access is transferred directly from the source to the destination without using a DMA FIFO.
- External interfaces and control modules managed on the internal peripheral bus (IPBus) by an IP master device, including:
 - Four time-division multiplexing (TDM) modules, each supporting up to 64 channels (256 channels total)
 - RS-232 interface/universal asynchronous receiver/transmitter (UART)
 - Two 16-timer modules (32 timers total)
 - Eight hardware semaphore registers used by external hosts to control shared resources and ensure data coherency
 - Thirty-two general-purpose input/output (GPIO) signals
 - Global interrupt controller (GIC) to handle external interrupt functions (input and output)
- Up to four independent TDM modules, each with the following features:
 - Either totally independent receive and transmit, each having one data line, one clock line, and one frame sync line or four data lines, one clock and one frame sync that are shared between the transmit and receive.
 - Glueless interface to E1/T1 frames and MVIP, SCAS, and H.110 buses.

- Hardware A-law/μ-law conversion
- Up to 50 Mbps per TDM (50 MHz bit clock if one data line is used, 25 MHz if two data lines are used, 12.5 MHz if four data lines are used).
- Up to 256 channels.
- Up to 16 MB per channel buffer (granularity 8 bytes), where A/μ law buffer size is double (granularity 16 byte)
- Receive buffers share one global write offset pointer that is written to the same offset relative to their start address.
- Transmit buffers share one global read offset pointer that is read from the same offset relative to their start address.
- All channels share the same word size.
- Two programmable receive and two programmable transmit threshold levels with interrupt generation that can be used, for example, to implement double buffering.
- Each channel can be programmed to be active or inactive.
- 2-, 4-, 8-, or 16-bit channels are stored in the internal memory as 2-, 4-, 8-, or 16-bit channels, respectively.
- The TDM Transmitter Sync Signal (TxTSYN) can be configured as either input or output.
- Frame Sync and Data signals can be programmed to be sampled either on the rising edge or on the falling edge of the clock.
- Frame sync can be programmed as active low or active high.
- Selectable delay (0–3 bits) between the Frame Sync signal and the beginning of the frame.
- MSB or LSB first support.

• UART

- Two signals for transmit data and receive data.
- No clock, asynchronous mode.
- Can be serviced either by the SC140 DSP cores or an external host on the 60x-compatible system bus or on the DSI.
- Full-duplex operation.
- Standard mark/space non-return-to-zero (NRZ) format.
- 13-bit baud rate selection.
- Programmable 8-bit or 9-bit data format.
- Separately enabled transmitter and receiver.
- Programmable transmitter output polarity.
- Two receiver wakeup methods:
 - Idle line wakeup.
 - Address mark wakeup.
- Separate receiver and transmitter interrupt requests.
- Eight flags, the first five can generate interrupt request:
 - Transmitter empty.
 - Transmission complete.
 - Receiver full.
 - Idle receiver input.
 - Receiver overrun.
 - Noise error.
 - Framing error.
 - Parity error.
- Receiver framing error detection.
- Hardware parity checking.
- 1/16 bit-time noise detection.
- Maximum bit rate 6.25 Mbps.

- Single-wire and loop operations.
- Timers
 - Two modules of 16 timers each.
 - Each timer has the following features:
 - Cyclic or one-shot.
 - Input clock polarity control.
 - Interrupt request when counting reaches a programmed threshold.
 - Pulse or level interrupts.
 - Dynamically updated programmed threshold.
 - Read counter any time.
 - Watchdog mode for the timers that connect to the device.
- Hardware semaphores. Eight coded hardware semaphores, locked by simple write access without need for read-modify-write mechanism.
- General-Purpose I/O (GPIO) port:
 - 32 bidirectional signal lines that either serve the peripherals or act as programmable I/O ports.
 - Each port can be programmed separately to serve up to two dedicated peripherals, and each port supports open-drain output mode.
- Global Interrupt Controller (GIC):
 - Consolidation of chip maskable interrupt and non-maskable interrupt sources and routing to INT_OUT, NMI_OUT, and to the cores.
 - Generation of 32 virtual interrupts (eight to each SC140 core) by a simple write access.
 - Generation of virtual $\overline{\text{NMI}}$ (one to each SC140 core) by a simple write access.
- Software support, with support from industry-leading third parties:
 - Real-Time Operating Systems (RTOS):
 - Fully supports MSC8102 device architecture (multi-core, memory hierarchy, ICache, timers, DMA, interrupts, peripherals).
 - High-performance and deterministic, delivering predictive response time.
 - Optimized to provide low interrupt latency with high data throughput.
 - Preemptive and priority-based multitasking.
 - Fully interrupt/event driven.
 - Small memory footprint.
 - Comprehensive set of APIs.
 - Fully supports MSC8102 DMA, interrupts, and timer schemes.
 - Multi-core support:
 - Enables use of one instance of kernel code all four SC140 cores.
 - Dynamic and static memory allocation from local memory (M1) and shared memory (M2).
 - Distributed system support, enables transparent inter-task communications between tasks running inside the SC140 cores and the other tasks running on devices on the board or remote devices in the network
 - Messaging mechanism between tasks using mailboxes and semaphores.
 - Networking support; data transfer between tasks running inside and outside the device using networking protocols.
 - Includes integrated device drivers for such peripherals as TDM, UART, and external buses.
 - Additional features:
 - Incorporates task debugging utilities integrated with compilers and vendors.
 - Board support package (BSP) for MSC8102ADS.
 - Integrated Development Environment (IDE):

- C/C++ compiler with in-line assembly. Enables the developer to generate highly optimized DSP code. It translates code written in C/C++ into parallel fetch sets and maintains high code density.
- Librarian. Enables the user to create libraries for modularity.
- C libraries. A collection of C/C++ functions for the developer's use.
- Linker. Highly efficient linker to produce executables from object code.
- Debugger. Seamlessly integrated real-time, non-intrusive multi-mode debugger that enables debugging of highly optimized DSP algorithms. The developer can choose to debug in source code, assembly code, or mixed mode.
- Simulator. Device simulation models, enables design and simulation before the hardware arrival.
- Profiler. An analysis tool using a patented Binary Code Instrumentation (BCI) technique that enables the developer to identify program design inefficiencies.
- Version control. CodeWarrior® includes plug-ins for ClearCase, Visual SourceSafe, and CVS.

— Boot options:

- External memory.
- External host.
- UART.
- 。 TDM.

• Power:

- Requires separate power supplies for on-chip logic (1.6 V) and I/O (3.3 V)
- Provides low-power standby modes
- Includes optimized power management circuitry (instruction-dependent, peripheral-dependent, and mode-dependent).

· Packaging:

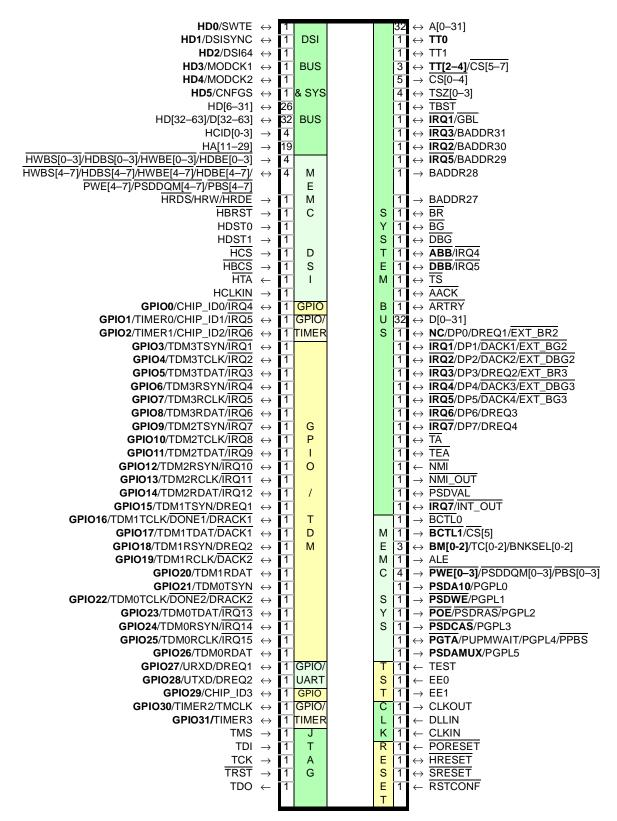
- 0.8 mm pitch High Temperature Coefficient for Expansion Flip Chip Ceramic Ball-Grid Array (FC-CBGA (HCTE)) or Flip Chip Plastic Ball-Grid Array (FC-PBGA) (pre-production only)
- 431-pin
- $-20 \text{ mm} \times 20 \text{ mm}$

Product Documentation

The documents listed in **Table 1** are required for a complete description of the MSC8102 and are necessary to design properly with the part. Obtain documentation from a local Motorola distributor, semiconductor sales office, or a Motorola Literature Distribution Center. For documentation updates, visit the Motorola DSP website shown on the last page of this document.

Table 1. MSC8102 Documentation

Name	Description	Order Number
MSC8102 Technical Data	MSC8102 features list and physical, electrical, timing, and package specifications	MSC8102/D
MSC8102 User's Guide	User information include system functionality, getting started tutorial, and programming topics	MSC8102UG/D
MSC8102 Reference Manual	Detailed functional description of the MSC8102 memory and peripheral configuration, operation, and register programming	MSC8102RM/D
SC140 DSP Core Reference Manual	Detailed description of the SC140 family processor core and instruction set	MNSC140CORE/D
Application Notes	Documents describing specific applications or optimized device operation including code examples	See the MSC8102 product website


Chapter 1

Signal/ Connection Description

The MSC8102 external signals are organized into functional groups, as shown in **Table 1-1** and **Figure 1-1**. **Table 1-1** lists the functional groups, the number of signal connections in each group, and references the table that gives a detailed listing of multiplexed signals within each group. **Figure 1-1**. shows MSC8102 external signals organized by function.

Table 1-1. MSC8102 Functional Signal Groupings

Functional Group	Number of Signal Connections	Detailed Description
Power (V _{DD} , V _{CC} , and GND)	158	Table 1-2 on page 1-3
Clock	3	Table 1-3 on page 1-3
Reset and Configuration	4	Table 1-4 on page 1-4
DSI, System Bus, and Interrupts	210	Table 1-5 on page 1-4
Memory Controller	16	Table 1-6 on page 1-12
General-Purpose Input/Output (GPIO), Time-Division Multiplexed (TDM) Interface, Universal Asynchronous Receiver/ Transmitter (UART), and Timers	32	Table 1-7 on page 1-14
EOnce and JTAG Test Access Port	7	Table 1-8 on page 1-22
Reserved (denotes connections that are always reserved)	1	Table 1-9 on page 1-22

Power signals include: V_{DD} , V_{DDH} , V_{CCSYN} , GND, and GND_{SYN}.

Figure 1-1. MSC8102 External Signals

1.1 Power Signals

Table 1-2. Power and Ground Signal Inputs

Signal Name	Description
V _{DD}	Internal Logic Power V_{DD} dedicated for use with the device core. The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the V_{DD} power rail.
V _{DDH}	Input/Output Power This source supplies power for the I/O buffers. The user must provide adequate external decoupling capacitors.
V _{CCSYN}	
GND	System Ground An isolated ground for the internal processing logic and I/O buffers. This connection must be tied externally to all chip ground connections, except GND _{SYN} . The user must provide adequate external decoupling capacitors.
GND _{SYN}	System PLL Ground Ground dedicated for system PLL use. The connection should be provided with an extremely low-impedance path to ground.

1.2 Clock Signals

Table 1-3. Clock Signals

Signal Name	Туре	Signal Description
CLKIN	Input	Clock In Primary clock input to the MSC8102 PLL.
CLKOUT	Output	Clock Out The bus clock.
DLLIN	Input	DLLIN Synchronizes with an external device.

1.3 Reset and Configuration Signals

Table 1-4. Reset and Configuration Signals

Signal Name	Туре	Signal Description
PORESET	Input	Power-On Reset When asserted, this line causes the MSC8102 to enter power-on reset state.
RSTCONF	Input	Reset Configuration ¹ Used during reset configuration sequence of the chip. A detailed explanation of its function is provided in the MSC8102 Reference Manual. This signal is sampled upon deassertion of PORESET.
HRESET	Input	Hard Reset When asserted, this open-drain line causes the MSC8102 to enter hard reset state.
SRESET	Input	Soft Reset When asserted, this open-drain line causes the MSC8102 to enter soft reset state.

Note:

When PORESET is deasserted, the MSC8102 also samples the following signals:

- BM[0-2]—Selects the boot mode.
- MODCK[1-2]—Selects the clock configuration.
- SWTE—Enables the software watchdog timer.
- DSISYNC, DSI64, CNFGS, and CHIP_ID[0-3]—Configures the DSI.

Refer to Table 1-5 for details on these signals.

1.4 Direct Slave Interface, System Bus, and Interrupt Signals

The direct slave interface (DSI) is combined with the system bus because they share some common signal lines. Individual assignment of a signal to a specific signal line is configured through internal registers. **Table 1-5** describes the signals in this group.

Note:

Although there are fifteen interrupt request (IRQ) connections to the core processors, there are multiple external lines that can connect to these internal signal lines. After reset, the default configuration enables only $\overline{IRQ[1-7]}$, but includes two input lines each for $\overline{IRQ[1-3]}$ and $\overline{IRQ7}$. The designer must select one line for each required interrupt and reconfigure the other external signal line or lines for alternate functions. Additional alternate IRQ lines and $\overline{IRQ[8-15]}$ are enabled through the GPIO signal lines.

Table 1-5. DSI, System Bus, and Interrupt Signals

Signal Name	Туре	Description
HD0	Input/ Output	Host Data Bus 0 Bit 0 of the DSI data bus.
SWTE	Input	Software Watchdog Timer Disable. It is sampled on the rising edge of PORESET signal.
HD1	Input/	Host Data Bus 1
DSISYNC	Output	Bit 1 of the DSI data bus. DSI Synchronous Distinguishes between synchronous and asynchronous operation of the DSI. It is sampled on the rising edge of PORESET signal.

Table 1-5. DSI, System Bus, and Interrupt Signals (Continued)

Signal Name	Туре	Description
HD2	Input/ Output	Host Data Bus 2 Bit 2 of the DSI data bus.
DSI64	Input	DSI 64 Defines the width of the DSI and SYSTEM Data buses. It is sampled on the rising edge of PORESET signal.
HD3	Input/ Output	Host Data Bus 3 Bit 3 of the DSI data bus.
MODCK1	Input	Clock Mode 1 Defines the clock frequencies. It is sampled on the rising edge of PORESET signal.
HD4	Input/ Output	Host Data Bus 4 Bit 4 of the DSI data bus.
MODCK2	Input	Clock Mode 2 Defines the clock frequencies. It is sampled on the rising edge of PORESET signal.
HD5	Input/ Output	Host Data Bus 5 Bit 5 of the DSI data bus.
CNFGS	Input	Configuration Source One signal out of two that indicates reset configuration mode. It is sampled on the rising edge of PORESET signal.
HD[6-31]	Input/O utput	Host Data Bus 6–31 Bits 6–31 of the DSI data bus.
HD[32-63]	Input/O utput	Host Data Bus 32–63 Bits 32–63 of the DSI data bus.
D[32-63]	Input/O utput	System Bus Data 32–63 In write transactions, the bus master drives the valid data on this bus. In read transactions, the slave drives the valid data on this bus.
HCID[0-3]	Input	Host Chip ID 0–3 Carries the chip ID of the DSI. The DSI is accessed only if HCS is asserted and HCID[0–3] matches the Chip_ID, or if HBCS is asserted.
HA[11–29]	Input	Host Bus Address 11–29 Used by external host to access the internal address space.
HWBS[0-3]	Input	Host Write Byte Strobes (In Asynchronous dual mode) One bit per byte is used as a strobe for host write accesses.
HDBS[0-3]	Input	Host Data Byte Strobe (in Asynchronous single mode) One bit per byte is used as a strobe for host read or write accesses
HWBE[0-3]	Input	Host Write Byte Enable (In Synchronous dual mode) One bit per byte is used to indicate a valid data byte for host read or write accesses.
HDBE[0-3]	Input	Host Data Byte Enable (in Synchronous single mode) One bit per byte is used as a strobe enable for host write accesses

 Table 1-5.
 DSI, System Bus, and Interrupt Signals (Continued)

Signal Name	Туре	Description
HWBS[4-7]	Input	Host Write Byte Strobes (In Asynchronous dual mode) One bit per byte is used as a strobe for host write accesses.
HDBS[4-7]	Input	Host Data Byte Strobe (in Asynchronous single mode) One bit per byte is used as a strobe for host read or write accesses
HWBE[4–7]	Input	Host Write Byte Enable (In Synchronous dual mode) One bit per byte is used to indicate a valid data byte for host write accesses.
HDBE[4-7]	Input	Host Data Byte Enable (in Synchronous single mode) One bit per byte is used as a strobe enable for host read or write accesses
PWE[4-7]	Output	System Bus Write Enable Outputs of the bus general-purpose chip-select machine (GPCM). These pins select byte lanes for write operations.
PSDDQM[4-7]	Output	System Bus SDRAM DQM From the SDRAM control machine. These pins select specific byte lanes of SDRAM devices.
PBS[4-7]	Output	System Bus UPM Byte Select From the UPM in the memory controller, these signals select specific byte lanes during memory operations. The timing of these pins is programmed in the UPM. The actual driven value depends on the address and size of the transaction and the port size of the accessed device.
HRDS	Input	Host Read Data Strobe (In Asynchronous dual mode) Used as a strobe for host read accesses.
HRW	Input	Host Read/Write Select (in Asynchronous/Synchronous single mode) Host read/write select.
HRDE	Input	Host Read Data Enable (In Synchronous dual mode) Indicates valid data for host read accesses.
HBRST	Input	Host Burst The host asserts this pin to indicate that the current transaction is a burst transaction in synchronous mode only.
HDST0	Input	Host Data structure 0 Defines the data structure of the host access in DSI little-endian mode.
HDST1	Input	Host Data structure 1 Defines the data structure of the host access in DSI little-endian mode.
HCS	Input	Host Chip Select DSI chip select. The DSI is accessed only if HCS is asserted and HCID[0–3] matches the Chip_ID.
HBCS	Input	Host Broadcast Chip Select DSI chip select for broadcast mode. Enables more than one DSI to share the same host chip-select pin for broadcast write accesses.
НТА	Output	Host Transfer Acknowledge Upon a read access, indicates to the host when the data on the data bus is valid. Upon a write access, indicates to the host that the data on the data bus was written to the DSI write buffer.
HCLKIN	Input	Host Clock Input Host clock signal for DSI synchronous mode.

Table 1-5. DSI, System Bus, and Interrupt Signals (Continued)

Signal Name	Туре	Description
A[0-31]	Input/ Output	Address Bus When the MSC8102 is in external master bus mode, these pins function as the system address bus. The MSC8102 drives the address of its internal bus masters and responds to addresses generated by external bus masters. When the MSC8102 is in internal master bus mode, these pins are used as address lines connected to memory devices and are controlled by the MSC8102 memory controller.
ТТ0	Input/ Output	Bus Transfer Type 0 The bus master drives this pins during the address tenure to specify the type of the transaction.
TT1	Input/ Output	Bus Transfer Type 1 The bus master drives this pins during the address tenure to specify the type of the transaction. Some applications use only the TT1 signal, for example, from MSC8102 to MSC8102 or MSC8102 to MSC8101 and <i>vice versa</i> . In these applications, TT1 functions as read/write signal.
TT[2-4]	Input/ Output	Bus Transfer Type 2–4 The bus master drives these pins during the address tenure to specify the type of the transaction.
CS[5-7]	Output	Chip Select 5–7 Enables specific memory devices or peripherals connected to the system bus.
CS[0-4]	Output	Chip Select 0–4 Enables specific memory devices or peripherals connected to the system bus.
TSZ[0-3]	Input/ Output	Transfer Size 0–3 The bus master drives these pins with a value indicating the number of bytes transferred in the current transaction.
TBST	Input/ Output	Bus Transfer Burst The bus master asserts this pin to indicate that the current transaction is a burst transaction (transfers eight words).
IRQ1	Input	Interrupt Request 1 ¹ One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GBL	Output	Global ¹ When a master within the MSC8102 initiates a bus transaction, it drives this pin. Assertion of this pin indicates that the transfer is global and should be snooped by caches in the system.
IRQ3	Input	Interrupt Request 3 ¹ One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
BADDR31	Output	Burst Address 31 ¹ There are five burst address output pins, which are outputs of the memory controller. These pins connect directly to burstable memory devices without internal address incrementors controlled by the MSC8102 memory controller.
ĪRQ2	Input	Interrupt Request 2 ¹ One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
BADDR30	Output	Burst Address 30 ¹ There are five burst address output pins, which are outputs of the memory controller. These pins connect directly to burstable memory devices without internal address incrementors controlled by the MSC8102 memory controller.

 Table 1-5.
 DSI, System Bus, and Interrupt Signals (Continued)

Signal Name	Туре	Description
IRQ5	Input	Interrupt Request 5 ¹ One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
BADDR29	Output	Bus Burst Address 29 ¹ There are five burst address output pins, which are outputs of the memory controller. These pins connect directly to burstable memory devices without internal address incrementors controlled by the MSC8102 memory controller.
BADDR28	Output	Burst Address 28 There are five burst address output pins, which are outputs of the memory controller. These pins connect directly to burstable memory devices without internal address incrementors controlled by the MSC8102 memory controller.
BADDR27	Output	Burst Address 27 There are five burst address output pins, which are outputs of the memory controller. These pins connect directly to burstable memory devices without internal address incrementors controlled by the MSC8102 memory controller.
BR	Input/ Output	Bus Request ² When an external arbiter is used, the MSC8102 asserts this pin as an output to request ownership of the bus. When the MSC8102 controller is used as an internal arbiter, an external master asserts this pin as an input to request bus ownership.
BG	Input/ Output	Bus Grant ² When the MSC8102 acts as an internal arbiter, it asserts this pin as an output to grant bus ownership to an external bus master. When an external arbiter is used, it asserts this pin as an input to grant bus ownership to the MSC8102.
DBG	Input/ Output	Data Bus Grant ² When the MSC8102 acts as an internal arbiter, it asserts this pin as an output to grant data bus ownership to an external bus master. When an external arbiter is used, it asserts this pin as an input to grant data bus ownership to the MSC8102.
ABB	Input/ Output	Address Bus Busy ¹ The MSC8102 asserts this pin as an output for the duration of the address bus tenure. Following an AACK, which terminates the address bus tenure, the MSC8102 deasserts ABB for a fraction of a bus cycle and then stops driving this pin. The MSC8102 does not assume bus ownership as long as it senses this pin is asserted as an input by an external bus master.
ĪRQ4	Input	Interrupt Request 4 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
DBB	Input/ Output	Data Bus Busy ¹ The MSC8102 asserts this pin as an output for the duration of the data bus tenure. Following a TA, which terminates the data bus tenure, the MSC8102 deasserts DBB for a fraction of a bus cycle and then stops driving this pin. The MSC8102 does not assume data bus ownership as long as it senses that this pin is asserted as an input by an external bus master.
ĪRQ5	Input	Interrupt Request 5 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
TS	Input/ Output	Assertion of this pin signals the beginning of a new address bus tenure. The MSC8102 asserts this signal when one of its internal bus masters begins an address tenure. When the MSC8102 senses that this pin is asserted by an external bus master, it responds to the address bus tenure as required (snoop if enabled, access internal MSC8102 resources, memory controller support).
AACK	Input/ Output	Address Acknowledge A bus slave asserts this signal to indicate that it has identified the address tenure. Assertion of this signal terminates the address tenure.

Table 1-5. DSI, System Bus, and Interrupt Signals (Continued)

Signal Name	Туре	Description
ARTRY	Input/ Output	Address Retry Assertion of this signal indicates that the bus master should retry the bus transaction. An external master asserts this signal to enforce data coherency with its caches and to prevent deadlock situations.
D[0-31]	Input/ Output	Data Bus Bits 0–31 In write transactions, the bus master drives the valid data on this bus. In read transactions, the slave drives the valid data on this bus.
Reserved	Input	The primary configuration selection (default after reset) is reserved.
DP0	Input/ Output	System Bus Data Parity 0 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 0 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 0 and D[0–7].
DREQ1	Input	DMA Request 1 Used by an external peripheral to request DMA service.
EXT_BR2	Input	External Bus Request 2 An external master asserts this pin to request bus ownership from the internal arbiter.
IRQ1	Input	Interrupt Request 1 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
DP1	Input/ Output	System Bus Data Parity 1 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 1 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 1 and D[8–15].
DACK1	Output	DMA Acknowledge 1 The DMA drives this output to acknowledge the DMA transaction on the bus.
EXT_BG2	Output	External Bus Grant 2 ² The MSC8102 asserts this pin to grant bus ownership to an external bus master.
IRQ2	Input	Interrupt Request 2 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
DP2	Input/ Output	System Bus Data Parity 2 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 2 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 2 and D[16–23].
DACK2	Output	DMA Acknowledge 2 The DMA drives this output to acknowledge the DMA transaction on the bus.
EXT_DBG2	Output	External Data Bus Grant 2 ² The MSC8102 asserts this pin to grant data bus ownership to an external bus master.

Table 1-5. DSI, System Bus, and Interrupt Signals (Continued)

Signal Name	Туре	Description
IRQ3	Input	Interrupt Request 3 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
DP3	Input/ Output	System Bus Data Parity 3 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 3 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 3 and D[24–31].
DREQ2	Input	DMA Request 2 Used by an external peripheral to request DMA service.
EXT_BR3	Input	External Bus Request 3^2 An external master should assert this pin to request bus ownership from the internal arbiter.
IRQ4	Input	Interrupt Request 4 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
DP4	Input/ Output	System Bus Data Parity 4 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 4 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 4 and D[32–39].
DACK3	Output	DMA Acknowledge 3 The DMA drives this output to acknowledge the DMA transaction on the bus.
EXT_DBG3	Output	External Data Bus Grant 3 ² The MSC8102 asserts this pin to grant data bus ownership to an external bus master.
IRQ5	Input	Interrupt Request 5 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
DP5	Input/ Output	System Bus Data Parity 5 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 5 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 5 and D[40–47].
DACK4	Output	DMA Acknowledge 4 The DMA drives this output to acknowledge the DMA transaction on the bus.
EXT_BG3	Output	External Bus Grant 3 ² The MSC8102 asserts this pin to grant bus ownership to an external bus.
IRQ6	Input	Interrupt Request 6 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
DP6	Input/ Output	System Bus Data Parity 6 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 6 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 6 and D[48–55].
DREQ3	Input	DMA Request 3 Used by an external peripheral to request DMA service.

 Table 1-5.
 DSI, System Bus, and Interrupt Signals (Continued)

Signal Name	Туре	Description
IRQ7	Input	Interrupt Request 7 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
DP7	Input/ Output	System Bus Data Parity 7 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 7 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 7 and D[56–63].
DREQ4	Input	DMA Request 4 Used by an external peripheral to request DMA service.
TA	Input/ Output	Transfer Acknowledge Indicates that a data beat is valid on the data bus. For single-beat transfers, TA assertion indicates the termination of the transfer. For burst transfers, TA is asserted eight times to indicate the transfer of eight data beats, with the last assertion indicating the termination of the burst transfer.
TEA	Input/ Output	Transfer Error Acknowledge Assertion indicates a failure of the data tenure transaction. The masters within the MSC8102 monitor the state of this pin. The MSC8102 internal bus monitor can assert this pin if it identifies a bus transfer that does not complete.
NMI	Input	Non-Maskable Interrupt When an external device asserts this line, it generates an non-maskable interrupt in the MSC8102, which is processed internally (default) or is directed to an external host for processing (see NMI_OUT).
NMI_OUT	Output	Non-Maskable Interrupt Output An open-drain pin driven from the MSC8102 internal interrupt controller. Assertion of this output indicates that a non-maskable interrupt is pending in the MSC8102 internal interrupt controller, waiting to be handled by an external host.
PSDVAL	Input/ Output	Port Size Data Valid Indicates that a data beat is valid on the data bus. The difference between the TA pin and the PSDVAL pin is that the TA pin is asserted to indicate data transfer terminations, while the PSDVAL signal is asserted with each data beat movement. When TA is asserted, PSDVAL is always asserted. However, when PSDVAL is asserted, TA is not necessarily asserted. For example, if the DMA initiates a double word (2 × 64 bits) transaction to a memory device with a 32-bit port size, PSDVAL is asserted three times without TA and, finally, both pins are asserted to terminate the transfer.
ĪRQ7	Input	Interrupt Request 7 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
INT_OUT	Output	Interrupt Output Assertion of this output indicates that an unmasked interrupt is pending in the MSC8102 internal interrupt controller.
	-	vstem Interface Unit (SIU) chapter in the MSC8102 Reference Manual for details on how to
2. \\ E \\ F \\ I	When used ach mast EXT_BR2/must be compared by the Bus Compared by	hese pins. If as the bus control arbiter, the MSC8102 can support up to three external bus masters. Her uses its own set of Bus Request, Bus Grant, and Data Bus Grant signals (BR/BG/DBG, EXT_BG2/EXT_DBG2, and EXT_BR3/EXT_BG3/EXT_DBG3). Each of these signal sets infigured to indicate whether the external master is or is not a MSC8102 master device. See on figuration Register (BCR) description in the System Interface Unit (SIU) chapter in the Reference Manual for details on how to configure these pins. The second and third set of ned by EXT_xxxx to indicate that they can only be used with external master devices. The pins (BR/BG/DBG) have a dual function. When the MSC8102 is not the bus arbiter, these R/BG/DBG) are used by the MSC8102 to obtain master control of the bus.

1.5 Memory Controller Signals

Refer to the *Memory Controller* chapter in the *MSC8102 Reference Manual* for detailed information about configuring these signals.

Table 1-6. Memory Controller Signals

Signal Name	Туре	Description
BCTL0	Output	System Bus Buffer Control 0 Controls buffers on the data bus. Usually used with BCTL1. The exact function of this pin is defined by the value of SIUMCR[BCTLC].
BCTL1	Output	System Bus Buffer Control 1 Controls buffers on the data bus. Usually used with BCTL0. The exact function of this pin is defined by the value of SIUMCR[BCTLC].
CS5	Output	System and Local Bus Chip Select 5 Enables specific memory devices or peripherals connected to MSC8102 buses.
BM[0-2]	Input	Boot Mode 0–2 Defines the boot mode of the MSC8102. This signal is sampled on PORESET deassertion.
TC[0-2]	Input/ Output	Transfer Code 0–2 The bus master drives these pins during the address tenure to specify the type of the code.
BNKSEL[0-2]	Output	Bank Select 0–2 Selects the SDRAM bank when the MSC8102 is in 60x-compatible bus mode.
ALE	Output	Address Latch Enable Controls the external address latch used in an external master bus.
PWE[0-3]	Output	System Bus Write Enable Outputs of the bus general-purpose chip-select machine (GPCM). These pins select byte lanes for write operations.
PSDDQM[0-3]	Output	System Bus SDRAM DQM From the SDRAM control machine. These pins select specific byte lanes of SDRAM devices.
PBS[0-3]	Output	System Bus UPM Byte Select From the UPM in the memory controller, these signals select specific byte lanes during memory operations. The timing of these pins is programmed in the UPM. The actual driven value depends on the address and size of the transaction and the port size of the accessed device.
PSDA10	Output	System Bus SDRAM A10 From the bus SDRAM controller. The precharge command defines which bank is precharged. When the row address is driven, it is a part of the row address. When column address is driven, it is a part of column address.
PGPL0	Output	System Bus UPM General-Purpose Line 0 One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed in the UPM.
PSDWE	Output	System Bus SDRAM Write Enable From the bus SDRAM controller. Should connect to SDRAM WE input.
PGPL1	Output	System Bus UPM General-Purpose Line 1 One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed in the UPM.

Table 1-6. Memory Controller Signals (Continued)

Signal Name	Туре	Description
POE	Output	System Bus Output Enable From the bus GPCM. Controls the output buffer of memory devices during read operations.
PSDRAS	Output	System Bus SDRAM RAS From the bus SDRAM controller. Should connect to SDRAM RAS input.
PGPL2	Output	System Bus UPM General-Purpose Line 2 One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed in the UPM.
PSDCAS	Output	System Bus SDRAM CAS From the bus SDRAM controller. Should connect to SDRAM CAS input.
PGPL3	Output	System Bus UPM General-Purpose Line 3 One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed in the UPM.
PGTA	Input	System GPCM TA Terminates external transactions during GPCM operation. Requires an external pull-up resistor for proper operation.
PUPMWAIT	Input	System Bus UPM Wait An external device holds this pin low to force the UPM to wait until the device is ready to continue the operation.
PGPL4	Output	System Bus UPM General-Purpose Line 4 One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed in the UPM.
PPBS	Output	System Bus Parity Byte Select In systems that store data parity in a separate chip, this output is used as the byte-select for that chip.
PSDAMUX	Output	System Bus SDRAM Address Multiplexer Controls the system bus SDRAM address multiplexer when the MSC8102 is in external master mode.
PGPL5	Output	System Bus UPM General-Purpose Line 5 One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed in the UPM.

1.6 GPIO, TDM, UART, and Timer Signals

The general-purpose input/output (GPIO), time-division multiplexed (TDM), universal asynchronous receiver/transmitter (UART), and timer signals are grouped together because they use a common set of signal lines. Individual assignment of a signal to a specific signal line is configured through internal registers. Table 1-7 describes the signals in this group.

Table 1-7. GPIO, TDM, UART, and Timer Signals

Signal Name	Туре	Description
GPI00	Input/ Output	General-Purpose Input Output 0 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.
CHIP_ID0	Input	Chip ID 0 Determines the chip ID of the MSC8102 DSI. It is sampled on the rising edge of PORESET signal.
GPIO1	Input/ Output	General-Purpose Input Output 1 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.
TIMER0	Input/ Output	Timer 0 Each signal is configured as either input to or output from the counter. See the MSC8102 Reference for configuration details.
CHIP_ID1	Input	Chip ID 1 Determines the chip ID of the MSC8102 DSI. It is sampled on the rising edge of PORESET signal.
GPIO2	Input/ Output	General-Purpose Input Output 2 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual.
TIMER1	Input/ Output	Timer 1 Each signal is configured as either input to or output from the counter. For the configuration of the pin direction, refer to the MSC8102 Reference Manual.
CHIP_ID2	Input	Chip ID 2 Determines the chip ID of the MSC8102 DSI. It is sampled on the rising edge of PORESET signal.
GPIO3	Input/ Output	General-Purpose Input Output 3 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM3TSYN	Input/ Output	TDM3 Transmit Frame Sync Transmit frame sync for TDM 3.
IRQ1	Input	Interrupt Request 1 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.

Table 1-7. GPIO, TDM, UART, and Timer Signals (Continued)

Signal Name	Туре	Description
GPIO4	Input/ Output	General-Purpose Input Output 4 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM3TCLK	Input	TDM3 Transmit Clock Transmit Clock for TDM 3
ĪRQ2	Input	Interrupt Request 2 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GPIO5	Input/ Output	General-Purpose Input/Output 5 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM3TDAT	Input/ Output	TDM3 Serial Transmitter Data The serial transmit data signal for TDM 3. As an output, it provides the DATA_D signal for TDM 3. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
ĪRQ3	Input	Interrupt Request 3 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GPIO6	Input/ Output	General-Purpose Input Output 6 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM3RSYN	Input/ Output	TDM3 Receive Frame Sync The receive sync signal for TDM 3. As an input, this can be the DATA_B data signal for TDM 3. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
ĪRQ4	Input	Interrupt Request 4 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GPIO7	Input/ Output	General-Purpose Input Output 7 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM3RCLK	Input/ Output	TDM3 Receive Clock The receive clock signal for TDM 3. As an output, this can be the DATA_C data signal for TDM 3. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
ĪRQ5	Input	Interrupt Request 5 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.

Table 1-7. GPIO, TDM, UART, and Timer Signals (Continued)

Signal Name	Туре	Description
GPIO8	Input/ Output	General-Purpose Input Output 8 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM3RDAT	Input/ Output	TDM3 Serial Receiver Data The receive data signal for TDM 3. As an input, this can be the DATA_A data signal for TDM 3. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
ĪRQ6	Input	Interrupt Request 6 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GPIO9	Input/ Output	General-Purpose Input Output 9 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM2TSYN	Input/ Output	TDM2 Transmit frame Sync Transmit Frame Sync for TDM 2.
ĪRQ7	Input	Interrupt Request 7 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GPIO10	Input/ Output	General-Purpose Input Output 10 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM2TCLK	Input	TDM 2 Transmit Clock Transmit Clock for TDM 2.
ĪRQ8	Input	Interrupt Request 8 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GPIO11	Input/ Output	General-Purpose Input Output 11 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM2TDAT	Input/ Output	TDM2 Serial Transmitter Data The transmit data signal for TDM 2. As an output, this can be the DATA_D data signal for TDM 2. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
ĪRQ9	Input	Interrupt Request 9 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.

Table 1-7. GPIO, TDM, UART, and Timer Signals (Continued)

Signal Name	Туре	Description
GPIO12	Input/ Output	General-Purpose Input Output 12 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM2RSYN	Input/ Output	TDM2 Receive Frame Sync The receive sync signal for TDM 2. As an input, this can be the DATA_B data signal for TDM 2. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
ĪRQ10	Input	Interrupt Request 10 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GPIO13	Input/ Output	General-Purpose Input Output 13 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM2RCLK	Input/ Output	TDM2 Receive Clock The receive clock signal for TDM 2. As an input, this can be the DATA_C data signal for TDM 2. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
ĪRQ11	Input	Interrupt Request 11 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GPIO14	Input/ Output	General-Purpose Input Output 14 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM2RDAT	Input/ Output Input	TDM2 Serial Receiver Data The receive data signal for TDM 2. As an input, this can be the DATA_A data signal for TDM 2. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
ĪRQ12	Input	Interrupt Request 12 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GPIO15	Input/ Output	General-Purpose Input Output 15 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM1TSYN	Input/ Output	TDM1 Transmit frame Sync Transmit Frame Sync for TDM 1.
DREQ1	Input	DMA Request 1 Used by an external peripheral to request DMA service.

Table 1-7. GPIO, TDM, UART, and Timer Signals (Continued)

Signal Name	Туре	Description
GPIO16	Input/ Output	General-Purpose Input Output 16 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM1TCLK	Input	TDM1 Transmit Clock Transmit Clock for TDM 1.
DONE1	Input/ Output	DMA Done 1 Signifies that the channel must be terminated. If the DMA generates DONE, the channel handling this peripheral is inactive. As an input to the DMA, DONE closes the channel much like a normal channel closing.
		See the MSC8102 Reference Manual chapters on DMA and GPIO for information on configuring the DRACK or DONE mode and pin direction.
DRACK1	Output	DMA Data Request Acknowledge 1 Asserted by the DMA controller to indicate that the DMA controller has sampled the peripheral request.
GPIO17	Input/ Output	General-Purpose Input Output 17 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM1TDAT	Input/ Output	TDM1 Serial Transmitter Data The transmit data signal for TDM 1. As an output, this can be the DATA_D data signal for TDM 1.For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
DACK1	Output	DMA Acknowledge 1 The DMA controller drives this output to acknowledge the DMA transaction on the bus.
GPIO18	Input/ Output	General-Purpose Input Output 18 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM1RSYN	Input/ Output	TDM1 Receive Frame Sync The receive sync signal for TDM 1. As an input, this can be the DATA_B data signal for TDM 1. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
DREQ2	Input	DMA Request 1 Used by an external peripheral to request DMA service.
GPIO19	Input/ Output	General-Purpose Input Output 19 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM1RCLK	Input/ Output	TDM1 Receive Clock The receive clock signal for TDM 1. As an input, this can be the DATA_C data signal for TDM 1. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
DACK2	Output	DMA Acknowledge 2 The DMA controller drives this output to acknowledge the DMA transaction on the bus.

Table 1-7. GPIO, TDM, UART, and Timer Signals (Continued)

Signal Name	Туре	Description
GPIO20	Input/ Output	General-Purpose Input Output 20 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM1RDAT	Input/ Output	TDM1 Serial Receiver Data The receive data signal for TDM 1. As an input, this can be the DATA_A data signal for TDM 1. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
GPIO21	Input/ Output	General-Purpose Input Output 21 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDMOTSYN	Input/ Output	TDM0 Transmit frame Sync Transmit Frame Sync for TDM 0.
GPIO22	Input/ Output	General-Purpose Input Output 22 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM0TCLK	Input	TDM 0 Transmit Clock Transmit Clock for TDM 0.
DONE2	Input/ Output	DMA Done 2 Signifies that the channel must be terminated. If the DMA generates DONE, the channel handling this peripheral is inactive. As an input to the DMA, DONE closes the channel much like a normal channel closing.
		Note: See the MSC8102 Reference Manual chapters on DMA and GPIO for information on configuring the DRACK or DONE mode and pin direction.
DRACK2	Output	DMA Data Request Acknowledge 2 Asserted by the DMA controller to indicate that the DMA controller has sampled the peripheral request.
GPIO23	Input/ Output	General-Purpose Input Output 23 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM0TDAT	Input/ Output	TDM0 Serial Transmitter Data The transmit data signal for TDM 0. As an output, this can be the DATA_D data signal for TDM 0. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
ĪRQ13	Input	Interrupt Request 13 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.

Table 1-7. GPIO, TDM, UART, and Timer Signals (Continued)

Signal Name	Туре	Description
GPIO24	Input/ Output	General-Purpose Input Output 24 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDMORSYN	Input/ Output	TDM0 Receive Frame Sync The receive sync signal for TDM 0. As an input, this can be the DATA_B data signal for TDM 0. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
ĪRQ14	Input	Interrupt Request 14 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GPIO25	Input/ Output	General-Purpose Input Output 25 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDMORCLK	Input/ Output	TDM0 Receive Clock The receive clock signal for TDM 0. As an input, this can be the DATA_C data signal for TDM 0. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
ĪRQ15	Input	Interrupt Request 15 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GPIO26	Input/ Output	General-Purpose Input Output 26 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TDM0RDAT	Input/ Output	TDM0 Serial Receiver Data The receive data signal for TDM 0. As an input, this can be the DATA_A data signal for TDM 0. For configuration details, refer to the MSC8102 Reference Manual chapter describing TDM operation.
GPIO27	Input/ Output	General-Purpose Input Output 27 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
URXD	Input	UART Receive Data
GPIO28	Input/ Output	General-Purpose Input Output 28 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
UTXD	Output	UART Transmit Data
GPIO29	Input/ Output	General-Purpose Input Output 29 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
CHIP_ID3	Input	Chip ID 3 Determines the chip ID of the MSC8102 DSI. It is sampled on the rising edge of PORESET signal.

Table 1-7. GPIO, TDM, UART, and Timer Signals (Continued)

Signal Name	Туре	Description
GPIO30	Input/ Output	General-Purpose Input Output 30 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.For details, refer to the MSC8102 Reference Manual GPIO programing model.
TIMER2	Input/ Output	Timer 2 Each signal is configured as either input to the counter or output from the counter. For the configuration of the pin direction, refer to the <i>MSC8102 Reference Manual</i> .
TMCLK	Input	External TIMER Clock An external timer can connect directly to the SIU as the SIU Clock.
GPIO31	Input/ Output	General-Purpose Input Output 31 One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the MSC8102 Reference Manual GPIO programing model.
TIMER3	Input/ Output	Timer 3 Each signal is configured as either input to or output from the counter. For the configuration of the pin direction, refer to the MSC8102 Reference Manual.

1.7 EOnCE Event and JTAG Test Access Port Signals

The MSC8102 uses two sets of debugging signals for the two types of internal debugging modules: EOnCE and the JTAG TAP controller. Each internal SC140 core has an EOnce module, but they are all accessed externally by the same two signals EE0 and EE1. The MSC8102 supports the standard set of Test Access Port (TAP) signals defined by IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture specification and described in **Table 1-8**.

Table 1-8. JTAG Test Access Port Signals

Signal Name	Туре	Signal Description	
EE0	Input	EOnCE Event Bit 0 Used for putting the internal SC140 cores into Debug mode.	
EE1	Output	CONCE Event Bit 1 Indicates that at least one on-chip SC140 core is in Debug mode.	
TCK	Input	Test Clock—A test clock signal for synchronizing JTAG test logic.	
TDI	Input	Test Data Input —A test data serial signal for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor.	
TDO	Output	Test Data Output —A test data serial signal for test instructions and data. TDO can be tri-stated. The signal is actively driven in the shift-IR and shift-DR controller states and changes on the falling edge of TCK.	
TMS	Input	Test Mode Select —Sequences the test controller's state machine, is sampled on the rising edge of TCK, and has an internal pull-up resistor.	
TRST	Input	Test Reset —Asynchronously initializes the test controller, has an internal pull-up resistor, and must be asserted after power up.	

1.8 Reserved Signals

Table 1-9. Reserved Signals

Signal Name	Туре	Signal Description
TEST	Input	Test Used for manufacturing testing. You <i>must</i> connect this pin to GND.

Chapter 2

Specifications

2.1 Introduction

This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the *MSC8102 User's Manual* and *MSC8102 Reference Manual*.

Note: The MSC8102 electrical specifications are preliminary and many are from design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after thorough characterization and device qualifications have been completed.

2.2 **Maximum Ratings**

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2-1 describes the maximum electrical ratings for the MSC8102.

Rating **Symbol** Value Unit Core supply voltage -0.2 to 2.1 ٧ V_{DD} ٧ PLL supply voltage -0.2 to 2.1 V_{CCSYN} I/O supply voltage -0.2 to 4.0 V_{DDH} Input voltage V_{IN} (GND - 0.2) to 4.0 ٧ Maximum operating temperature range TBD °C T_{J} -55 to +150 °C Storage temperature range T_{STG}

Table 2-1. Absolute Maximum Ratings

Notes:

- Functional operating conditions are given in Table 2-2.
- Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permanent damage.
- Section 4.1, Thermal Design Considerations, on page 1 includes a formula for computing the chip junction temperature (T_1) .

2.3 Recommended Operating Conditions

Table 2-2 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Table 2-2. Recommended Operating Conditions

Rating	Symbol	Value	Unit
Core supply voltage	V_{DD}	1.55 to 1.7	V
PLL supply voltage	V _{CCSYN}	1.55 to 1.7	V
I/O supply voltage	V _{DDH}	3.135 to 3.465	V
Input voltage	V _{IN}	–0.2 to V _{DDH} +0.2	V
Operating temperature range	TJ	250 MHz: -40 to 105 275 MHz: TBD	°C

2.4 Thermal Characteristics

Table 2-3 describes thermal characteristics of the MSC8102 for the FC-CBGA (HCTE) package.

Table 2-3. Thermal Characteristics for FC-CBGA (HCTE) Package

		FC-CE			
Characteristic	Symbol	Natural Convection	100 ft/min (.5 m/s) airflow		
Junction-to-ambient ^{1, 2}	$R_{\theta JA}$ or θ_{JA}	28.5	23.7	20.7	°C/W
Junction-to-ambient, four-layer board ^{1, 3}	$R_{\theta JA}$ or θ_{JA}	16.6	14.3	13.1	°C/W
Junction-to-board (bottom) ⁴	$R_{\theta JB}$ or θ_{JB}	7.5			°C/W

Notes:

- 1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and EIA/JESD51-2 with the single layer (1s) board horizontal.
- 3. Per JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JESD 51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Values listed are based on simulations. Final values will be released when testing is complete.

Note: Pre-production MSC8102 devices use an FC-PBGA package. The thermal characteristics for this package have not yet been determined.

Section 4.1, *Thermal Design Considerations* provides a more detailed explanation of these characteristics.

2.5 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC8102. The measurements in **Table 2-4** assume the following system conditions:

- $T_A = 0-70$ °C
- $V_{DD} = 1.55-1.7 V_{DC}$
- $V_{DDH} = 3.3 V \pm 5\% V_{DC}$
- $GND = 0 V_{DC}$

Note: The leakage current is measured for nominal V_{DDH} and V_{DD} or both V_{DDH} and V_{DD} must vary in the same direction (for example, both V_{DDH} and V_{DD} vary by +2 percent or both vary by -2 percent).

Table 2-4. DC Electrical Characteristics

Characteristic	Symbol	Min	Typical	Max	Unit
Input high voltage, all inputs except CLKIN	V _{IH}	2.0	3.0	3.465	V
Input low voltage	V _{IL}	GND	0	0.4	V
CLKIN input high voltage	V_{IHC}	2.4	3.0	3.465	٧
CLKIN input low voltage	V _{ILC}	GND	0	0.4	V
Input leakage current, V _{IN} = V _{DDH}	I _{IN}	_	TBD	TBD	μA
Tri-state (high impedance off state) leakage current, $V_{IN} = V_{DDH}$	I _{OZ}	_	TBD	TBD	μA
Signal low input current, V _{IL} = 0.4 V	IL	TBD	TBD	TBD	μA
Signal high input current, V _{IH} = 2.0 V	I _H	TBD	TBD	TBD	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$, except open drain pins	V _{OH}	2.0	3.0	_	V
Output low voltage, I _{OL} = 3.2 mA	V _{OL}	_	0	0.4	V
Core power at 250 MHz 275 MHz	P _{CORE}	_ _	1.84 TBD	_ _	W W
Peripherals power at	P _{PERIPH}	_ 	TBD TBD	_ 	W W
I/O power at 83 MHz 92 MHz	P _{I/O}	_ _ _	TBD TBD	_ _ _	W W

Note: Power consumption was determined from the average current draw at 1.6 V core voltage when running a 4-core EFR pattern.

2.6 AC Timings

2.6.1 Load Assumptions

The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs. AC timings are based on a 50 pF load, except where noted otherwise, and a 50 Ω transmission line. For any additional pF, add 0.07 ns for the delay and take the RC delay into consideration.

2.6.2 Clock and Timing Signals

The following sections include a description of clock signal characteristics.

Table 2-5. System Clock Parameters

Characteristic	Minimum	Maximum	Unit	
Phase jitter between CLKOUT and DLLIN	_	0.5	ns	
CLKIN frequency	36	75	MHz	
CLKIN slope	_	5	ns	
DLLIN slope	_	2	ns	
CLKOUT frequency jitter	_	(0.01 × CLKOUT) + CLKIN jitter	ns	
Delay between CLKOUT and DLLIN	_	5	ns	
Note: Law CLIVIN for a series and a DLL and a manage Change a CLIVIN for a series being a result to be a the				

Note: Low CLKIN frequency causes poor PLL performance. Choose a CLKIN frequency high enough to keep the frequency after predivider (SPLLMFCLK) higher than 18 MHz

Table 2-6 shows the maximum frequency values for internal (Core, Reference, and DSI) and external (CLKOUT) clocks. The user must ensure that maximum frequency values are not exceeded.

Table 2-6. Maximum Frequencies

Characteristic	Maximum in MHz		
Core Frequency	250/275		
Reference Frequency (REFCLK)	83.3/91.7		
DSI Clock Frequency (HCLKIN)	if REFCLK ≤ 70 MHz, HCLKIN = CLKOUT if REFCLK > 70 MHz, HCLKIN = 70 MHz		
External Clock Output Frequency (CLKOUT)	83.3/91.7		
Note: The REFCLK is CLKOUT.			

Table 2-7. Clock Operation

Characteristics	Symbol	250 MHz Device		275 MHz Device	
Characteristics		Min	Max	Min	Max
CLKIN ¹					
FrequencyCycle time	F _{CLKIN}	36 MHz	75 MHz	36 MHz	75 MHz
	T _{CLKIN}	13.3 ns	28 ns	13.3 ns	28 ns
DLLIN ¹ • Frequency • Cycle time	F _{DLLIN}	33.3 MHz	75 MHz	33.3 MHz	75 MHz
	T _{DLLIN}	13.3 ns	30 ns	13.3 ns	30 ns
Reference Clock (REFCLK) Frequency Cycle time	F _{REFCLK}	33.3 MHz	83.3 MHz	33.3 MHz	91.7 MHz
	T _{REFCLK}	12 ns	30 ns	10.9 ns	30 ns
Output Clock (CLKOUT) Frequency Cycle time	F _{CLKOUT}	33.3 MHz	83.3 MHz	33.3 MHz	91.7 MHz
	T _{CLKOUT}	12 ns	30 ns	10.9 ns	30 ns
SC140 core clock Frequency Cycle time	F _{CORE}	166.7 MHz	250 MHz	166.7 MHz	275 MHz
	T _{CORE}	4 ns	6 ns	3.6 ns	6 ns

Notes: 1. The rise and fall time of external clocks should be 5 ns maximum

Measured at 50 percent of the input transition.

2.6.3 Reset Timing

The MSC8102 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- · Software watchdog reset
- Bus monitor reset
- · Host reset command through JTAG

All MSC8102 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 2-8** describes the reset sources.

Table 2-8. Reset Sources

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC8102 and configures various attributes of the MSC8102. On PORESET, the entire MSC8102 device is reset. SPLL and DLL states are reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The clock mode (MODCK bits), reset configuration mode, boot mode, Chip ID, and use of either a DSI 64 bits port or a System Bus 64 bits port are configured only when PORESET is asserted.
External Hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC8102. While HRESET is asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The most configurable features are reconfigure. These features are defined in the 32-bit hard reset configuration word described in Hard Reset Configuration Word section of the Reset chapter in the MSC8102 Reference Manual.

Table 2-8. Reset Sources

Name	Direction	Description
External Soft reset (SRESET)	Input/ Output	Initiates the soft reset flow. The MSC8102 detects an external assertion of SRESET only if it occurs while the MSC8102 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is driven, the SC140 extended cores are reset, and system configuration is maintained.
Software watchdog reset	Internal	When the MSC8102 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC8102 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
Host reset command through the TAP	Internal	When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the soft reset signal and an internal soft reset sequence is generated.

Table 2-9 summarizes the reset actions that occur as a result of the different reset sources.

Table 2-9. Reset Actions for Each Reset Source

	Power-On Reset (PORESET)	Hard Reset (HRESET)	Soft R	eset (SRESET)
Reset Action/Reset Source	External only	External or Internal (Software Watchdog or Bus Monitor)	Extern al	JTAG Command: EXTEST, CLAMP, or HIGHZ
Configuration Pins Sampled (Refer to Section 2.6.3.1 for details).	Yes	No	No	No
SPLL and DLL States Reset	Yes	No	No	No
System Reset Configuration write through the DSI	Yes	No	No	No
System Reset Configuration write though the System Bus	Yes	Yes	No	No
HRESET Driven	Yes	Yes	No	No
SIU Registers reset	Yes	Yes	No	No
IPBus Modules Reset (TDM, UART, Timers, DSI, IPBus Master, GIC, HS, and GPIO)	Yes	Yes	Yes	Yes
SRESET Driven	Yes	Yes	Yes	Depends on command
SC140 Extended Cores Reset	Yes	Yes	Yes	Yes
MQBS Reset	Yes	Yes	Yes	Yes

2.6.3.1 Power-On Reset (PORESET) Pin

Asserting $\overline{\text{PORESET}}$ initiates the power-on reset flow. $\overline{\text{PORESET}}$ must be asserted externally for at least 16 CLKIN cycles after external power to the MSC8102 reaches at least 2/3 V_{DD}.

2.6.3.2 Reset Configuration

The MSC8102 has two mechanisms for writing the reset configuration:

- Through the direct slave interface (DSI), or
- Through the system bus

When reset configuration written through the system bus, the MSC8102 uses as a configuration master or as a configuration slave. If a configuration slave is selected, but no special configuration word is written, a default configuration word is applied.

Fourteen signal levels (see **Chapter 1** for signal description details) are sampled on PORESET deassertion to define the Reset Configuration Mode and boot and operating conditions:

- RSTCONF
- CNFGS
- DSISYNC
- DSI64
- CHIP_ID[0-3]
- BM[0-2]
- SWTE
- MODCK[1-2]

2.6.3.3 Reset Timing Tables

Table 2-10 and **Figure 2-1** describe the reset timing for a reset configuration write through the direct slave interface (DSI) or through the system bus.

Table 2-10. Timing for a Reset Configuration Write through the DSI or System Bus

No.	Characteristics	Expression	Min	Max	Unit
1	Required external PORESET duration minimum CLKIN = 18 MHz CLKIN = 75 MHz	16 / CLKIN	888.8 213.3	_	ns
2	Delay from deassertion of external PORESET to deassertion of internal PORESET CLKIN = 18 MHz CLKIN = 75 MHz	1024 / CLKIN		.89 .65	μs μs
3	Delay from de-assertion of internal PORESET to SPLL lock CLKIN = 18 MHz CLKIN = 75 MHz	800 / (CLKIN/PDF) (pre-division factor)	•	1.4 2.0	μs μs
4	Delay from SPLL lock to DLL lock. DLL enabled REFCLK = 18 Mhz REFCLK = 75 Mhz DLL disabled	3073 / REFCLK —	40).72 .97 .0	μs μs μs

Table 2-10. Timing for a Reset Configuration Write through the DSI or System Bus

No.	Characteristics	Expression	Min	Max	Unit
5	Delay from SPLL and DLL lock to HRESET de-assertion DLL enabled REFCLK = 18 Mhz REFCLK = 75 Mhz DLL disabled REFCLK = 18 Mhz REFCLK = 18 Mhz REFCLK = 75 Mhz	3585 / REFCLK 512 / REFCLK	47 28	9.17 7.5 3.4 83	μs μs μs μs
6	Delay from SPLL and DLL lock to SRESET de-assertion DLL enabled REFCLK = 18 Mhz REFCLK = 75 Mhz DLL disabled REFCLK = 18 Mhz REFCLK = 18 Mhz REFCLK = 75 Mhz	3588 / REFCLK 515 / REFCLK	47 28	9.33 .84 .61 87	μs μs μs μs

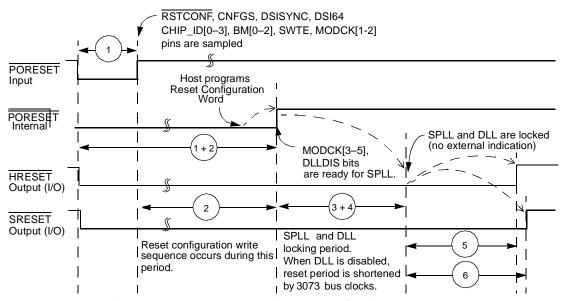


Figure 2-1. Timing Diagram for a Reset Configuration Write

2.6.4 System Bus Access Timing

2.6.4.1 Core Data Transfers

Generally, all MSC8102 bus and system output signals are driven from the rising edge of the reference clock (REFCLK). The REFCLK is either the DLLIN signal or, if DLL is disabled, the CLKOUT signal. Memory controller signals, however, trigger on four points within a REFCLK cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge of REFCLK (and T3 at the falling edge), as **Figure 2-2** shows.

Figure 2-2 is a graphical representation of the internal ticks.

Figure 2-2. Internal Tick Spacing for Memory Controller Signals

The UPM machine and GPCM machine outputs change on the internal tick determined by the memory controller programming, the AC specifications are relative to the internal tick. SDRAM machine outputs change only on the REFCLK rising edge.

Table 2-11. AC Timing for SIU Inputs in Non-Pipelined Mode

No.	Characteristic	Value	Units
10	Hold time for all signals after REFCLK rising edge	0.5	ns
11	AACK/ARTRY/TA/TEA/DBG/BG/BR/PSDVAL setup time before REFCLK rising edge	5	ns
12	Data bus setup time before REFCLK rising edge in Normal mode	4.5	ns
13	Data bus setup time before REFCLK rising edge in ECC and PARITY modes	6	ns
14	DP setup time before REFCLK rising edge	6	ns
15	Address bus/TT[0-4]/TC[0-2]/TBST/TSIZ[0-3]/GBL setup time before REFCLK rising edge	4	ns
16	Setup time before REFCLK rising edge for all other pins	4	ns

Notes: 1. Values are measured from the TTL signal level (0.8 or 2.0 V) relative to the REFCLK rising edge.

Table 2-12. AC Timing for SIU Inputs in Pipelined Mode

No.	Characteristic	Value	Units
10	Hold time for all signals after REFCLK rising edge	0.5	ns
11	AACK/ARTRY/TA/TEA/DBG/BR setup time before REFCLK rising edge	4.5	ns
12	Data bus setup time before REFCLK rising edge in Normal mode	3	ns
13	Data bus setup time before REFCLK rising edge in ECC and Parity modes	5.5	ns
14	DP setup time before REFCLK rising edge	5	ns
15	Address bus/TT[0-4]/TC[0-2]/TBST/TSIZ[0-3]/GBL setup time before REFCLK rising edge	3.5	ns
16	Setup time before REFCLK rising edge for all other pins	3	ns

Notes: 1. Values are measured from the TTL signal level (0.8 or 2.0 V) relative to the REFCLK rising edge.

^{2.} SIU inputs are for the normal configuration (SIUBCR[EXDD] = 0—which gives an extra cycle for address inputs. When SIUBCR[EXDD] = 1, address setup time is 10 ns, requiring a maximum bus frequency of 50 MHz.

^{2.} SIU inputs are for the normal configuration (SIUBCR[EXDD] = 0—which gives an extra cycle for address inputs. When SIUBCR[EXDD] = 1, address setup time is 10 ns, requiring a maximum bus frequency of 50 MHz.

Table 2-13. AC Timing for SIU Outputs for 30 pF in Non-Pipelined Mode

No.	Characteristic	Minimum	Maximum	Units
31	PSDVAL/TEA/TA delay from REFCLK rising edge	0.5	7.5	ns
32a	Address bus/TT[0-4]/TC[0-2]/TBST/TSIZ[0-3]/GBL delay from REFCLK rising edge	0.5	8 ¹	ns
32b	BADDR delay from REFCLK rising edge	0.5	8	ns
33a	Data bus delay from REFCLK rising edge	0.5	7.5	ns
33b	DP delay from REFCLK rising edge	0.5	7.5	ns
34	Memory controller signals/ALE delay from REFCLK rising edge	0.5	6.5	ns
35	DBG/BR/ABB/CS delay from REFCLK rising edge	0.5	6.5	ns
36	Delay from REFCLK rising edge for all other signals	0.5	6.5	ns
	4 Is an account the made of the OUIDODIEDMI			

Notes: 1. In 60x-compatible mode with SIUBCR[EBM] = 1.

2. Values are measured from the 1.4 V level of the REFCLK rising edge to the TTL signal level (0.8 or 2 V)

Table 2-14. AC Timing for SIU Outputs for 30pF in Pipelined Mode

No.	Characteristic	Minimum	Maximum	Units
31	PSDVAL/TEA/TA delay from REFCLK rising edge	0.5	7	ns
32a	Address bus/TT[0-4]/TC[0-2]/TBST/TSIZ[0-3]/GBL delay from REFCLK rising edge	0.5	6 ²	ns
32b	BADDR delay from REFCLK rising edge	0.5	6	ns
33a	Data bus delay from REFCLK rising edge	0.5	6	ns
33b	DP delay from REFCLK rising edge	0.5	7	ns
34	Memory controller signals/ALE delay from REFCLK rising edge	0.5	6	ns
35	DBG/BR/ABB/CS delay from REFCLK rising edge	0.5	6.5	ns
36	Delay from REFCLK rising edge for all other signals	0.5	6.5	ns

Notes:

- 1. The maximum bus frequency depends on the mode:
 - In 60x-compatible mode connected to another MSC8102 device, the frequency is determined by adding the input and output longest timing values, which results in a frequency of 80 MHz.
 - In single-master mode, the frequency depends on the timing of the devices connected to the MSC8102.
- 2. In single master mode with SIUBCR[EBM] = 0.
- 3. Values are measured from the 1.4 V level of the REFCLK rising edge to the TTL signal level (0.8 or 2 V)

Table 2-15. AC Timing for SIU Outputs for 50 pF in Non-Pipelined Mode

No.	Characteristic	Minimum	Maximum	Units
31	PSDVAL/TEA/TA delay from REFCLK rising edge	0.5	9.5	ns
32a	Address bus/TT[0-4]/TC[0-2]/TBST/TSIZ[0-3]/GBL delay from REFCLK rising edge	0.5	10	ns
32b	BADDR delay from REFCLK rising edge	0.5	8.5	ns
33a	Data bus delay from REFCLK rising edge	0.5	9.5	ns
33b	DP delay from REFCLK rising edge	0.5	9.5	ns
34	Memory controller signals/ALE delay from REFCLK rising edge	0.5	8	ns
35	DBG/BR/ABB/CS delay from REFCLK rising edge	0.5	8.5	ns
36	Delay from REFCLK rising edge for all other signals	0.5	8	ns
Note:	Values are measured from the 1.4 V level of the REFCLK rising edge to the TTL signal leve	el (0.8 or 2 V)	<u>.</u>	

Table 2-16. AC Timing for SIU Outputs for 50 pF in Pipelined Mode

No.	Characteristic	Minimum	Maximum	Units
31	PSDVAL/TEA/TA delay from REFCLK rising edge	0.5	9	ns
32a	Address bus/TT[0-4]/TC[0-2]/TBST/TSIZ[0-3]/GBL delay from REFCLK rising edge	0.5	8	ns
32b	BADDR delay from REFCLK rising edge	0.5	8	ns
33a	Data bus delay from REFCLK rising edge	0.5	8	ns
33b	DP delay from REFCLK rising edge	0.5	9.5	ns
34	Memory controller signals/ALE delay from REFCLK rising edge	0.5	8	ns
35	DBG/BR/ABB/CS delay from REFCLK rising edge	0.5	8.5	ns
36	Delay from REFCLK rising edge for all other signals	0.5	8	ns
Note:	Values are measured from the 1.4 V level of the REFCLK rising edge to the TTL signal level	el (0.8 or 2 V)		

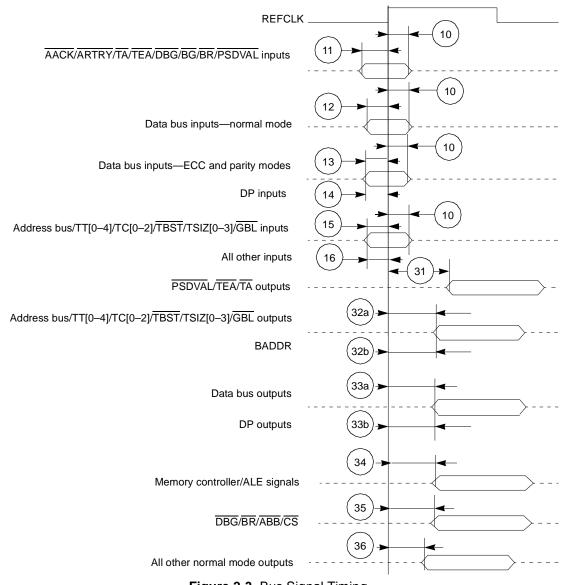


Figure 2-3. Bus Signal Timing

2.6.4.2 DMA Data Transfers

Table 2-17 describes the DMA signal timing.

Table 2-17. DMA Signals

No.	Characteristic	Minimum	Maximum	Units
37	DREQ setup time before falling edge of REFCLK	6	-	ns
38	DREQ hold time after falling edge of REFCLK	0.5	_	ns
39	DONE setup time before falling edge of REFCLK	9	_	ns
40	DONE hold time after falling edge of REFCLK	0.5	_	ns
41	DACK/DRACK/DONE delay after REFCLK rising edge	0.5	9	ns

The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert DREQ according to the timings in **Table 2-17**. **Figure 2-4** shows synchronous peripheral interaction.

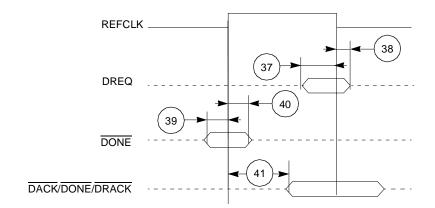


Figure 2-4. DMA Signals

2.6.5 DSI Timing

The timings in the following sections are based on a 30 pF capacitive load. See **Section 2.6.1**, *Load Assumptions*, on page **5** for more details.

2.6.5.1 DSI Asynchronous Mode

Table 2-18. DSI Asynchronous Mode Timing

No.	Characteristics	Min	Max	Unit
100	Attributes ¹ setup time before strobe (HWBS[n]) assertion	3.6	_	ns
101	Attributes ¹ hold time after data strobe deassertion	2.4	_	ns
102	Read/Write data strobe deassertion width ² • DCR[HTAAD] = 1 — Consecutive access to the same DSI — Different device with DCR[HTADT] = 01 — Different device with DCR[HTADT] = 10 — Different device with DCR[HTADT] = 11 • DCR[HTAAD] = 0	1.8 + T _{REFCLK} 5 + T _{REFCLK} 5 + (1.5 × T _{REFCLK}) 5 + (2.5 × T _{REFCLK}) 1.8 + T _{REFCLK}	_	ns ns ns ns
103	Read data strobe deassertion to output data high impedance	_	7.8	ns
104	Read data strobe assertion to output data active from high impedance	3.8	_	ns
105	Output data hold time after read data strobe deassertion	2.2	_	ns
106	Read/Write data strobe assertion to HTA active from high impedance	3.9	_	ns
107	Output data valid to HTA assertion	1	_	ns
108	Read/Write data strobe assertion to HTA valid	_	9.8	ns
109	Read/Write data strobe deassertion to output HTA high impedance. (DCR[HTAAD] = 0, HTA at end of access released at logic 0)	_	6.5	ns
110	Read/Write data strobe deassertion to output HTA deassertion. (DCR[HTAAD] = 1, HTA at end of access released at logic 1)	_	9.2	ns
111	Read/Write data strobe deassertion to output HTA high impedance. (DCR[HTAAD] = 1, HTA at end of access released at logic 1 DCR[HTADT] = 01 DCR[HTADT] = 10 DCR[HTADT] = 11	_	5 + T _{REFCLK} 5 + (1.5 × T _{REFCLK}) 5 + (2.5 × T _{REFCLK})	ns ns ns
112	Read/Write data strobe assertion width	1.8 + T _{REFCLK}		ns
201	Host data input setup time before write data strobe deassertion	2	_	ns
202	Host data input hold time after write data strobe deassertion	1.3	_	ns
Notes	: 1. "Attributes" refers to the following signals: HCS, HA[11–29], HCIE	D[0–4], HDST, HRW, HR	RDS, and HWBSn.	

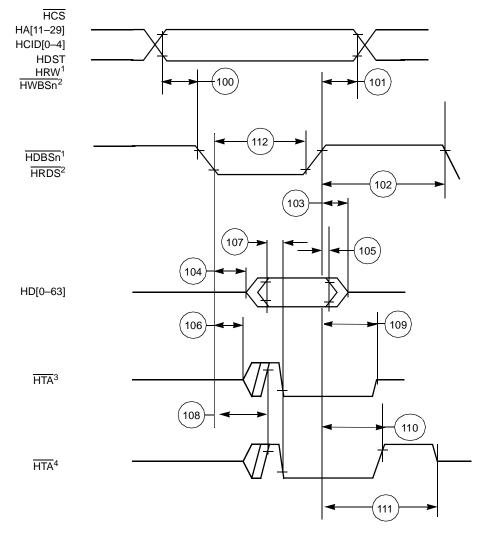


Figure 2-5 shows DSI Asynchronous Read signals timing.

Notes: 1. Used for Single Strobe mode access.

- 2. Used for Dual Strobe mode access.
- 3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 2-5. Asynchronous Single and Dual Modes Read Timing Diagram

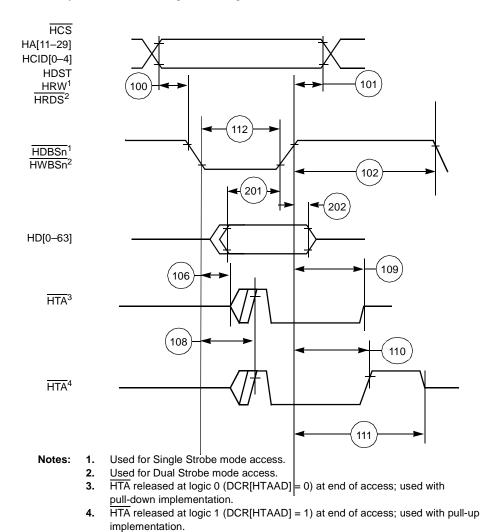


Figure 2-6 shows DSI Asynchronous Write signals timing.

Figure 2-6. Asynchronous Single and Dual Modes Write Timing Diagram

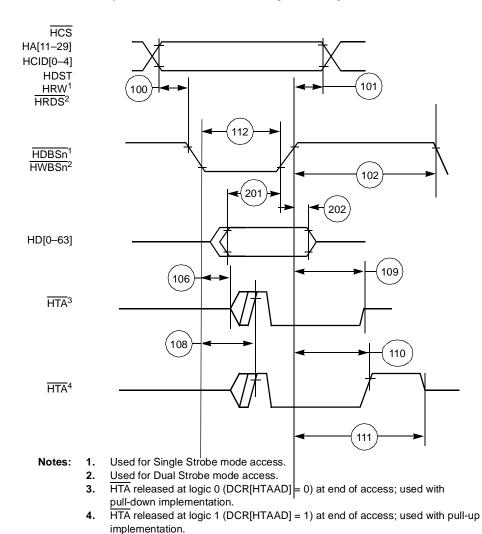


Figure 2-7 shows DSI Asynchronous Broadcast Write signals timing.

Figure 2-7. Asynchronous Broadcast Write Timing Diagram

2.6.5.2 DSI Synchronous Mode

Table 2-19. DSI Inputs—Synchronous Mode

Number	Characteristic	Expression	Minimum	Maximum	Units
120	HCLKIN Cycle Time ¹	HTC	14.3	55.6	ns
121	HCLKIN High Pulse Width	$(0.5 \pm 0.1) \times HTC$	5.7	33.3	ns
122	HCLKIN Low Pulse Width	$(0.5 \pm 0.1) \times HTC$	5.7	33.3	ns
123	HD[0-63], HA[11-29] inputs Setup time	_	2.7	_	ns
124	HCID[0-4] inputs Setup time	_	4.2	_	ns
125	All other inputs Setup time	_	1.5	_	ns
126	All inputs Hold time	_	2.2	_	ns
Notes: 1. Values are based on a frequency range of 18–70 MHz.					

Table 2-20. DSI Outputs—Synchronous Mode

Number	Characteristic	Minimum	Maximum	Units
127	HCLKIN High to HD[0–63] output active	0	_	
128	HCLKIN High to HD[0-63] output valid		8.6	
129	HD[0-63] output Hold time	1.6	_	
130	HCLKIN High to HD[0-63] output high impedance	_	6.2	
131	HCLKIN High to HTA output active	0	_	
132	HCLKIN High to HTA output valid		7.4	
133	HTA output Hold time	1.7	_	
134	HCLKIN High to HTA high impedance		4.4	

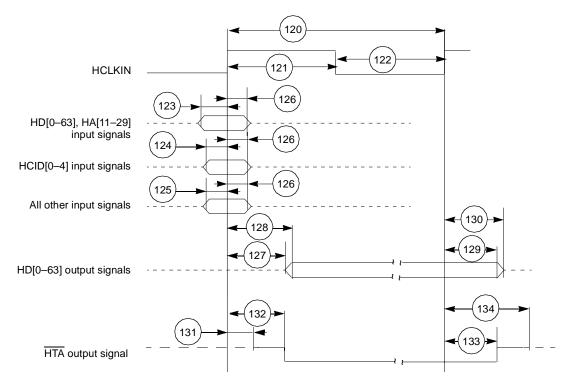


Figure 2-8. DSI Synchronous Mode Signals Timing Diagram

2.6.6 TDM Timing

Table 2-21. TDM Timing

ns ns
ns
1
ns
_

Notes: 1. Values are based on a frequency range of 9–50 MHz.

2. Values are based on 30 pF capacitive load.

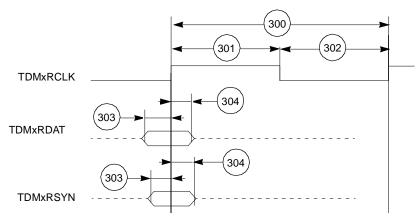


Figure 2-9. TDM Inputs Signals

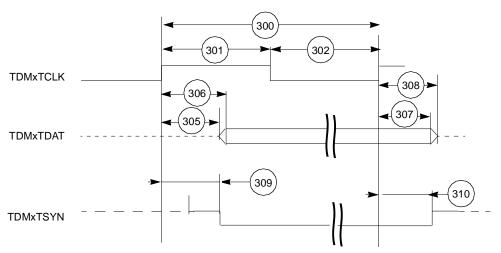


Figure 2-10. TDM Output Signals

2.6.7 UART Timing

Table 2-22. UART Timing

No.	Characteristics	Expression	Min	Max	Unit
400	URXD and UTXD inputs high/low duration	16 × T _{REFCLK}	160.0		ns
401	URXD and UTXD inputs rise/fall time			5	ns
402	UTXD output rise/fall time			5	ns

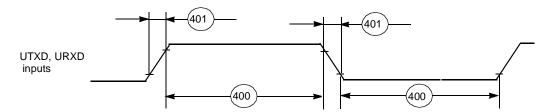


Figure 2-11. UART Input Timing

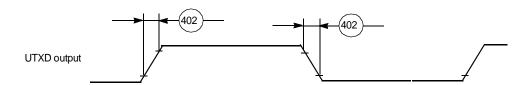


Figure 2-12. UART Output Timing

2.6.8 Timer Timing

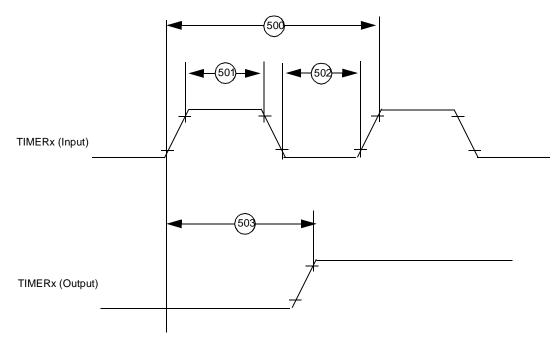


Figure 2-13. Timer Timing

Table 2-23. Timer Timing

No.	Characteristics	92 MHz		Unit
NO.	Gilaracteristics	Min.	Max	Oill
500	TIMERx frequency	10.9	1	ns
501	TIMERx Input high period	4	_	ns
502	TIMERx Output low period	4	_	ns
503	TIMERx Propagations delay from its clock input	5.8	12.3	ns

2.6.9 GPIO Timing

Table 2-24. GPIO Timing

No.	Characteristics	92 M	ИHz	Unit
NO.	Characteristics	Min	Max	Onit
601	REFCLK edge to GPIO out valid (GPIO out delay time)	_	8.5	ns
602	REFCLK edge to GPIO out not valid (GPIO out hold time)	2.5	_	ns
603	REFCLK edge to high impedance on GPIO out	_	3	ns
604	GPIO in valid to REFCLK edge (GPIO in setup time)	4.5	_	ns
605	REFCLK edge to GPIO in not valid (GPIO in hold time)	0.5	_	ns

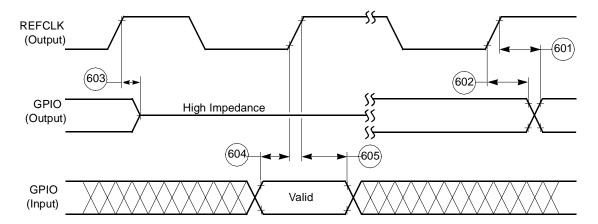


Figure 2-14. GPIO Timing

2.6.10 EE Signals

Table 2-25. EE Pin Timing

Number	Characteristics	Туре	Minimum
65	EE pins as inputs	Asynchronous	4 core clock periods
66	EE pins as outputs	Synchronous to Core clock	1 core clock period

Notes:

- The core clock is the SC140 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset.
- 2. Direction of the EE pins is configured in the EE_CTRL register of the EOnCE (See the *SC140 Core Reference Manual* and the *MSC8102 Reference Manual* for details).
- 3. Refer to **Table 1-4** on page 1-6 for detailed information about EE pin functionality.

Figure 2-15 shows the signal behavior of the EE pins.

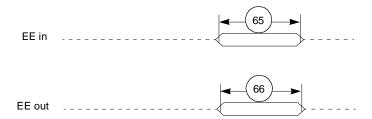


Figure 2-15. EE Pins Timing

2.6.11 JTAG Signals

Table 2-26. JTAG Timing

No.	Characteristics ^{1,2}	All frequencies	uencies	Unit
NO.	Characteristics /	Min	Max	Onn
700	TCK frequency of operation (1/($T_C \times 3$); maximum 22 MHz)	0.0	22.0	MHz
701	TCK cycle time in Crystal mode	45.0	_	ns
702	TCK clock pulse width measured at V _{M =} 1.6 V	20.0	_	ns
703	TCK rise and fall times	0.0	3.0	ns
704	Boundary scan input data set-up time	5.0	_	ns
705	Boundary scan input data hold time	24.0	_	ns
706	TCK low to output data valid	0.0	40.0	ns
707	TCK low to output high impedance	0.0	40.0	ns
708	TMS, TDI data set-up time	5.0	_	ns
709	TMS, TDI data hold time	25.0	_	ns
710	TCK low to TDO data valid	0.0	44.0	ns
711	TCK low to TDO high impedance	0.0	44.0	ns
712	TRST assert time	100.0	_	ns
713	TRST set-up time to TCK low	40.0	_	ns

Notes:

 V_{DDH} = 3.3 V \pm 0.3 V; T_J = TBD, C_L = 50 pF All timings apply to OnCE module data transfers as the OnCE module uses the JTAG port as an interface.

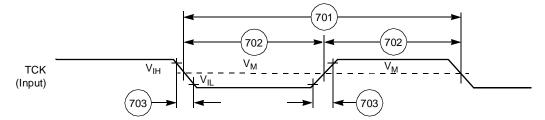


Figure 2-16. Test Clock Input Timing Diagram

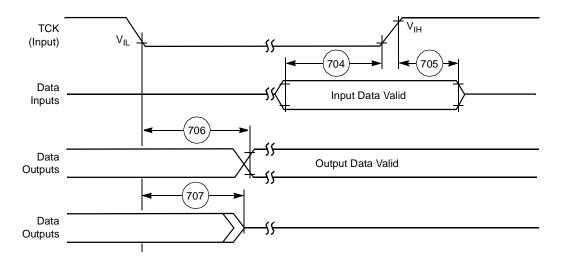


Figure 2-17. Boundary Scan (JTAG) Timing Diagram

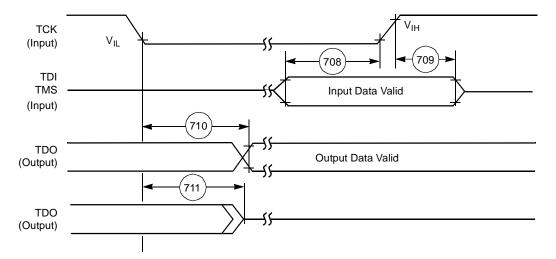


Figure 2-18. Test Access Port Timing Diagram

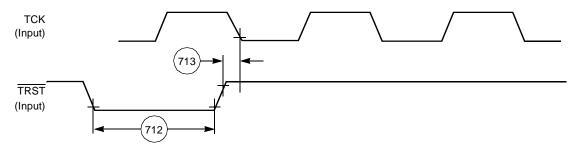
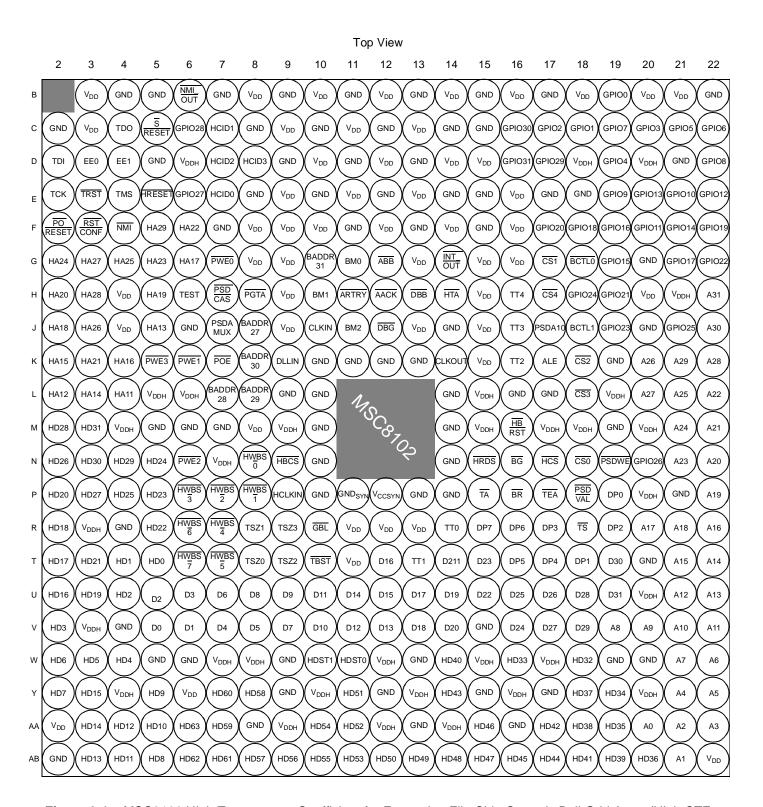


Figure 2-19. TRST Timing Diagram

AC Timings

Packaging

3.1 Pinout and Package Information


This sections provides information about the MSC8102 package, including diagrams of the package pinouts and tables showing how the signals discussed in **Chapter 1**, *Signal/Connection Descriptions* are allocated. The MSC8102 is available in a 431-pin High Temperature Coefficient for Expansion Flip Chip-Ceramic Ball Grid Array (FC-CBGA (HCTE)) and will be used for qualified production parts. Some pre-production MSC8102 devices are provided in a 431-pin Flip Chip-Plastic Ball Grid Array (FC-PBGA) package that may include a copper lid.

3.2 FC-CBGA (HCTE) Package Description

Figure 3-1 and **Figure 3-2** show top and bottom views of the FC-CBGA (HCTE) package, including pinouts. To conform to JDEC requirements, the package is based on a 23 × 23 position (20 × 20 mm) layout with the outside perimeter depopulated. Therefore, ball position numbering starts with B2. Signal names shown in the figures are typically the signal assigned after reset. Signals that are only used during power-on reset (SWTE, DSISYNC, DSI64, MODCK[1–2], CNFGS, and CHIP_ID[0–3]) are not shown in these figures if there is another signal assigned to the pin after reset. Also, there are several signals that are designated as IRQ lines immediately after reset, but represent duplicate IRQ lines that should be reconfigured by the user. To represent these signals uniquely in the figures, the second functions (BADDR[29–31], DP[1–7], and INT OUT) are used.

Table 3-1 lists the MSC8102 signals alphabetically by signal name. Connections with multiple names are listed individually by each name. Signals with programmable polarity are shown both as signals which are asserted low (default) and high (that is, NAME/NAME). **Table 3-2** lists the signals numerically by pin number. Each pin number is listed once with the various signals that are multiplexed to it. For simplicity, signals with programmable polarity are shown in this table only with their default name (asserted low).

Note: Pre-production MSC8102 devices are shipped with the FC-PBGA package. It has the same pinout as the FC-CBGA package.

Figure 3-1. MSC8102 High Temperature Coefficient for Expansion Flip Chip Ceramic Ball Grid Array (High CTE FC-CBGA), Top View

Bottom View 7 2 22 21 20 19 18 17 15 10 9 8 6 5 4 3 16 14 13 12 11 GND GPI00 V_{DD} GND GND GND V_{DD} GND GND V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} GND GPIO5 GPIO3 GPI07 GPIO1 GPIO2 GPI030 GND GND HCID1 GPIO28 GPI06 GND GND GND С GND GPIO3[,] HCID3 GND GPI08 V_{DDH} GPIO4 V_{DDH} , GPIO29 GND V_{DD} GND V_{DD} GND HCID2 EE0 TDI D GND GPIO10 GPIO13 GPIO9 GND GND GND GND GND V_{DD} HCID0 GPIO2 TCK V_{DD} V_{DD} V_{DD} Е PO RESE GPIO11 GPIO16 , GPIO18 , GPIO20 NMI GPIO14 GND GND GND GND HA22 HA29 GPIO19 BADDR , GPIO17 GND GPIO15 BCTL0 CS1 ABB ВМ0 V_{DD} V_{DD} PWE0 HA17 HA23 HA25 GPIO22 V_{DD} V_{DD} V_{DD} HA27 HA24 G PSD CAS GPIO24 DBB HA28 . GPIO21 V_{DD} TEST HA19 HA20 Н V_{DDH} V_{DD} BADDE . GPIO25 GND GPIO23 BCTL1 , PSDA10 TT3 GND ВМ2 CLKIN GND A30 V_{DD} V_{DD} V_{DD} HA13 V_{DD} HA26 HA18 BADDR 30 CS2 LKOU GND GND POE PWE1 GND ALE TT2 GND GND DLLIN PWE3 HA16 HA21 HA15 GND GND HA14 HA12 A22 V_{DDH} V_{DDH} V_{DDH} V_{DDH} HB RST GND GND GND GND GND GND HD31 HD28 A20 . GPIO26 PSDWE CS0 HCS BG GND GND HBCS V_{DDH} HD24 HD30 HD26 Ν HWBS GND , GND_{SY} TA GND GND HCLKIN DP0 TEA GND HD23 HD25 HD27 HD20 V_{DDH} GBL HD22 GND A18 V_{DD} V_{DD} V_{DDH} HD18 A16 A15 GND D30 DP4 D23 D211 D16 V_{DD} TSZ2 HD0 HD21 HD17 Т A12 D26 D22 HD19 HD16 A13 V_{DDH} U A10 D24 GND D20 D18 D13 D12 D10 D4 D0 GND D29 D27 HD3 A11 GND GND HD32 HD33 HD40 GND HDST0 HDST GND GND GND HD4 HD5 HD6 W V_{DDH} V_{DDH} V_{DDH} V_{DDH} V_{DDH} GND GND GND GND HD34 HD37 HD43 V_{DDH} HD51 HD58 HD60 V_{DD} HD9 HD15 HD7 A5 V_{DDH} V_{DDH} V_{DDH} V_{DDH} HD35 HD38 HD42 GND HD46 GND HD52 HD54 GND HD59 HD63 HD10 HD12 HD14 V_{DDH} V_{DDH} V_{DDH} V_{DD} AΑ HD44 HD47 HD49 HD55 HD45 HD48 HD50 HD53 HD56

Figure 3-2. MSC8102 High Temperature Coefficient for Expansion Flip Chip Ceramic Ball Grid Array (High CTE FC-CBGA), Bottom View

Table 3-1. MSC8102 Signal Listing By Name

Signal Name	Location Designator
A0	AA20
A1	AB21
A2	AA21
A3	AA22
A4	Y21
A5	Y22
A6	W22
A7	W21
A8	V19
A9	V20
A10	V21
A11	V22
A12	U21
A13	U22
A14	T22
A15	T21
A16	R22
A17	R20
A18	R21
A19	P22
A20	N22
A21	M22
A22	L22
A23	N21
A24	M21
A25	L21
A26	K20
A27	L20
A28	K22
A29	K21
A30	J22
A31	H22
AACK	H12
ABB	G12
ALE	K17

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
ARTRY	H11
BADDR27	J8
BADDR28	L7
BADDR29	L8
BADDR30	K8
BADDR31	G10
BCTL0	G18
BCTL1	J18
BG	N16
BNKSEL0	G11
BNKSEL1	H10
BNKSEL2	J11
BM0	G11
BM1	H10
BM2	J11
BR	P16
CHIP_ID0	B19
CHIP_ID1	C18
CHIP_ID2	C17
CHIP_ID3	D17
CLKIN	J10
CLKOUT	K14
CNFGS	W3
CS0	N18
CS1	G17
CS2	K18
CS3	L18
CS4	H17
<u>CS5</u>	K16
CS5	J18
CS6	J16
CS7	H16
D0	V5
D1	V6
D2	U5

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name Location		
Signal Name	Designator	
D3	U6	
D4	V7	
D5	V8	
D6	U7	
D7	V9	
D8	U8	
D9	U9	
D10	V10	
D11	U10	
D12	V11	
D13	V12	
D14	U11	
D15	U12	
D16	T12	
D17	U13	
D18	V13	
D19	U14	
D20	V14	
D21	T14	
D22	U15	
D23	T15	
D24	V16	
D25	U16	
D26	U17	
D27	V17	
D28	U18	
D29	V18	
D30	T19	
D31	U19	
D32	W18	
D33	W16	
D34	Y19	
D35	AA19	
D36	AB20	
D37	Y18	

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
D38	AA18
D39	AB19
D40	W14
D41	AB18
D42	AA17
D43	Y14
D44	AB17
D45	AB16
D46	AA15
D47	AB15
D48	AB14
D49	AB13
D50	AB12
D51	Y11
D52	AA11
D53	AB11
D54	AA10
D55	AB10
D56	AB9
D57	AB8
D58	Y8
D59	AA7
D60	Y7
D61	AB7
D62	AB6
D63	AA6
DACK1	G21
DACK1	T18
DACK2	F22
DACK2	R19
DACK3	T17
DACK4	T16
DBB	H13
DBG	J12
DLLIN	K9

Table 3-1. MSC8102 Signal Listing By Name (Continued)

i	
Signal Name	Location Designator
DONE1	F19
DONE2	G22
DP0	P19
DP1	T18
DP2	R19
DP3	R17
DP4	T17
DP5	T16
DP6	R16
DP7	R15
DRACK1	F19
DRACK2	G22
DREQ1	G19
DREQ1	P19
DREQ2	F18
DREQ2	R17
DREQ3	R16
DREQ4	R15
DSI64	U4
DSISYNC	T4
EE0	D3
EE1	D4
EXT_BG2	T18
EXT_BG3	T16
EXT_BR2	P19
EXT_BR3	R17
EXT_DBG2	R19
EXT_DBG3	T17
GBL	R10
GND	B4
GND	B5
GND	В7
GND	В9
GND	B11
GND	B13

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
GND	B15
GND	B17
GND	B22
GND	C2
GND	C8
GND	C10
GND	C12
GND	C14
GND	C15
GND	D5
GND	D9
GND	D11
GND	D13
GND	D21
GND	E8
GND	E10
GND	E12
GND	E14
GND	E15
GND	E17
GND	E18
GND	F7
GND	F11
GND	F13
GND	F15
GND	G20
GND	J6
GND	J14
GND	J20
GND	K10
GND	K11
GND	K12
GND	K13
GND	K19
GND	L9

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
GND	L10
GND	L14
GND	L16
GND	L17
GND	M5
GND	M6
GND	M7
GND	M10
GND	M14
GND	M19
GND	N10
GND	N14
GND	P10
GND	P13
GND	P14
GND	P21
GND	R4
GND	T20
GND	V4
GND	V15
GND	W5
GND	W6
GND	W9
GND	W13
GND	W19
GND	W20
GND	Y9
GND	Y12
GND	Y15
GND	Y17
GND	AA8
GND	AA13
GND	AA16
GND	AB2
GND _{SYN}	P11

Table 3-1. MSC8102 Signal Listing By Name (Continued)

	I
Signal Name	Location Designator
GPIO0	B19
GPIO1	C18
GPIO2	C17
GPIO3	C20
GPIO4	D19
GPIO5	C21
GPIO6	C22
GPIO7	C19
GPIO8	D22
GPIO9	E19
GPIO10	E21
GPIO11	F20
GPIO12	E22
GPIO13	E20
GPIO14	F21
GPIO15	G19
GPIO16	F19
GPIO17	G21
GPIO18	F18
GPIO19	F22
GPIO20	F17
GPIO21	H19
GPIO22	G22
GPIO23	J19
GPIO24	H18
GPIO25	J21
GPIO26	N20
GPIO27	E6
GPIO28	C6
GPIO29	D17
GPIO30	C16
GPIO31	D16
HA11	L4
HA12	L2
HA13	J5
	1

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
HA14	L3
HA15	K2
HA16	K4
HA17	G6
HA18	J2
HA19	H5
HA20	H2
HA21	КЗ
HA22	F6
HA23	G5
HA24	G2
HA25	G4
HA26	J3
HA27	G3
HA28	H3
HA29	F5
HBCS	N9
HBRST	M16
HCID0	E7
HCID1	C7
HCID2	D7
HCID3	D8
HCLKIN	P9
HCS	N17
HD0	T5
HD1	T4
HD2	U4
HD3	V2
HD4	W4
HD5	W3
HD6	W2
HD7	Y2
HD8	AB5
HD9	Y5
HD10	AA5

Table 3-1. MSC8102 Signal Listing By Name (Continued)

	1
Signal Name	Location Designator
HD11	AB4
HD12	AA4
HD13	AB3
HD14	AA3
HD15	Y3
HD16	U2
HD17	T2
HD18	R2
HD19	U3
HD20	P2
HD21	T3
HD22	R5
HD23	P5
HD24	N5
HD25	P4
HD26	N2
HD27	P3
HD28	M2
HD29	N4
HD30	N3
HD31	МЗ
HD32	W18
HD33	W16
HD34	Y19
HD35	AA19
HD36	AB20
HD37	Y18
HD38	AA18
HD39	AB19
HD40	W14
HD41	AB18
HD42	AA17
HD43	Y14
HD44	AB17
HD45	AB16
<u>l</u>	1

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
HD46	AA15
HD47	AB15
HD48	AB14
HD49	AB13
HD50	AB12
HD51	Y11
HD52	AA11
HD53	AB11
HD54	AA10
HD55	AB10
HD56	AB9
HD57	AB8
HD58	Y8
HD59	AA7
HD60	Y7
HD61	AB7
HD62	AB6
HD63	AA6
HDBE4	R7
HDBE5	Т7
HDBE6	R6
HDBE7	T6
HDBS4	R7
HDBS5	T7
HDBS6	R6
HDBS7	T6
HDST0	W11
HDST1	W10
HRDE	N15
HRDS	N15
HRESET	E5
HRW	N15
HTA	H14
HWBS0	N8
HWBS1	P8
-	

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Γ	1 1
Signal Name	Location Designator
HWBS2	P7
HWBS3	P6
HWBS4	R7
HWBS5	T7
HWBS6	R6
HWBS7	T6
ĪNT_OUT	G14
ĪRQ1	C20
ĪRQ1	R10
ĪRQ1	T18
ĪRQ2	D19
ĪRQ2	K8
ĪRQ2	R19
ĪRQ3	C21
ĪRQ3	G10
ĪRQ3	R17
ĪRQ4	C22
ĪRQ4	G12
ĪRQ4	T17
ĪRQ5	C19
ĪRQ5	H13
ĪRQ5	L8
ĪRQ5	T16
ĪRQ6	D22
ĪRQ6	R16
ĪRQ7	E19
ĪRQ7	G14
ĪRQ7	R15
ĪRQ8	E21
ĪRQ9	F20
IRQ10	E22
IRQ11	E20
IRQ12	F21
IRQ13	J19
IRQ14	H18
	1

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
IRQ15	J21
MODCK1	V2
MODCK2	W4
MWBE4	R7
MWBE5	T7
MWBE6	R6
MWBE7	T6
NMI	F4
NMI_OUT	B6
PBPL3	H7
PBS0	G7
PBS1	K6
PBS2	N6
PBS3	K5
PBS4	R7
PBS5	T7
PBS6	R6
PBS7	T6
PGPL0	J17
PGPL1	N19
PGPL2	K7
PGPL4	H8
PGPL5	J7
PGTA	H8
POE	K7
PORESET	F2
PPBS	H8
PSDA10	J17
PSDAMUX	J7
PSDCAS	H7
PSDDQM0	G7
PSDDQM1	K6
PSDDQM2	N6
PSDDQM3	K5
PSDDQM4	R7

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
PSDDQM5	T7
PSDDQM6	R6
PSDDQM7	T6
PSDRAS	K7
PSDVAL	P18
PSDWE	N19
PWE0	G7
PWE1	K6
PWE2	N6
PWE3	K5
PWE4	R7
PWE5	T7
PWE6	R6
PWE7	T6
PUPMWAIT	H8
RSTCONF	F3
SRESET	C5
SWTE	T5
TA	P15
TBST	T10
TC0	G11
TC1	H10
TC2	J11
TCK	E2
TDI	D2
TDM0RCLK	J21
TDM0RDAT	N20
TDMORSYN	H18
TDM0TCLK	G22
TDM0TDAT	J19
TDM0TSYN	H19
TDM1RCLK	F22
TDM1RDAT	F17
TDM1RSYN	F18
TDM1TCLK	F19

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
TDM1TDAT	G21
TDM1TSYN	G19
TDM2RCLK	E20
TDM2RDAT	F21
TDM2RSYN	E22
TDM2TCLK	E21
TDM2TDAT	F20
TDM2TSYN	E19
TDM3RCLK	C19
TDM3RDAT	D22
TDM3RSYN	C22
TDM3TCLK	D19
TDM3TDAT	C21
TDM3TSYN	C20
TDO	C4
TEA	P17
TEST	H6
TIMER0	C18
TIMER1	C17
TIMER2	C16
TIMER3	D16
TMCLK	C16
TMS	E4
TRST	E3
TS	R18
TSZ0	T8
TSZ1	R8
TSZ2	Т9
TSZ3	R9
TT0	R14
TT1	T13
TT2	K16
ТТ3	J16
TT4	H16

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
UTXD	C6
V _{CCSYN}	P12
V_{DD}	В8
V_{DD}	B10
V_{DD}	B12
V_{DD}	B14
V_{DD}	B16
V_{DD}	B18
V_{DD}	B20
V _{DD}	B21
V_{DD}	C3
V _{DD}	C9
V _{DD}	C11
V _{DD}	C13
V_{DD}	D10
V_{DD}	D12
V_{DD}	D14
V_{DD}	D15
V _{DD}	E9
V_{DD}	E11
V_{DD}	E13
V_{DD}	E16
V_{DD}	F8
V_{DD}	F9
V_{DD}	F10
V_{DD}	F12
V_{DD}	F14
V_{DD}	F16
V_{DD}	G8
V _{DD}	G9
V_{DD}	G13
V _{DD}	G15
V _{DD}	G16
V _{DD}	H4
V _{DD}	H9

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
V_{DD}	H15
V_{DD}	H20
V_{DD}	J4
V_{DD}	J9
V_{DD}	J13
V_{DD}	J15
V_{DD}	K15
V_{DD}	M8
V_{DD}	R11
V_{DD}	R12
V_{DD}	R13
V_{DD}	T11
V_{DD}	Y6
V_{DD}	AA2
V_{DD}	В3
V_{DD}	AB22
V_{DDH}	D6
V_{DDH}	D18
V_{DDH}	D20
V_{DDH}	H21
V_{DDH}	L5
V_{DDH}	L6
V_{DDH}	L15
V_{DDH}	L19
V_{DDH}	M4
V_{DDH}	M9
V_{DDH}	M15
V_{DDH}	M17
V_{DDH}	M18
V_{DDH}	M20
V_{DDH}	N7
V_{DDH}	P20
V_{DDH}	R3
V_{DDH}	U20
V_{DDH}	V3

Table 3-1. MSC8102 Signal Listing By Name (Continued)

Signal Name	Location Designator
V _{DDH}	W7
V_{DDH}	W8
V_{DDH}	W12
V_{DDH}	W15
V_{DDH}	W17
V _{DDH}	Y4
V _{DDH}	Y10
V _{DDH}	Y13
V _{DDH}	Y16
V _{DDH}	Y20
V _{DDH}	AA9
V_{DDH}	AA12
V_{DDH}	AA14

Note: This table lists every signal name. Because many signals are multiplexed, an individual ball designator number may be listed several times.

Table 3-2. MSC8102 Signal Listing by Ball Designator

Number	Signal Name
В3	V _{DD}
B4	GND
B5	GND
B6	NMI_OUT
В7	GND
B8	V_{DD}
B9	GND
B10	V_{DD}
B11	GND
B12	V_{DD}
B13	GND
B14	V_{DD}
B15	GND
B16	V_{DD}
B17	GND

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

-2. Wiscord Signal Listing by Ball Designator (Co	
Number	Signal Name
B18	V _{DD}
B19	GPIO0/CHIP_ID0
B20	V_{DD}
B21	V _{DD}
B22	GND
C2	GND
C3	V_{DD}
C4	TDO
C5	SRESET
C6	GPIO28/UTXD
C7	HCID1
C8	GND
C9	V_{DD}
C10	GND
C11	V _{DD}
C12	GND
C13	V _{DD}
C14	GND
C15	GND
C16	GPIO30/TIMER2/TMCLK
C17	GPIO2/TIMER1/CHIP_ID2
C18	GPIO1/TIMER0/CHIP_ID1
C19	GPIO7/TDM3RCLK/IRQ5
C20	GPIO3/TDM3TSYN/IRQ1
C21	GPIO5/TDM3TDAT/IRQ3
C22	GPIO6/TDM3RSYN/ IRQ4
D2	TDI
D3	EE0
D4	EE1
D5	GND
D6	V _{DDH}
D7	HCID2
D8	HCID3
D9	GND
D10	V _{DD}

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

Number	Signal Name
D11	GND
D12	V _{DD}
D13	GND
D14	V _{DD}
D15	V _{DD}
D16	GPIO31/TIMER3
D17	GPIO29/CHIP_ID3
D18	V _{DDH}
D19	GPIO4/TDM3TCLK/IRQ2
D20	V _{DDH}
D21	GND
D22	GPIO8/TDM3RDAT/IRQ6
E2	тск
E3	TRST
E4	TMS
E5	HRESET
E6	GPIO27/URXD
E7	HCID0
E8	GND
E9	V_{DD}
E10	GND
E11	V_{DD}
E12	GND
E13	V_{DD}
E14	GND
E15	GND
E16	V_{DD}
E17	GND
E18	GND
E19	GPIO9/TDM2TSYN/IRQ7
E20	GPIO13/TDM2RCLK/IRQ11
E21	GPIO10/TDM2TCLK/IRQ8
E22	GPIO12/TDM2RSYN/IRQ10
F2	PORESET
F3	RSTCONF

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

Number	Signal Name
F4	NMI
F5	HA29
F6	HA22
F7	GND
F8	V _{DD}
F9	V _{DD}
F10	V _{DD}
F11	GND
F12	V _{DD}
F13	GND
F14	V _{DD}
F15	GND
F16	V _{DD}
F17	GPIO20/TDM1RDAT
F18	GPIO18/TDM1RSYN/DREQ2
F19	GPIO16/TDM1TCLK/DONE1/DRACK1
F20	GPIO11/TDM2TDAT/IRQ9
F21	GPIO14/TDM2RDAT/IRQ12
F22	GPIO19/TDM1RCLK/DACK2
G2	HA24
G3	HA27
G4	HA25
G5	HA23
G6	HA17
G7	PWE0/PSDDQM0/PBS0
G8	V _{DD}
G9	V _{DD}
G10	ĪRQ3/BADDR31
G11	BM0/TC0/BNKSEL0
G12	ABB/IRQ4
G13	V_{DD}
G14	ĪRQ7/ĪNT_OUT
G15	V_{DD}
G16	V_{DD}
G17	CS1

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

Number	Signal Name
G18	BCTL0
G19	GPIO15/TDM1TSYN/DREQ1
G20	GND
G21	GPIO17/TDM1TDAT/DACK1
G22	GPIO22/TDM0TCLK/DONE2/DRACK2
H2	HA20
НЗ	HA28
H4	V _{DD}
H5	HA19
H6	TEST
H7	PSDCAS/PBPL3
H8	PGTA/PUPMWAIT/PGPL4/PPBS
H9	V _{DD}
H10	BM1/TC1/BNKSEL1
H11	ARTRY
H12	AACK
H13	DBB/IRQ5
H14	HTA
H15	V _{DD}
H16	TT4/CS7
H17	CS4
H18	GPIO24/TDM0RSYN/IRQ14
H19	GPIO21/TDM0TSYN
H20	V_{DD}
H21	V _{DDH}
H22	A31
J2	HA18
J3	HA26
J4	V _{DD}
J5	HA13
J6	GND
J7	PSDAMUX/PGPL5
J8	BADDR27
J9	V_{DD}
J10	CLKIN

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

Number	Signal Name
J11	BM2/TC2/BNKSEL2
J12	DBG
J13	V _{DD}
J14	GND
J15	V _{DD}
J16	TT3/ <u>CS6</u>
J17	PSDA10/PGPL0
J18	BCTL1/CS5
J19	GPIO23/TDM0TDAT/IRQ13
J20	GND
J21	GPIO25/TDM0RCLK/IRQ15
J22	A30
K2	HA15
K3	HA21
K4	HA16
K5	PWE3/PSDDQM3/PBS3
K6	PWE1/PSDDQM1/PBS1
K7	POE/PSDRAS/PGPL2
K8	IRQ2/BADDR30
K9	DLLIN
K10	GND
K11	GND
K12	GND
K13	GND
K14	CLKOUT
K15	V _{DD}
K16	TT2/ CS5
K17	ALE
K18	CS2
K19	GND
K20	A26
K21	A29
K22	A28
L2	HA12
L3	HA14

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

Number	Signal Name
L4	HA11
L5	V _{DDH}
L6	V _{DDH}
L7	BADDR28
L8	ĪRQ5/BADDR29
L9	GND
L10	GND
L14	GND
L15	V _{DDH}
L16	GND
L17	GND
L18	CS3
L19	V _{DDH}
L20	A27
L21	A25
L22	A22
M2	HD28
М3	HD31
M4	V _{DDH}
M5	GND
M6	GND
M7	GND
M8	V _{DD}
M9	V _{DDH}
M10	GND
M14	GND
M15	V _{DDH}
M16	HBRST
M17	V _{DDH}
M18	V _{DDH}
M19	GND
M20	V _{DDH}
M21	A24
M22	A21
N2	HD26

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

Number Signal Name				
N3	HD30			
N4	HD29			
N5	HD24			
N6	PWE2/PSDDQM2/PBS2			
N7	V _{DDH}			
N8	HWBS0			
N9	HBCS			
N10	GND			
N14	GND			
N15	HRDS/HRW/HRDE			
N16	BG			
N17	HCS			
N18	CS0			
N19	PSDWE/PGPL1			
N20	GPIO26/TDM0RDAT			
N21	A23			
N22	A20			
P2	HD20			
P3	HD27			
P4	HD25			
P5	HD23			
P6	HWBS3			
P7	HWBS2			
P8	HWBS1			
P9	HCLKIN			
P10	GND			
P11	GND _{SYN}			
P12	V _{CCSYN}			
P13	GND			
P14	GND			
P15	TA			
P16	BR			
P17	TEA			
P18	PSDVAL			
P19	DP0/DREQ1/EXT_BR2			

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

Number	Signal Name			
P20	V_{DDH}			
P21	GND			
P22	A19			
R2	HD18			
R3	V_{DDH}			
R4	GND			
R5	HD22			
R6	HWBS6/HDBS6/MWBE6/HDBE6/PWE6/ PSDDQM6/PBS6			
R7	HWBS4/HDBS4/MWBE4/HDBE4/PWE4/ PSDDQM4/PBS4			
R8	TSZ1			
R9	TSZ3			
R10	ĪRQ1/GBL			
R11	V _{DD}			
R12	V _{DD}			
R13	V _{DD}			
R14	TT0			
R15	IRQ7/DP7/DREQ4			
R16	ĪRQ6/DP6/DREQ3			
R17	IRQ3/DP3/DREQ2/EXT_BR3			
R18	TS			
R19	IRQ2/DP2/DACK2/EXT_DBG2			
R20	A17			
R21	A18			
R22	A16			
T2	HD17			
T3	HD21			
T4	HD1/DSISYNC			
T5	HD0/SWTE			
T6	HWBS7/HDBS7/MWBE7/HDBE7/PWE7/ PSDDQM7/PBS7			
Т7	HWBS5/HDBS5/MWBE5/HDBE5/PWE5/ PSDDQM5/PBS5			
T8	TSZ0			
T9	TSZ2			
T10	TBST			

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

Number	Signal Name			
T11	V _{DD}			
T12	D16			
T13	TT1			
T14	D21			
T15	D23			
T16	IRQ5/DP5/DACK4/EXT_BG3			
T17	IRQ4/DP4/DACK3/EXT_DBG3			
T18	ĪRQ1/DP1/DACK1/EXT_BG2			
T19	D30			
T20	GND			
T21	A15			
T22	A14			
U2	HD16			
U3	HD19			
U4	HD2/DSI64			
U5	D2			
U6	D3			
U7	D6			
U8	D8			
U9	D9			
U10	D11			
U11	D14			
U12	D15			
U13	D17			
U14	D19			
U15	D22			
U16	D25			
U17	D26			
U18	D28			
U19	D31			
U20	V _{DDH}			
U21	A12			
U22	A13			
V2	HD3/MODCK1			
V3	V _{DDH}			

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

Number	Signal Name
V4	GND
V5	D0
V6	D1
V7	D4
V8	D5
V9	D7
V10	D10
V11	D12
V12	D13
V13	D18
V14	D20
V15	GND
V16	D24
V17	D27
V18	D29
V19	A8
V20	А9
V21	A10
V22	A11
W2	HD6
W3	HD5/CNFGS
W4	HD4/MODCK2
W5	GND
W6	GND
W7	V _{DDH}
W8	V _{DDH}
W9	GND
W10	HDST1
W11	HDST0
W12	V _{DDH}
W13	GND
W14	HD40/D40
W15	V _{DDH}
W16	HD33/D33
W17	V_{DDH}

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

Number Signal Name			
W18	HD32/D32		
W19	GND		
W20	GND		
W21	A7		
W22	A6		
Y2	HD7		
Y3	HD15		
Y4	V_{DDH}		
Y5	HD9		
Y6	V _{DD}		
Y7	HD60/D60		
Y8	HD58/D58		
Y9	GND		
Y10	V _{DDH}		
Y11	HD51/D51		
Y12	GND		
Y13	V_{DDH}		
Y14	HD43/D43		
Y15	GND		
Y16	V_{DDH}		
Y17	GND		
Y18	HD37/D37		
Y19	HD34/D34		
Y20	V _{DDH}		
Y21	A4		
Y22	A5		
AA2	V _{DD}		
AA3	HD14		
AA4	HD12		
AA5	HD10		
AA6	HD63/D63		
AA7	HD59/D59		
AA8	GND		
AA9	V _{DDH}		
AA10	HD54/D54		

 Table 3-2.
 MSC8102 Signal Listing by Ball Designator (Continued)

Number	Signal Name
AA11	HD52/D52
AA12	V _{DDH}
AA13	GND
AA14	V _{DDH}
AA15	HD46/D46
AA16	GND
AA17	HD42/D42
AA18	HD38/D38
AA19	HD35/D35
AA20	A0
AA21	A2
AA22	A3
AB2	GND
AB3	HD13
AB4	HD11
AB5	HD8
AB6	HD62/D62
AB7	HD61/D61
AB8	HD57/D57
AB9	HD56/D56
AB10	HD55/D55
AB11	HD53/D53
AB12	HD50/D50
AB13	HD49/D49
AB14	HD48/D48
AB15	HD47/D47
AB16	HD45/D45
AB17	HD44/D44
AB18	HD41/D41
AB19	HD39/D39
AB20	HD36/D36
AB21	A1
AB22	V_{DD}

3.3 FC-CBGA (HCTE) Package Mechanical Drawing

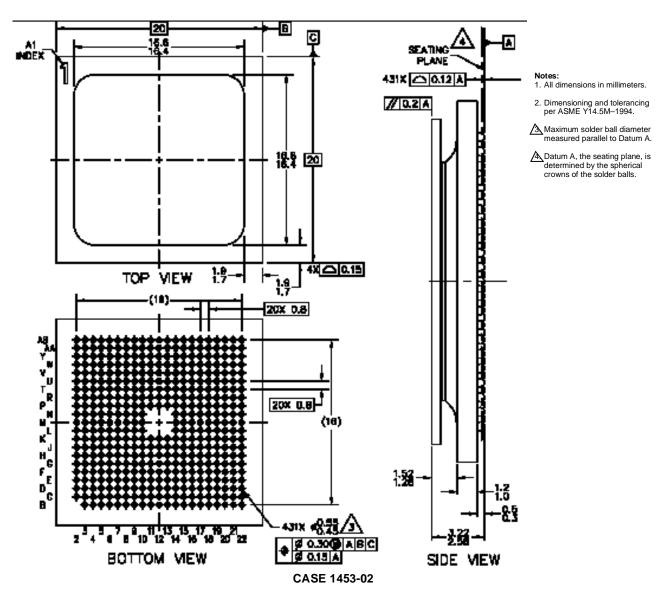


Figure 3-3. MSC8102 Mechanical Information, 431-pin FC-CBGA (HCTE) Package

3.4 FC-PBGA Package Mechanical Drawing

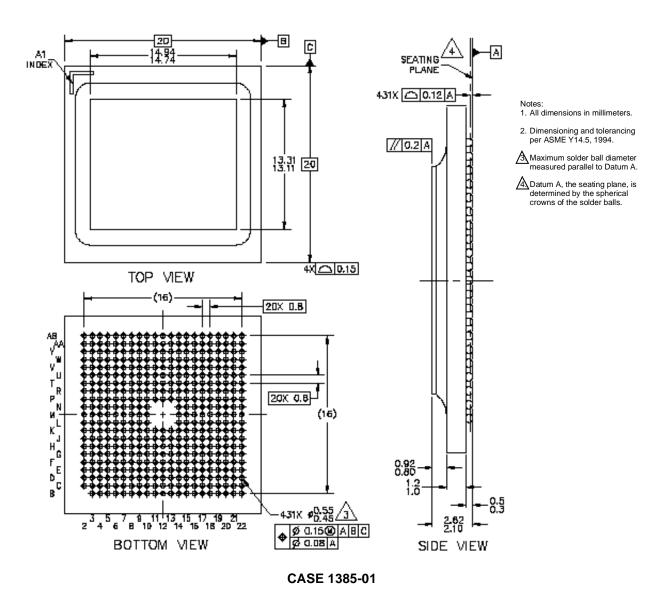


Figure 3-4. MSC8102 Mechanical Information, 431-pin FC-PBGA Package

Note: This package is used for pre-production MSC8102 devices only. The package may include a copper lid. Addition of the copper lid increases the overall package height to 2.58–3.22 mm, the same as the FC-CGBA (HCTE) package shown in **Figure 3-3**.

FC-PBGA Package Mechanical Drawing

Design Considerations

4.1 Thermal Design Considerations

The average chip-junction temperature, T_I, in °C can be obtained from the following:

Equation 1:
$$T_J = T_A + (P_D \bullet \theta_{JA})$$

where

- T_A = ambient temperature °C
- $\theta_{\rm JA}$ = package thermal resistance, junction to ambient, °C/W
- $P_D = P_{INT} + P_{I/O}$ in W
- $P_{INT} = I_{DD} \times V_{DD}$ in W—chip internal power
- P_{I/O} = power dissipation on output pins in W—user determined

The user should set T_A and P_D such that T_J does not exceed the maximum operating conditions. In case T_J is too high, the user should either lower the ambient temperature or the power dissipation of the chip.

4.2 Power Supply Design Considerations

The input voltage must not exceed the I/O supply V_{DDH} by more than 2.5 V at any time, including during power-on reset. In turn V_{DDH} must not exceed V_{DD}/V_{CCSYN} by more than 2.6 V at any time, including during power-on reset. V_{DD}/V_{CCSYN} must not exceed V_{DDH} by more than 0.4 V at any time, including during power-on reset. Therefore the recommendation is to use "bootstrap" diodes between the power rails, as shown in **Figure 4-1**.

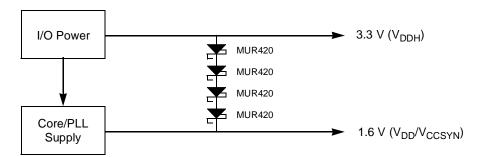


Figure 4-1. Bootstrap Diodes for Power-Up Sequencing

Select the bootstrap diodes such that a nominal V_{DD}/V_{CCSYN} is sourced from the V_{DDH} power supply until the V_{DD}/V_{CCSYN} power supply becomes active. In **Figure 4-1**, four MUR420 Schottky barrier diodes are connected in series; each has a forward voltage (V_F) of 0.6 V at high currents, so these diodes provide a 2.4 V drop, maintaining 0.9 V on the 1.6 V power line. Once the core/PLL power supply stabilizes at 1.6 V, the bootstrap diodes will be reverse biased with negligible leakage current. The V_F should be effective at the current levels required by the processor. Do not use diodes with a nominal V_F that drops too low at high current.

Figure 4-2 shows the recommended power decoupling circuit for the core power supply. The voltage regulator and the decoupling capacitors should supply the required device current without any drop in voltage on the device pins. The voltage on the package pins should not drop below 1.5 V even for a very short spikes. This can be achieved by using the following guidelines:

- For the core supply, use a voltage regulator rated at 1.6 V with nominal rating of at least 3 A.
- Decouple the supply using low-ESR capacitors mounted as close as possible to the socket.

Figure 4-2 shows three capacitors in parallel to reduce the resistance. Three capacitors is a recommended minimum number.

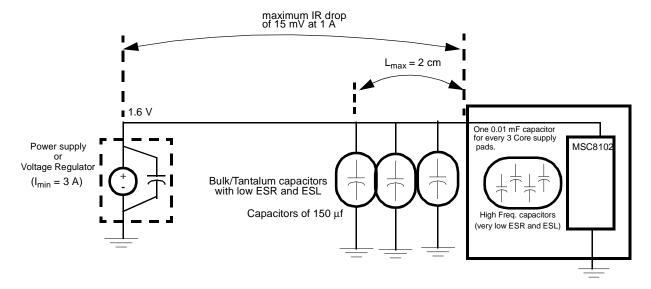


Figure 4-2. Core Power Supply Decoupling

4.3 Connectivity Guidelines

Unused output pins can be disconnected, and unused input pins should be connected to there non-active value, except for the following:

- If the DSI is unused (Bit DDR[1]:DSIDIS is set), then HCS and HBCS must be tied to V_{DD} and all the rest of the DSI signals can be disconnected.
- When the DSI uses Synchronous mode, HTA must be pulled up. In asynchronous mode, HTA should be pulled either up or down depending on design requirements.
- HDST can be disconnected if the DSI is in Big-endian mode, or if the DSI is in Little-endian mode and DCR[7]:DSRFA bit is set.
- When the DSI is in 64-bit Data bus mode and DCR[2]:BEM is cleared, the
 HWBS[1-3]/HDBS[1-3]/HWBE[1-3]/HDBE[1-3] and
 HWBS[4-7]/HDBS[4-7]/HWBE[4-7]/HDBE[4-7]/PWE[4-7]/PSDDQM[4-7]/PBS[4-7] must be tied to V_{DD}.
- When the DSI is in 32-bit Data bus mode and DCR[2] (BEM) is cleared, HWBS[1-3]/HDBS[1-3]/HWBE[1-3]/HDBE[1-3] must be tied to V_{DD}.
- When the DSI is in Asynchronous mode, HBRST and HCLKIN should either be disconnected or tied to VDD.
- The following signals can be disconnected in single-master mode (BCR[EBM] is reset): \overline{BG} , \overline{DBG} , \overline{EXT} , $\overline{BG[2-3]}$, \overline{EXT} , $\overline{DBG[2-3]}$, \overline{GBL} and \overline{TS} .
- The following signals must be pulled up: HRESET, SRESET, ARTRY, TA, TEA, PSDVAL, and AACK.

- In single master mode, \overline{ABB} and \overline{DBB} can be selected as \overline{IRQ} inputs and be connected to the non-active value. In other modes, they must be pulled up.
- If the 60x-compatible system bus is not used and SIUMCR[PBSE] is set, PPBS can be disconnected. Otherwise, it should be pulled up.
- The following signals: SWTE, DSISYNC, DSI64, MODCK[1-2], and CNFGS are used to configure the MSC8102 and are sampled on the deassertion of the PORESET signal. Therefore, they should be tied to GND or V_{DD} either directly or through a pull-down or a pull-up resistor until the deassertion of the PORESET signal.
- The following signals: CHIPID[0-3], RSTCONF and BM[0-2] are used to configure the MSC8102 and are sampled at the deassertion of the PORESET signal. Therefore, they should be tied to GND or VCC either directly or through a pull-down or a pull-up resistor.
- The BR, BG, DBG, EXT_BR[2-3], EXT_BG[2-3], EXT_DBG[2-3], and TS must be pulled up if the BCR[EBM] bit is set.
- When they are used, INT_OUT (if SIUMCR[INTODC] is cleared), NMI_OUT, and IRQxx (if not full drive) signals must be pulled up.

Note: For details on configuration, see the MSC8102 User's Guide and MSC8102 Reference Manual.

4.4 Power Considerations

The internal power dissipation consists of three components:

$$P_{INT} = P_{TCORE} + P_{SIU} + P_{BUSES} + P_{PERIPH}$$

The power dissipation depends on the operating frequency of the different portions of the chip. To determine the power dissipation at a given frequency, the following equations should be applied:

```
\begin{split} & P_{CORE} \; (f_c) = ((P_{CORE} - P_{LCO})/275) \times f_c + P_{LCO} \\ & P_{TCORE} \; (f_c) = (P_{CORE} \times 4) \\ & P_{SIU} \; (f_c) = ((P_{SIU} - P_{LSI})/91.67) \times f_c + P_{LSI} \\ & P_{PERIPH} \; (f_c) = ((P_{PERIPH} - P_{LPE})/91.67) \times f_c + P_{LPE} \\ & P_{BUSES} \; (f_c) = P_{BUSES} \; /91.67 \times f_c \\ & Where, \end{split}
```

 \boldsymbol{f}_{c} is the operating frequency in MHz and all power numbers are in $m\boldsymbol{W}$

P_{LCO} is the SC140 Core leakage power

P_{LSI} is the SIU leakage power

P_{LPE} is the peripheral leakage power

To determine a total power dissipation in a specific application, the following equation should be applied for each I/O output pin:

Equation 2: $P = C \times V_{DDH}^2 \times f_s \times 10^{-3}$

Where:

P = power in mW

C = load capacitance in pF

 f_s = output switching frequency in MHz.

4.5 Layout Practices

Each V_{CC} and V_{DD} pin on the MSC8102 should be provided with a low-impedance path to the board power supply. Similarly, each GND pin should be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on the chip. The V_{CC} power supply should be bypassed to ground using at least four 0.1 μ F by-pass capacitors located as closely as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} , V_{DD} , and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MSC8102 have fast rise and fall times. Printed circuit board (PCB) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PCB trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PCB traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} , V_{DD} , and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

There is one pair of PLL supply pins: V_{CCSYN} -GND_{SYN}. To ensure internal clock stability, filter the power to the V_{CCSYN} input with a circuit similar to the one in **Figure 4-3**. To filter as much noise as possible, place the circuit as close as possible to V_{CCSYN} . The 0.01- μ F capacitor should be closest to V_{CCSYN} , followed by the 10- μ F capacitor, the 10-nH inductor, and finally the 10- Ω resistor to V_{DD} . These traces should be kept short and direct.

GND_{SYN} should be provided with an extremely low impedance path to ground and should be bypassed to V_{CCSYN} by a 0.01- μF capacitor located as close as possible to the chip package. The user should also bypass GND_{SYN} to V_{CCSYN} with a 0.01- μF capacitor as close as possible to the chip package

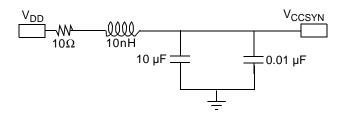


Figure 4-3. V_{CCSYN} Bypass

Ordering Information

Consult a Motorola Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Order Number
MSC8102	1.6 V core 3.3 V I/O	High Temperature Coefficient for Expansion Flip Chip Ceramic Ball Grid Array (FC-CBGA (HCTE))	431	250	TBD
	0.0 170	Golding Ball Glid Allay (1 & GBGA (11612))		275	TBD

HOW TO REACH US: USA / EUROPE / Locations Not Listed:

Motorola Literature Distribution P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 480-768-2130

JAPAN:

Motorola Japan Ltd. SPS, Technical Information Center 3-20-1, Minami-Azabu Minato-ku Tokyo 106-8573 Japan 81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd. Silicon Harbour Centre 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

HOME PAGE:

http://motorola.com/semiconductors/

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application. Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. OnCE and digital dna are trademarks of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002, 2003

MSC8102/D, REV. 2