MIC4576
200kHz Simple 3A Buck Regulator

The Infinite Bandwidth Company ${ }^{\text {TM }}$

General Description

The MIC4576 is a series of easy to use fixed and adjustable BiCMOS step-down (buck) switch-mode voltage regulators. The 200 kHz MIC4576 duplicates the pinout and function of the 52 kHz LM2576. The higher switching frequency may allow up to a $2: 1$ reduction in output filter inductor size.
The MIC4576 is available in 3.3V, and 5V fixed output versions or a 1.23 V to 33 V adjustable output version. Both versions are capable of driving a 3A load with excellent line and load regulation.
The feedback voltage is guaranteed to $\pm 2 \%$ tolerance for adjustable versions, and the output voltage is guaranteed to $\pm 3 \%$ for fixed versions, within specified voltages and load conditions. The oscillator frequency is guaranteed to $\pm 10 \%$. In shutdown mode, the regulator draws less than $200 \mu \mathrm{~A}$ standby current. The regulator performs cycle-by-cycle current limiting and thermal shutdown for protection under fault conditions.
This series of simple switch-mode regulators requires a minimum number of external components and can operate using a standard series of inductors. Frequency compensation is provided internally.
The MIC4576 is available in TO-220 (T) and TO-263 (U) packages for the industrial temperature range.

Features

- Fixed 200 kHz operation
- 3.3V, 5V, and adjustable output versions
- Voltage over specified line and load conditions:

Fixed version: $\pm 3 \%$ max. output voltage
Adjustable version: $\pm 2 \%$ max. feedback voltage

- Guaranteed 3A switch current
- Wide 4 V to 36 V input voltage range
- Wide 1.23 V to 33 V output voltage range
- Requires minimum external components
- <200 $\mu \mathrm{A}$ typical shutdown mode
- 75\% efficiency (adjustable version > 75\% typical)
- Standard inductors are 25% of typical LM2576 values
- Thermal shutdown
- Overcurrent protection
- 100\% electrical thermal limit burn-in

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient preregulator for linear regulators
- On-card switching regulators
- Positive-to-negative converter (inverting buck-boost)
- Battery Charger
- Negative boost converter
- Step-down to 3.3V for Intel Pentium ${ }^{\text {TM }}$ and similar microprocessors

Typical Applications

Fixed Regulator

Adjustable Regulator

Ordering Information

Part Number	Voltage	Temperature Range	Package
MIC4576-3.3BT	3.3 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-220-5
MIC4576-5.0BT	5.0 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-220-5
MIC4576BT	Adjustable	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-220-5
MIC4576-3.3BU	3.3 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-263-5
MIC4576-5.0BU	5.0 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-263-5
MIC4576BU	Adjustable	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-263-5

Pin Configuration

5-Lead TO-220 (T)

5-Lead TO-263 (U)

Pin Description

Pin Number	Pin Name	Pin Function
1	$\mathrm{~V}_{\mathrm{IN}}$	Supply Voltage (Input): Unregulated +4V to +36V supply voltage.
2	SW	Switch (Output): Emitter of NPN output switch. Connect to external storage inductor and Shottky diode.
3, TAB	GND	Ground
4	FB	Feedback (Input): Output voltage feedback to regulator. Connect to output of supply for fixed versions. Connect to 1.23 V tap of resistive divider for adjustable versions.
5	SHDN	Shutdown (Input): Logic low enables regulator. Logic high (> 2.4 V$)$ shuts down regulator.

Absolute Maximum Ratings

Supply Voltage (V_{IN}) .. 40 V
Shutdown Voltage ($\mathrm{V}_{\text {SHDN }}$) -0.3 V to +36 V
Output Switch (V_{SW}), Steady State
-1V
Feedback Voltage (V_{FB}) [Adjustable]+3.8V
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings

Supply Voltage (V_{IN}) ... 36 V
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Package Thermal Resistance
TO-220, TO-263 ($\theta_{J A}$)
$65^{\circ} \mathrm{C} / \mathrm{W}$
TO-220, TO-263 (θ_{JC}) ... $2^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$; $\mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$; unless noted.

Parameter	Condition	Min	Typ	Max	Units
MIC4576 [Adjustable]					
Feedback Voltage		1.217	1.230	1.243	V
Feedback Voltage	$8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$	$\begin{aligned} & 1.193 \\ & 1.180 \end{aligned}$	1.230	$\begin{aligned} & 1.267 \\ & 1.280 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Efficiency	$\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$, Note 1		77		\%
Maximum Duty Cycle (On)	$\mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V}$	90	95		\%
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=36 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.5 \mathrm{~V} \\ & \text { output }=0 \mathrm{~V} \\ & \text { output }=-1 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0 \\ 7.5 \end{gathered}$	$\begin{gathered} 2 \\ 30 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Quiescent Current	$\mathrm{V}_{\mathrm{FB}}=1.5 \mathrm{~V}$		5	10	mA
Feedback Bias Current			50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$

MIC4576-3.3

Output Voltage		3.234	3.3	3.366	V
Output Voltage	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$	$\begin{aligned} & 3.168 \\ & 3.135 \end{aligned}$	3.3	$\begin{aligned} & 3.432 \\ & 3.465 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Efficiency	$\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		72		\%
Maximum Duty Cycle (On)	$\mathrm{V}_{\mathrm{FB}}=2.5 \mathrm{~V}$	90	95		\%
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=36 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=4.0 \mathrm{~V} \\ & \text { output }=0 \mathrm{~V} \\ & \text { output }=-1 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0 \\ 7.5 \end{gathered}$	$\begin{gathered} 2 \\ 30 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Quiescent Current	$\mathrm{V}_{\mathrm{FB}}=4.0 \mathrm{~V}$		5	10	mA
MIC4576-5.0					
Output Voltage		4.900	5.0	5.100	V
Output Voltage	$8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$	$\begin{aligned} & 4.800 \\ & 4.750 \end{aligned}$	5.0	$\begin{aligned} & 5.200 \\ & 5.250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Efficiency	$\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		77		\%
Maximum Duty Cycle (On)	$\mathrm{V}_{\mathrm{FB}}=4.0 \mathrm{~V}$	90	95		\%
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=36 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=6.0 \mathrm{~V} \\ & \text { output }=0 \mathrm{~V} \\ & \text { output }=-1 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0 \\ 7.5 \end{gathered}$	$\begin{gathered} 2 \\ 30 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Quiescent Current	$\mathrm{V}_{\mathrm{FB}}=6.0 \mathrm{~V}$		5	10	mA

Parameter	Condition	Min	Typ	Max	Units
MIC4576 / -3.3 / -5.0					
Oscillator Frequency		180	200	220	kHz
Saturation Voltage	$\mathrm{I}_{\text {OUT }}=3 \mathrm{~A}$		1.7	$\begin{aligned} & 2.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Current Limit	peak current, $\mathrm{t}_{\mathrm{ON}} \leq 3 \mu \mathrm{~s} ; \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	$\begin{aligned} & 4.2 \\ & 3.5 \end{aligned}$	5.2	$\begin{aligned} & \hline 7.9 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
Standby Quiescent Current	$\mathrm{V}_{\text {SHDN }}=5 \mathrm{~V}$ (regulator off), $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$		50	200	$\mu \mathrm{A}$
SHDN Input Logic Level	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (regulator off)	$\begin{aligned} & 2.2 \\ & 2.4 \end{aligned}$	1.4		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
	$\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$ or 5 V (regulator on)		1.2	$\begin{aligned} & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
SHDN Input Current	$\mathrm{V}_{\text {SHDN }}=5 \mathrm{~V}$ (regulator off) $\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$ (regulator on)	-10	$\begin{gathered} 4 \\ 0.01 \end{gathered}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

General Note: Devices are ESD protected, however, handling precautions are recommended.
Note 1: $V_{\text {OUT }}=5 \mathrm{~V}$

Block Diagram with External Components
Fixed Step-Down Regulator

Block Diagram with External Components
Adjustable Step-Down Regulator

Functional Description

The MIC4576 is a variable duty cycle switch-mode regulator with an internal power switch. Refer to the block diagrams.

Supply Voltage

The MIC4576 operates from a +4 V to +36 V unregulated input. Highest efficiency operation is from a supply voltage around +15 V .

Enable/Shutdown

The shutdown (SHDN) input is TTL compatible. Ground the input if unused. A logic-low enables the regulator. A logichigh shuts down the internal regulator which reduces the current to typically $50 \mu \mathrm{~A}$.

Feedback

Fixed versions of the regulator have an internal resistive divider from the feedback (FB) pin. Connect FB directly to the output line.
Adjustable versions require an external resistive voltage divider from the output voltage to ground, connected from the 1.23 V tap to FB .

Duty Cycle Control

A fixed-gain error amplifier compares the feedback signal with a 1.23 V bandgap voltage reference. The resulting error amplifier output voltage is compared to a 200 kHz sawtooth waveform to produce a voltage controlled variable duty cycle output.

A higher feedback voltage increases the error amplifier output voltage. A higher error amplifier voltage (comparator inverting input) causes the comparator to detect only the peaks of the sawtooth, reducing the duty cycle of the comparator output. A lower feedback voltage increases the duty cycle.

Output Switching

When the internal switch is on, an increasing current flows from the supply V_{IN}, through external storage inductor L 1 , to output capacitor $\mathrm{C}_{\text {OUT }}$ and the load. Energy is stored in the inductor as the current increases with time.
When the internal switch is turned off, the collapse of the magnetic field in L1 forces current to flow through fast recovery diode D 1 , charging $\mathrm{C}_{\text {Out }}$.

Output Capacitor

External output capacitor $\mathrm{C}_{\text {OUT }}$ provides stabilization and reduces ripple.

Return Paths

During the on portion of the cycle, the output capacitor and load currents return to the supply ground. During the off portion of the cycle, current is being supplied to the output capacitor and load by storage inductor L1, which means that D1 is part of the high-current return path.

Applications Information

The applications circuits that follow have been constructed and tested. Refer to Application Note 15 for additional information, including efficiency graphs and manufacturer's addresses and telephone numbers for most circuits.

Figure 1. 6V-24V to 3.3V/3A Buck Converter Through Hole

For a mathematical approach to component selection and circuit design, refer to Application Note 14.

Figure 2. $6 \mathrm{~V}-36 \mathrm{~V}$ to $3.3 \mathrm{~V} / 3 \mathrm{~A}$ Buck Converter Through Hole

Note 2: Surface-mount component.

Figure 3. $\mathbf{8 V} \mathbf{- 2 4 V}$ to $5 \mathrm{~V} / 3 \mathrm{~A}$ Buck Converter Through Hole

Figure 4. 8V-36V to 5V/3A Buck Converter Through Hole

Figure 5. 16V-36V to 12V/3A Buck Converter Through Hole

Figure 6. Parallel Switching Regulators

Note 2: Surface-mount component.

Package Information

5-Lead TO-220 (T)

5-Lead TO-263 (U)

MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 wEB http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

