Data Sheet February 25, 2005 FN6128.0 # Ultra Low ON-Resistance, +1.65V to +4.5V, Single Supply, Dual SPDT Analog Switch The Intersil ISL8484 device is a low ON-resistance, low voltage, bidirectional, dual single-pole/double-throw (SPDT) analog switch designed to operate from a single +1.65V to +4.5V supply. Targeted applications include battery powered equipment that benefit from low R_{ON} (0.23 Ω) and fast switching speeds (t_{ON} = 20ns, t_{OFF} = 15ns). The digital logic input is 1.8V logic-compatible when using a single +3V supply. With a supply voltage of 4.2V and logic high voltage of 2.85V at both logic inputs, the part draws only $10\mu A$ max of I+current. Cell phones, for example, often face ASIC functionality limitations. The number of analog input or GPIO pins may be limited and digital geometries are not well suited to analog switch performance. This part may be used to "mux-in" additional functionality while reducing ASIC design risk. The ISL8484 is offered in small form factor packages, alleviating board space limitations. The ISL8484 is a committed dual single-pole/double-throw (SPDT) that consist of two normally open (NO) and two normally closed (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer. The ISL8484 is pin compatible with the MAX4684 and MAX4685. **TABLE 1. FEATURES AT A GLANCE** | | ISL8484 | |--|--------------------------------| | Number of Switches | 2 | | SW | SPDT or 2-1 MUX | | 4.3V R _{ON} | 0.23Ω | | 4.3V t _{ON} /t _{OFF} | 20ns/15ns | | 3V R _{ON} | 0.27Ω | | 3V t _{ON} /t _{OFF} | 25ns/20ns | | 1.8V R _{ON} | 0.45Ω | | 1.8V t _{ON} /t _{OFF} | 65ns/50ns | | Packages | 10 Ld 3x3 Thin DFN, 10 Ld MSOP | # Related Literature - Technical Brief TB363 "Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs)" - Application Note AN557 "Recommended Test Procedures for Analog Switches" #### **Features** - Pb-Free Available as an Option (RoHS Compliant) (see Ordering Info) - Pin Compatible Replacement for the MAX4684 and MAX4685 - ON Resistance (R_{ON}) | | - V+ = +4.3V | 0.23Ω | |---|--|-----------------| | | - V+ = +3.0V | 0.27Ω | | | - V+ = +1.8V | 0.45Ω | | • | R _{ON} Matching Between Channels | 0.03Ω | | • | R _{ON} Flatness Across Signal Range | 0.03Ω | | • | Single Supply Operation | +1.65V to +4.5V | | • | Low Power Consumption (P_D) | <0.3μW | | • | Fast Switching Action (V+ = +4.3V) | | | | - t _{ON} | 20ns | | | - t _{OFF} | 15ns | | • | ESD HBM Rating | >9kV | - · Guaranteed Break-before-Make - 1.8V Logic Compatible (+3V supply) - · Low I+ Current when VinH is not at the V+ Rail - Available in 10 lead 3x3 Thin DFN and 10 lead MSOP ## **Applications** - · Battery powered, Handheld, and Portable Equipment - Cellular/mobile Phones - Pagers - Laptops, Notebooks, Palmtops - · Portable Test and Measurement - · Medical Equipment - · Audio and Video Switching # Pinout (Note 1) ISL8484 (TDFN, MSOP) TOP VIEW ## NOTE: 1. Switches Shown for Logic "0" Input. # Truth Table | LOGIC | PIN NC1 and NC2 | PIN NO1 and NO2 | |-------|-----------------|-----------------| | 0 | ON | OFF | | 1 | OFF | ON | NOTE: Logic "0" \leq 0.5V. Logic "1" \geq 1.4V with a 3V supply. # Pin Descriptions | PIN | FUNCTION | |-----|---| | V+ | System Power Supply Input (+1.65V to +4.5V) | | GND | Ground Connection | | IN | Digital Control Input | | COM | Analog Switch Common Pin | | NO | Analog Switch Normally Open Pin | | NC | Analog Switch Normally Closed Pin | # **Ordering Information** | 9 | | | | |---------------------------------------|---------------------|--|---------------| | PART NO.
(BRAND) | TEMP.
RANGE (°C) | PACKAGE | PKG.
DWG.# | | ISL8484IR
(484) | -40 to 85 | 10 Ld 3x3 Thin DFN | L10.3x3A | | ISL8484IR-T
(484) | -40 to 85 | 10 Ld 3x3 Thin DFN
Tape and Reel | L10.3x3A | | ISL8484IU
(8484) | -40 to 85 | 10 Ld MSOP | M10.118 | | ISL8484IU-T
(8484) | -40 to 85 | 10 Ld MSOP
Tape and Reel | M10.118 | | ISL8484IRZ
(484Z)
(See Note) | -40 to 85 | 10 Ld 3x3 Thin DFN (Pb-free) | L10.3x3A | | ISL8484IRZ-T
(484Z)
(See Note) | -40 to 85 | 10 Ld 3x3 Thin DFN
Tape and Reel
(Pb-free) | L10.3x3A | | ISL8484IUZ
(8484Z)
(See Note) | -40 to 85 | 10 Ld MSOP
(Pb-free) | M10.118 | | ISL8484IUZ-T
(8484Z)
(See Note) | -40 to 85 | 10 Ld MSOP
Tape and Reel
(Pb-free) | M10.118 | NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. # **Absolute Maximum Ratings** ## **Thermal Information** | Thermal Resistance (Typical) | θ _{JA} (°C/W) | |--|------------------------| | 10 Ld 3x3 TDFN Package (Note 3) | 110 | | 10 Ld MSOP Package (Note 3) | 190 | | Maximum Junction Temperature (Plastic Package) | 150°C | | Maximum Storage Temperature Range6 | | | Maximum Lead Temperature (Soldering 10s) | 300°C | | (Lead Tips Only) | | # **Operating Conditions** | Temperature Range | | |-------------------|---------------| | ISL8484IX | -40°C to 85°C | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTES: - 2. Signals on NC, NO, IN, or COM exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to maximum current ratings. - 3. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. # **Electrical Specifications - 4.3V Supply** Test Conditions: V+ = +3.9V to +4.5V, GND = 0V, V_{INH} = 1.6V, V_{INL} = 0.5V (Notes 4, 6), Unless Otherwise Specified | PARAMETER | TEST CONDITIONS | TEMP
(°C) | (NOTE 5) MIN | TYP | (NOTE 5)
MAX | UNITS | |---|--|--------------|--------------|-------|-----------------|-------| | ANALOG SWITCH CHARACTERIS | STICS | | | | <u> </u> | | | Analog Signal Range, V _{ANALOG} | | Full | 0 | - | V+ | V | | ON Resistance, R _{ON} | $V + = 3.9V$, $I_{COM} = 100$ mA, V_{NO} or $V_{NC} = 0V$ to $V +$, | 25 | - | 0.23 | - | Ω | | | (See Figure 5) | Full | - | 0.26 | - | Ω | | R _{ON} Matching Between Channels, | $V+=3.9V$, $I_{COM}=100$ mA, V_{NO} or $V_{NC}=V$ oltage at max | 25 | - | 0.03 | - | Ω | | ΔR_{ON} | R _{ON} , (Note 9) | Full | - | 0.04 | - | Ω | | R _{ON} Flatness, R _{FLAT(ON)} | $V+ = 3.9V$, $I_{COM} = 100$ mA, V_{NO} or $V_{NC} = 0V$ to $V+$, | 25 | - | 0.03 | - | Ω | | | (Note 7) | Full | - | 0.04 | - | Ω | | NO or NC OFF Leakage Current, | $V+ = 4.5V$, $V_{COM} = 0.3V$, $3V$, V_{NO} or $V_{NC} = 3V$, $0.3V$ | 25 | -45 | - | 45 | nA | | I _{NO(OFF)} or I _{NC(OFF)} | | Full | -110 | - | 110 | nA | | COM ON Leakage Current, | V+ = 4.5V, V_{COM} = 0.3V, 3V, or V_{NO} or V_{NC} = 0.3V, 3V, or Floating | 25 | -45 | - | 45 | nA | | ICOM(ON) | | Full | -100 | - | 100 | nA | | DYNAMIC CHARACTERISTICS | | | | | | | | Turn-ON Time, t _{ON} | V + = 3.9 V , V _{NO} or V _{NC} = 3.0 V , R _L = 50 Ω , C _L = 35 p F, | 25 | - | 20 | 30 | ns | | | (See Figure 1, Note 8) | Full | - | - | 35 | ns | | Turn-OFF Time, t _{OFF} | $V+ = 3.9V$, V_{NO} or $V_{NC} = 3.0V$, $R_L = 50\Omega$, $C_L = 35pF$, | 25 | - | 15 | 25 | ns | | | (See Figure 1, Note 8) | Full | - | - | 30
35 | ns | | Break-Before-Make Time Delay, t _D | V+ = 4.5V, V_{NO} or V_{NC} = 3.0V, R_L = 50 Ω , C_L = 35pF, (See Figure 3, Note 8) | Full | 2 | 4 | - | ns | | Charge Injection, Q | $C_L = 1.0$ nF, $V_G = 0$ V, $R_G = 0$ Ω, (See Figure 2) | 25 | - | 128 | - | рС | | OFF Isolation | $R_L = 50\Omega$, $C_L = 5pF$, $f = 100kHz$, $V_{COM} = 1V_{RMS}$, (See Figure 4) | 25 | - | 68 | - | dB | | Crosstalk (Channel-to-Channel) | $R_L = 50\Omega$, $C_L = 5pF$, $f = 100kHz$, $V_{COM} = 1V_{RMS}$, (See Figure 6) | 25 | - | -95 | - | dB | | Total Harmonic Distortion | $f = 20Hz$ to $20kHz$, $V_{COM} = 2V_{P-P}$, $R_L = 600\Omega$ | 25 | - | 0.003 | - | % | | NO or NC OFF Capacitance, COFF | $f = 1MHz$, V_{NO} or $V_{NC} = V_{COM} = 0V$, (See Figure 7) | 25 | - | 115 | - | pF | FN6128.0 February 25, 2005 ## **Electrical Specifications - 4.3V Supply** Test Conditions: V+ = +3.9V to +4.5V, GND = 0V, $V_{INH} = 1.6V$, $V_{INL} = 0.5V$ (Notes 4, 6), Unless Otherwise Specified (**Continued**) | PARAMETER | TEST CONDITIONS | TEMP
(°C) | (NOTE 5)
MIN | TYP | (NOTE 5)
MAX | UNITS | |--|---|--------------|-----------------|-----|-----------------|-------| | COM ON Capacitance, C _{COM(ON)} | $f = 1MHz$, V_{NO} or $V_{NC} = V_{COM} = 0V$, (See Figure 7) | 25 | - | 224 | - | pF | | POWER SUPPLY CHARACTERIST | rics | | | | | | | Power Supply Range | | Full | 1.65 | | 4.5 | V | | Positive Supply Current, I+ | V+ = +4.5V, V _{IN} = 0V or V+ | 25 | - | - | 0.08 | μА | | | | Full | - | - | 1 | μА | | Positive Supply Current, I+ | V+ = +4.2V, V _{IN} = 2.85V | 25 | - | - | 10 | μА | | DIGITAL INPUT CHARACTERISTIC | CS CS | | | | | | | Input Voltage Low, VINL | | Full | - | - | 0.5 | V | | Input Voltage High, V _{INH} | | Full | 1.6 | - | - | V | | Input Current, I _{INH} , I _{INL} | V+ = 4.5V, V _{IN} = 0V or V+, (Note 8) | Full | -0.5 | - | 0.5 | μА | #### NOTES: - 4. V_{IN} = input voltage to perform proper function. - 5. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. - 6. Parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation. - 7. Flatness is defined as the difference between maximum and minimum value of on-resistance over the specified analog signal range. - 8. Guaranteed but not tested. - 9. R_{ON} matching between channels is calculated by subtracting the channel with the highest max Ron value from the channel with lowest max Ron value, between NC1 and NC2 or between NO1 and NO2. ## **Electrical Specifications - 3V Supply** Test Conditions: V + = +2.7V to +3.3V, GND = 0V, $V_{INH} = 1.4V$, $V_{INL} = 0.5V$ (Notes 4, 6), Unless Otherwise Specified | PARAMETER | TEST CONDITIONS | TEMP
(°C) | (NOTE 5)
MIN | TYP | (NOTE 5)
MAX | UNITS | |---|--|--------------|-----------------|------|-----------------|-------| | ANALOG SWITCH CHARACTERIS | STICS | | | | | | | Analog Signal Range, V _{ANALOG} | | Full | 0 | - | V+ | V | | ON Resistance, R _{ON} | V+ = 2.7V, I _{COM} = 100mA, V _{NO} or V _{NC} = 0V to V+, | 25 | - | 0.29 | 0.4 | Ω | | | (See Figure 5) | Full | - | - | 0.6 | Ω | | R _{ON} Matching Between Channels, | $/+ = 2.7V$, $I_{COM} = 100$ mA, V_{NO} or $V_{NC} = V$ oltage at | 25 | - | 0.03 | 0.06 | Ω | | ΔR _{ON} | max R _{ON} , (Note 9) | Full | - | - | 0.06 | Ω | | R _{ON} Flatness, R _{FLAT(ON)} | $V+$ = 2.7V, I_{COM} = 100mA, V_{NO} or V_{NC} = 0V to V+, (Note 7) | 25 | - | 0.03 | 0.15 | Ω | | | | Full | - | - | 0.15 | Ω | | NO or NC OFF Leakage Current, | V+ = 3.3V, V _{COM} = 0.3V, 3V, V _{NO} or V _{NC} = 3V, 0.3V | 25 | - | 1.1 | - | nA | | I _{NO(OFF)} or I _{NC(OFF)} | V+ = 3.3V, V _{COM} = 0.3V, 3V, V _{NO} or V _{NC} = 3V, 0.3V | Full | - | 25 | - | nA | | COM ON Leakage Current, | $V_{+} = 3.3V$, $V_{COM} = 0.3V$, $3V$, or V_{NO} or $V_{NC} = 0.3V$, $3V$, | 25 | - | 1.7 | - | nA | | ICOM(ON) | or Floating | Full | - | 48 | - | nA | | DYNAMIC CHARACTERISTICS | | l | | | | | | Turn-ON Time, t _{ON} | $V+ = 2.7V$, V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$, $C_L = 35pF$, | 25 | - | 25 | 35 | ns | | | (See Figure 1, Note 8) | Full | - | - | 40 | ns | | Turn-OFF Time, t _{OFF} | V+ = 2.7V, V_{NO} or V_{NC} = 1.5V, R_L = 50Ω , C_L = $35pF$, (See Figure 1, Note 8) | 25 | - | 20 | 30 | ns | | | | Full | - | - | 35 | ns | | Break-Before-Make Time Delay, t _D | V+ = 3.3V, V_{NO} or V_{NC} = 1.5V, R_L = 50 Ω , C_L = 35pF, (See Figure 3, Note 8) | Full | 2 | 6 | - | ns | # **Electrical Specifications - 3V Supply** Test Conditions: V+ = +2.7V to +3.3V, GND = 0V, V_{INH} = 1.4V, V_{INL} = 0.5V (Notes 4, 6), Unless Otherwise Specified **(Continued)** | PARAMETER | TEST CONDITIONS | TEMP
(°C) | (NOTE 5)
MIN | TYP | (NOTE 5)
MAX | UNITS | |--|---|--------------|-----------------|-------|-----------------|-------| | Charge Injection, Q | $C_L = 1.0$ nF, $V_G = 0$ V, $R_G = 0\Omega$, (See Figure 2) | 25 | - | 95 | - | рC | | OFF Isolation | R_L = 50 Ω , C_L = 5pF, f = 100kHz, V_{COM} = 1 V_{RMS} , (See Figure 4) | 25 | - | 68 | - | dB | | Crosstalk (Channel-to-Channel) | R_L = 50 Ω , C_L = 5pF, f = 100kHz, V_{COM} = 1 V_{RMS} , (See Figure 6) | 25 | - | -95 | - | dB | | Total Harmonic Distortion | f = 20Hz to 20kHz, V_{COM} = $2V_{P-P}$, R_L = 600Ω | 25 | - | 0.003 | - | % | | NO or NC OFF Capacitance, COFF | f = 1MHz, V _{NO} or V _{NC} = V _{COM} = 0V, (See Figure 7) | 25 | - | 115 | - | pF | | COM ON Capacitance, C _{COM(ON)} | f = 1MHz, V _{NO} or V _{NC} = V _{COM} = 0V, (See Figure 7) | 25 | - | 224 | - | pF | | POWER SUPPLY CHARACTERIST | rics | • | • | | • | | | Positive Supply Current, I+ | V+ = +3.6V, V _{IN} = 0V or V+ | 25 | - | 0.014 | - | μА | | | | Full | - | 0.52 | - | μА | | DIGITAL INPUT CHARACTERISTIC | CS CS | | ·! | | ·! | | | Input Voltage Low, V _{INL} | | 25 | - | - | 0.5 | V | | Input Voltage High, V _{INH} | | 25 | 1.4 | - | - | V | | Input Current, I _{INH} , I _{INL} | V+ = 3.3V, V _{IN} = 0V or V+ (Note 8) | Full | -0.5 | - | 0.5 | μА | # **Electrical Specifications - 1.8V Supply** Test Conditions: V+ = +1.65V to +2V, GND = 0V, V_{INH} = 1.0V, V_{INL} = 0.4V (Note 4, 6), Unless Otherwise Specified | PARAMETER | TEST CONDITIONS | | (NOTE 5) MIN | TYP | (NOTE 5) | UNITS | |--|---|------|--------------|-----|----------|-------| | ANALOG SWITCH CHARACTERIS | TICS | | | | | • | | Analog Signal Range, V _{ANALOG} | | Full | 0 | - | V+ | V | | ON Resistance, R _{ON} | V+ = 1.65V, I_{COM} = 100mA, V_{NO} or V_{NC} = 0V to V+, (See Figure 5) | | - | 0.5 | 0.8 | Ω | | | | | - | - | 0.85 | Ω | | DYNAMIC CHARACTERISTICS | | | | | | | | Turn-ON Time, t _{ON} | V+ = 1.65V, V_{NO} or V_{NC} = 1.0V, R_L = 50 Ω , C_L = 35pF, (See Figure 1, Note 8) | | - | 65 | 80 | ns | | | | | - | - | 90 | ns | | Turn-OFF Time, t _{OFF} | V+ = 1.65V, V_{NO} or V_{NC} = 1.0V, R_L = 50 Ω , C_L = 35pF, (See Figure 1, Note 8) | 25 | - | 50 | 70 | ns | | | | Full | - | - | 80 | ns | | Break-Before-Make Time Delay, t_{D} | V+ = 2.0V, V_{NO} or V_{NC} = 1.0V, R_L = 50 Ω , C_L = 35pF, (See Figure 3, Note 8) | Full | 2 | 9 | - | ns | | Charge Injection, Q | $C_L = 1.0$ nF, $V_G = 0$ V, $R_G = 0\Omega$, (See Figure 2) | 25 | - | 49 | - | pC | | OFF Isolation | R_L = 50 Ω , C_L = 5pF, f = 100kHz, V_{COM} = 1 V_{RMS} , (See Figure 4) | 25 | - | 68 | - | dB | | Crosstalk (Channel-to-Channel) | R_L = 50 Ω , C_L = 5pF, f = 100kHz, V_{COM} = 1 V_{RMS} , (See Figure 6) | 25 | - | -95 | - | dB | | NO or NC OFF Capacitance, COFF | f = 1MHz, V _{NO} or V _{NC} = V _{COM} = 0V, (See Figure 7) | 25 | - | 115 | - | pF | | COM ON Capacitance, C _{COM(ON)} | f = 1MHz, V _{NO} or V _{NC} = V _{COM} = 0V, (See Figure 7) | 25 | - | 224 | - | pF | | DIGITAL INPUT CHARACTERISTIC | CS CS | | | | | | | Input Voltage Low, V _{INL} | | 25 | - | - | 0.4 | V | | Input Voltage High, V _{INH} | | 25 | 1.0 | - | - | V | | Input Current, I _{INH} , I _{INL} | V+ = 2.0V, V _{IN} = 0V or V+ (Note 8) | Full | -0.5 | - | 0.5 | μА | # Test Circuits and Waveforms Logic input waveform is inverted for switches that have the opposite logic sense. Repeat test for all switches. C_L includes fixture and stray capacitance. $V_{OUT} = V_{(NO \text{ or NC})} \frac{R_L}{R_L + R_{(ON)}}$ FIGURE 1B. TEST CIRCUIT FIGURE 1A. MEASUREMENT POINTS FIGURE 1. SWITCHING TIMES FIGURE 2A. MEASUREMENT POINTS Repeat test for all switches. FIGURE 2B. TEST CIRCUIT FIGURE 2. CHARGE INJECTION FIGURE 3A. MEASUREMENT POINTS 6 Repeat test for all switches. C_L includes fixture and stray capacitance. FIGURE 3B. TEST CIRCUIT FN6128.0 February 25, 2005 FIGURE 3. BREAK-BEFORE-MAKE TIME # Test Circuits and Waveforms (Continued) Signal direction through switch is reversed, worst case values are recorded. Repeat test for all switches. FIGURE 4. OFF ISOLATION TEST CIRCUIT Signal direction through switch is reversed, worst case values are recorded. Repeat test for all switches. FIGURE 6. CROSSTALK TEST CIRCUIT # **Detailed Description** The ISL8484 is a bidirectional, dual single pole/double throw (SPDT) analog switch that offers precise switching capability from a single 1.65V to 4.5V supply with low on-resistance (0.23 Ω) and high speed operation (t_{ON} = 20ns, t_{OFF} = 15ns). The device is especially well suited for portable battery powered equipment due to its low operating supply voltage (1.65V), low power consumption (4.5 μ W max), low leakage currents (110nA max), and the tiny DFN and MSOP packages. The ultra low on-resistance and Ron flatness provide very low insertion loss and distortion to applications that require signal reproduction. # Supply Sequencing and Overvoltage Protection With any CMOS device, proper power supply sequencing is required to protect the device from excessive input currents which might permanently damage the IC. All I/O pins contain Repeat test for all switches. FIGURE 5. RON TEST CIRCUIT Repeat test for all switches. FIGURE 7. CAPACITANCE TEST CIRCUIT ESD protection diodes from the pin to V+ and to GND (see Figure 8). To prevent forward biasing these diodes, V+ must be applied before any input signals, and the input signal voltages must remain between V+ and GND. If these conditions cannot be guaranteed, then one of the following two protection methods should be employed. Logic inputs can easily be protected by adding a $1k\Omega$ resistor in series with the input (see Figure 8). The resistor limits the input current below the threshold that produces permanent damage, and the sub-microamp input current produces an insignificant voltage drop during normal operation. This method is not acceptable for the signal path inputs. Adding a series resistor to the switch input defeats the purpose of using a low $R_{\mbox{ON}}$ switch, so two small signal diodes can be added in series with the supply pins to provide overvoltage protection for all pins (see Figure 8). These additional diodes limit the analog signal from 1V below V+ to 1V above GND. The low leakage current performance is unaffected by this approach, but the switch signal range is reduced and the resistance may increase, especially at low supply voltages. FIGURE 8. OVERVOLTAGE PROTECTION #### Power-Supply Considerations The ISL8484 construction is typical of most single supply CMOS analog switches, in that they have two supply pins: V+ and GND. V+ and GND drive the internal CMOS switches and set their analog voltage limits. Unlike switches with a 4V maximum supply voltage, the ISL8484 4.7V maximum supply voltage provides plenty of room for the 10% tolerance of 4.3V supplies, as well as room for overshoot and noise spikes. The minimum recommended supply voltage is 1.65V. It is important to note that the input signal range, switching times, and on-resistance degrade at lower supply voltages. Refer to the electrical specification tables and *Typical Performance* curves for details. V+ and GND also power the internal logic and level shiftiers. The level shiftiers convert the input logic levels to switched V+ and GND signals to drive the analog switch gate terminals. This family of switches cannot be operated with bipolar supplies, because the input switching point becomes negative in this configuration. # Logic-Level Thresholds This switch family is 1.8V CMOS compatible (0.5V and 1.4V) over a supply range of 2.7V to 4.5V (see Figure 16). At 2.7V the $V_{\rm IL}$ level is about 0.53V. This is still above the 1.8V CMOS guaranteed low output maximum level of 0.5V, but noise margin is reduced. The digital input stages draw supply current whenever the digital input voltage is not at one of the supply rails. Driving the digital input signals from GND to V+ with a fast transition time minimizes power dissipation. The ISL8484 has been designed to minimize the supply current whenever the digital input voltage is not driven to the supply rails (0V to V+). For example driving the device with 2.85V logic (0V to 2.85V) while operating with a 4.2V supply the device draws only $8\mu\text{A}$ of current (see Figure 14 for VIN = 2.85V). #### High-Frequency Performance In 50Ω systems, the signal response is reasonably flat even past 30MHz with a -3dB bandwidth of 120MHz (see Figure 19). The frequency response is very consistent over a wide V+ range, and for varying analog signal levels. An OFF switch acts like a capacitor and passes higher frequencies with less attenuation, resulting in signal feedthrough from a switch's input to its output. Off Isolation is the resistance to this feedthrough, while Crosstalk indicates the amount of feedthrough from one switch to another. Figure 20 details the high Off Isolation and Crosstalk rejection provided by this part. At 100kHz, Off Isolation is about 68dB in 50Ω systems, decreasing approximately 20dB per decade as frequency increases. Higher load impedances decrease Off Isolation and Crosstalk rejection due to the voltage divider action of the switch OFF impedance and the load impedance. #### Leakage Considerations Reverse ESD protection diodes are internally connected between each analog-signal pin and both V+ and GND. One of these diodes conducts if any analog signal exceeds V+ or GND. Virtually all the analog leakage current comes from the ESD diodes to V+ or GND. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V+ or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V+ and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity. There is no connection between the analog signal paths and V+ or GND. # **Typical Performance Curves** T_A = 25°C, Unless Otherwise Specified FIGURE 9. ON RESISTANCE VS SUPPLY VOLTAGE VS SWITCH VOLTAGE FIGURE 11. ON RESISTANCE vs SWITCH VOLTAGE FIGURE 10. ON RESISTANCE VS SUPPLY VOLTAGE VS SWITCH VOLTAGE FIGURE 12. ON RESISTANCE vs SWITCH VOLTAGE # Typical Performance Curves T_A = 25°C, Unless Otherwise Specified (Continued) FIGURE 13. ON RESISTANCE vs SWITCH VOLTAGE FIGURE 15. CHARGE INJECTION vs SWITCH VOLTAGE FIGURE 17. TURN - ON TIME vs SUPPLY VOLTAGE FIGURE 14. VLOGIC vs SUPPLY VOLTAGE FIGURE 16. DIGITAL SWITCHING POINT vs SUPPLY VOLTAGE FIGURE 18. TURN - OFF TIME vs SUPPLY VOLTAGE # Typical Performance Curves T_A = 25°C, Unless Otherwise Specified (Continued) FIGURE 19. FREQUENCY RESPONSE **TABLE 2. ON LEAKAGE vs SWITCH VOLTAGE** TABLE 3. OFF LEAKAGE vs SWITCH VOLTAGE # Die Characteristics ## SUBSTRATE POTENTIAL (POWERED UP): GND (DFN Paddle Connection: Tie to GND or Float) ## TRANSISTOR COUNT: 114 ## PROCESS: Submicron CMOS # Thin Dual Flat No-Lead Plastic Package (TDFN) FOR ODD TERMINAL/SIDE # L10.3x3A 10 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE | | ı | | | | |--------|----------|---------|------|-------| | SYMBOL | MIN | NOMINAL | MAX | NOTES | | Α | 0.70 | 0.75 | 0.80 | - | | A1 | - | - | 0.05 | - | | A3 | | - | | | | b | 0.20 | 0.25 | 0.30 | 5,8 | | D | | - | | | | D2 | 2.20 | 2.30 | 2.40 | 7,8 | | Е | | - | | | | E2 | 1.40 | 1.50 | 1.60 | 7,8 | | е | 0.50 BSC | | | - | | k | 0.25 | - | - | - | | L | 0.20 | 0.30 | 0.40 | 8 | | L1 | - | - | 0.15 | 1 | | N | | 2 | | | | Nd | | 3 | | | Rev. 1 6/04 #### NOTES: - 1. Dimensioning and tolerancing conform to ASME Y14.5-1994. - 2. N is the number of terminals. - 3. Nd refers to the number of terminals on D. - 4. All dimensions are in millimeters. Angles are in degrees. - Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. - The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. - 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance. - 8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389. - Depending on the method of lead termination at the edge of the package, a maximum 0.15mm pull back (L1) maybe present. L minus L1 to be equal to or greater than 0.3mm. - COMPLIANT TO JEDEC MO-229-WEED-3 except for dimensions E2 & D2. # Mini Small Outline Plastic Packages (MSOP) # M10.118 (JEDEC MO-187BA) 10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE | | INCHES | | MILLIN | | | |--------|----------------|-----------------|----------------|-----------------|-------| | SYMBOL | MIN | MAX | MIN | MAX | NOTES | | Α | 0.037 | 0.043 | 0.94 | 1.10 | - | | A1 | 0.002 | 0.006 | 0.05 | 0.15 | - | | A2 | 0.030 | 0.037 | 0.75 | 0.95 | - | | b | 0.007 | 0.011 | 0.18 | 0.27 | 9 | | С | 0.004 | 0.008 | 0.09 | 0.20 | - | | D | 0.116 | 0.120 | 2.95 | 3.05 | 3 | | E1 | 0.116 | 0.120 | 2.95 | 3.05 | 4 | | е | 0.020 BSC | | 0.50 BSC | | - | | Е | 0.187 | 0.199 | 4.75 | 5.05 | - | | L | 0.016 | 0.028 | 0.40 | 0.70 | 6 | | L1 | 0.037 REF | | 0.95 REF | | - | | N | 10 | | 10 | | 7 | | R | 0.003 | - | 0.07 | - | - | | R1 | 0.003 | - | 0.07 | - | - | | θ | 5 ⁰ | 15 ⁰ | 5 ⁰ | 15 ⁰ | - | | α | 0° | 6 ⁰ | 00 | 6 ⁰ | - | Rev. 0 12/02 ## NOTES: - 1. These package dimensions are within allowable dimensions of JEDEC MO-187BA. - 2. Dimensioning and tolerancing per ANSI Y14.5M-1994. - 3. Dimension "D" does not include mold flash, protrusions or gate burrs and are measured at Datum Plane. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. - 4. Dimension "E1" does not include interlead flash or protrusions and are measured at Datum Plane. -H- Interlead flash and protrusions shall not exceed 0.15mm (0.006 inch) per side. - 5. Formed leads shall be planar with respect to one another within 0.10mm (.004) at seating Plane. - 6. "L" is the length of terminal for soldering to a substrate. - 7. "N" is the number of terminal positions. - 8. Terminal numbers are shown for reference only. - 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm (0.0027 inch). - 10. Datums -A and -B to be determined at Datum plane - 11. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com