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mteL Intel386™ DX MICROPROCESSOR
32-BIT CHMOS MICROPROCESSOR
WITH INTEGRATED MEMORY MANAGEMENT

| Flexible 32-Bit Microprocessor ® Optimized for System Performance
— 8, 16, 32-Bit Data Types - Pipelined Instruction Execution
— 8 General Purpose 32-Bit Registers -~ On-Chip Address Translation Caches
B Very Large Address Space — 20, 25 and 33 MHz Clock
— 4 Gigabyte Physical — 40, 50 and 66 Megabytes/Sec Bus
— 64 Terabyte Virtual Bandwidth
— 4 Glgabyte Maximum Segment Size @ Numerics Support via Intel3g7™ DX
® Integrated Memory Management Unit Math Coprocessor -
= Virtual Memory Support m Complete System Development
— Optional On-Chip Paging Support
—4 Levels of Protection — Software: C, PL/M, Assembler
= Fully Compatible with 80286 System Generation Tools
m Object Code Compatible with All 8086 — Debuggers: PSCOPE, ICET™M-386
Family Microprocessors m High Speed CHMOS IV Technology

B Virtual 8086 Mode Allows Running of
8086 Software In a Protected and W 132 Pin Grid Array Package
Paged System @ 132 Pin Plastic Quad Flat Package

m Hardware Debugglng SUpPOft (See Packaging Specification, Order #231369)

The Intel386 DX Microprocessor is an entry-level 32-bit microprocessor designed for single-user applications
and operating systems such as MS-DOS and Windows. The 32-bit registers and data paths support 32-bit
addresses and data types. The processor addresses up to four gigabytes of physical memory and 64 terabytes
(2*°48) of virtual memory. The integrated memory management and protection architecture includes address
translation registers, multitasking hardware and a protection mechanism to support operating systems. Instruc-
tion pipelining, on-chip address translation, ensure short average instruction execution times and maximum
system throughput.

The Intel386 DX CPU offers new testability and debugging features. Testability features include a self-test and
direct access to the pagse translation cache. Four new breakpoint registers provide breakpoint traps on code
execution or data accesses, for powerful debugging of even ROM-based systems.

Object-code compatibility with all 8086 family members (8086, 8088, 80186, 80188, 80286) means the
Intel386 DX offers immediate access to the world's largest microprocessor software bass.
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Intel386™ DX MICROPROCESSOR

1. PIN ASSIGNMENT

The Intel386 DX pinout as viewed from the top side
of the component is shown by Figure 1-1. Its pinout
as viewed from the Pin side of the component is
Figure 1-2.

L7PE D

intal.

Vec and GND connections must be made to multi-
ple Vce and Vgg (GND) pins. Each Vpg and Vgg
must be connected to the appropriate voltage level.
The circuit board should include Voo and GND
planes for power distribution and all Voo and Vgg
pins must be connected to the appropriate plane.
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NOTE:
Pins identified as “N.C.” should remain completely
unconnected.
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Figure 1-1. Intel386™ DX PGA Figure 1-2. Intel386™ DX PGA
Pinout—View from Top Side Pinout—Vlew from Pin Side
~ Table 1-1. Intel386™ DX PGA Pinout—Functional Grouping

Signal/Pin Signal/Pin Signal/Pin Signal/Pin Signal/Pin Signal/Pin
A2 C4 A24 L2 D6 L14 Das M6 Vee c12 Vss F2
A3 A3 A25 K3 D7 K12 D29 P4 D12 F3
A4 B3 A26 M1 D8 L13 D3o P3 G2 Fl14
A5 B2 A27 N1 D9 N14 D31 M5 G3 J2
A6 c3 A28 L3 D10 Mi12 D/C# Al G12 J3
A7 Cc2 A29 M2 D1y N13 ERROR # A8 G14 J12
AB C1 A30 P1 D12 Ni2 HLDA Mi4 L12 J13
Ag D3 A3t N2 D13 P13 HOLD D14 M3 M4
A10 D2 ADS # E14 D14 P12 INTR 87 M7 M8
Al Dt BEO# E12 D15 M1t LOCK # C10 M13 M10
A12 E3 BEt1# c13 D16 N11 M/IO# A12 N4 N3
A13 E2 BE2# B13 D17 N10 NA # D13 N7 P6
Al4 3] BE3# At3 D18 P11 NMI B3 P2 P14
Al15 F1 BS16+# Ci4 D19 P10 PEREQ cs P8 W/R# B10
Al G1 BUSY # B9 D20 M9 READY # G13 Vss A2 N.C. A4
A7 H1 CLK2 F12 D21 N9 RESET (o] A8 B4
Al18 H2 Do H12 D22 P9 Voo Al A9 B6
A19 H3 D1 H13 D23 N8 A5 B1 B12
A20 Jt D2 H14 D24 P7 A7 BS C6
A2t K1 D3 J14 D25 Né A10 B11 Cc7
A22 K2 D4 K14 D28 P5 At4 B14 E13
A23 Lt D5 K13 D27 NS C5 C11 F13
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Inu ® Intel386™ DX MICROPROCESSOR

1.1 PIN DESCRIPTION TABLE

The following table lists a brief description of each pin on the intel386 DX. The following definitions are used in
these descriptions:

#  The named signal is active LOW.

I Input signal.

O  Output signal.

I/0 Input and Output signal.

- No electrical connection.

For a more complete description refer to Section 5.2 Signal Description.

Symbol - Type Name and Function

CLK2 | CLK2 provides the fundamental timing for the Intel386 DX.

D31=Dg 170 DATA BUS inputs data during memory, 1/O and interrupt acknowledge
read cycles and outputs data during memory and 1/0 write cycles.

Az1-Az (o] ADDRESS BUS outputs physical memory or port 1/0 addresses.

BEO#-BE3# (o] BYTE ENABLES indicate which data bytes of the data bus take part in
a bus cycle.

W/R# 0 WRITE/READ is a bus cycle definition pin that distinguishes write
cycles from read cycles.

D/C# o] DATA/CONTROL is a bus cycle definition pin that distinguishes data

cycles, aither memory or 170, from control cycles which are: interrupt
acknowledge, halt, and instruction fetching.

M/10# 0 MEMORY 170 is a bus cycle definition pin that distinguishes memory
cycles from input/output cycles.

LOCK # o BUS LOCK is a bus cycle definition pin that indicates that other
system bus masters are denied access to the system bus while it is
active.

ADS # (o] ADDRESS STATUS indicates that a valid bus cycle definition and -

address (W/R#, D/C#, M/IO#, BEO#, BE1#, BE2#, BE3# and
Agq-Aj) are being driven at the Intel386 DX pins.

NA# 1 NEXT ADDRESS is used to request address pipslining.

READY # I BUS READY terminates the bus cycle.

BS16# | BUS SIZE 16 input allows direct connection of 32-bit and 16-bit data
buses.

HOLD | BUS HOLD REQUEST input allows another bus master to request

control of the local bus.

1-5
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1.1 PIN DESCRIPTION TABLE (Continued)

Symbol Type Name and Function

HLDA 0 BUS HOLD ACKNOWLEDGE output indicates that the Intel386 DX
has surrendered control of its local bus to another bus master.

BUSY # l BUSY signals a busy condition from a processor extension.

ERROR # | ERROR signals an error condition from a processor extension.

PEREQ ! PROCESSOR EXTENSION REQUEST indicates that the processor

’ extension has data to be transferred by the Intel386 DX.
INTR | INTERRUPT REQUEST is a maskable input that signals the Intel386

DX to suspend execution of the current program and execute an
interrupt acknowledge function.

NMi | NON-MASKABLE INTERRUPT REQUEST is a non-maskable input
that signals the Intel386 DX to suspend execution of the current
program and execute an interrupt acknowledge function.

RESET | RESET suspends any operation in progress and places the Intel386
DX in a known reset state. See Interrupt Signals for additional
information.

N/C - NO CONNECT should always remain unconnected. Connection of a

N/C pin may cause the processor to malfunction or be incompatible
with future steppings of the intel386 DX. )

Vee | SYSTEM POWER provides the + 5V nominal D.C. supply input.

Vss | SYSTEM GROUND provides OV connection from which all inputs and
outputs are measured.

1-6
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2. BASE ARCHITECTURE

2.1 INTRODUCTION

The Intel386 DX consists of a central processing
unit, @ memory management unit and a bus inter-
face.

The central processing unit consists of the execu-
tion unit and instruction unit. The exsecution unit con-
tains the eight 32-bit general purpose registers
which are used for both address calculation, data
operations and a 64-bit barrel shifter used to speed
shift, rotate, multiply, and divide operations. The
multiply and divide logic uses a 1-bit per cycle algo-
rithm. The muitiply algorithm stops the iteration
when the most significant bits of the muitiplier are all
zero. This allows typical 32-bit muitiplies to be exe-
cuted in under one microsecond. The instruction unit
decodes the instruction opcodes and stores them in
the decoded instruction queue for immediate use by
the execution unit.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
aliows easy code and data relocatability, and effi-
cient sharing. The paging mechanism operates be-
neath and is transparent to the segmentation pro-
cess, to allow management of the physical address
space. Each segment is divided into one or more 4K
byte pages. To implement a virtual memory system,
the Intel386 DX supports full restartability for ail
page and segment fauits.

Memory is organized intc one or more variable
length segmaents, each up to four gigabytes in size. A
given region of the linear address space, a segment,
can have attributes associated with it. These attri-
butes include its location, size, type (i.e. stack, code
or data), and protection characteristics. Each task
on an Intel386 DX can have a maximum of 16,381
segments of up to four gigabytes each, thus provid-
ing 64 terabytes (trillion bytes} of virtual memory to
each task.

The segmentation unit provides four-levels of pro-
tection for isolating and protecting appiications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The Intel386 DX has two modes of operation: Real
Address Mode (Real Mode), and Protected Virtual
Address Mode (Protected Mods). In Real Mode the
Intel386 DX operates as a very fast 8086, but with

L7E D
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32-bit extensions if desired. Real Mode is required
primarily to setup the processor for Protected Mode
operation. Protected Mode provides access to the
sophisticated memory management, paging and
privilege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086 se-
mantics, thus allowing 8086 software (an application
program, or an entire operating system) to execute-
The Virtual 8086 tasks can be isolated and protect-
ad from one another and the host Intei386 DX oper-
ating system, by the use of paging, and the 170 Per-
mission Bitmap.

Finally, to facilitate high performance system hard-
ware designs, the intel386 DX bus interface offers
address pipelining, dynamic data bus sizing, and di-
rect Byte Enable signals for each byte of the data
bus. These hardware features are described fully be-
ginning in Section 5.

2.2 REGISTER OVERVIEW

The Intel386 DX has 32 register resources in the
following categories:

¢ General Purpose Registers
o Segment Registers

® [nstruction Pointer and Flags
¢ Control Registers

e System Address Registers

® Debug Registers

* Test Registers.

The registers are a superset of the 8086, 80186 and
80286 registers, so ail 16-bit 8086, 80186 and
80286 registers are contained within the 32-bit In-
tel386 DX.

Figure 2-1 shows all of Intel386 DX base architec-
ture registers, which include the general address
and data registers, the instruction pointer, and the
flags register. The contents of these registers are
task-specific, so these registers are automatically
loaded with a new context upon a task switch opera-
tion.

The base architecture also includes six directly ac-

- cessible segments, each up to 4 Gbytes in size. The

segments are indicated by the selector values
placed in Intel386 DX segment registers of Figure
2-1. Various selector values can be loaded as a pro-
gram executes, if desired.

M 482L17?5 012L104 31L WM ITLY
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GENERAL DATA AND ADDRESS REGISTERS
a1’ 1615 0
AX EAX
BX EBX
cx | ECX
DX | EDX
sl ESI
» oI EDI
BP EBP
sP ESP
SEGMENT SELECTOR REGISTERS
15 0
cs CODE
ss STACK
DS
Es DATA
Fs
Gs
INSTRUCTION POINTER
AND FLAGS REGISTER
31 16 15 0
P EIP
FLAGS | EFLAGS

Figure 2-1. Intel386™ DX Base
Architecture Registers

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

The other types of registers, Control, System Ad-
dress, Debug, and Test, ars primarily used by sys-
tem software.

2.3 REGISTER DESCRIPTIONS

2.3.1 General Purpose Registers

- General Purpose Registers: The eight general pur-
pose registers of 32 bits hold data or address quanti-
ties. The general registers, Figure 2-2, support data
operands of 1, 8, 16, 32 and 64 bits, and bit fields of
1 to 32 bits. They support address operands of 16
and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ES}, EDI, EBP, and ESP.

The least significant 16 bits of the registers can be

accessed separately. This is done by using the 16-
bit names of the registers AX, BX, CX, DX, SI, DI,

1-8
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BP, and SP. When accessed as a 16-bit operand,

the upper 16 bits of the register are neither used nor
changed. '

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of general purpose registers AX, BX, CX and DX.
The lowest bytes are named AL, BL, CL and DL,
respectively. The higher bytes are named AH, BH,
CH and DH, respectively. The individual byte acces-
sibility offers additional flexibility for data operations,
but is not used for effective address calculation.

31 16 15 8 7 0
AH AX AL EAX
BH BiX BL EBX
CH CX CL . ECX
DH DX DL EDX
S| ESI
[o]] EDI
BP EBP
SP ESP
31 16 15 0
[ | ] e
——
P

Figure 2-2. General Registers
and Instruction Pointer

2.3.2 Instruction Pointer

The instruction pointer, Figure 2-2, is a 32-bit regis-
ter named EIP. EIP holds the offset of the next in-
struction to be executed. The offset is always rela-
tive to the base of the code segment (CS). The low-
er 16 bits (bits 0-15) of EIP contain the 16-bit in-
struction pointer named IP, which is used by 16-bit
addressing.

2.3.3 Flags Register

The Flags Register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS, shown in Figure 2-3, control certain opera-
tions and indicate status of the Intel386 DX. The
lower 16 bits (bit 0-15) of EFLAGS contain the
16-bit flag register named FLAGS, which is most
useful when executing 8086 and 80286 code.

M 482LL7?5 012k10S5 7?52 WM ITLL
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FLAGS

3322222222221t 1 11111111
1098785432109876%54321098765%543210

ofoli]|risgzi a1 1P {c

FIFEFEFEFIFiOlFIOFLIYF

f 2444244 4 3

VIRTUAL MODE CARRY FLAG
RESUME FLAG e PARITY FLAG

NESTED TASK FLAG

1/0 PRIVILEGE LEVEL

OVERFLOW

e AUXILIARY CARRY
ZERO FLAG
SIGN FLAG

DIRECTION FLAG

TRAP FLAG

INTERRUPT ENABLE

NOTE:
@ indicates Intel reserved: do not define; see section 2.3.10.

231630-50

M

RF

Figure 2-3. Flags Register

(Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the Intel386 DX
is in Protected Mode, the Intsl386 DX will
switch to Virtual 8086 operation, handling
segment loads as the 8086 does, but gener-
ating exception 13 faults on privileged op-
codes. The VM bit can be set only in Protect-
ed Mode, by the IRET instruction (if current
privilege level = Q) and by task switches at
any privilege level. The VM bit is unaffected
by POPF. PUSHF always pushes a 0 in this
bit, even if executing in virtual 8086 Mode.
The EFLAGS image pushed during interrupt
processing or saved during task switches will
contain a 1 in this bit if the interrupted code
was executing as a Virtual 8086 Task.

(Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at
instruction boundaries before breakpoint pro-
cessing. When RF is set, it causes any debug
fault to be ignored on the next instruction. RF
is then automatically reset at the successful
completion of avery instruction (no fauits are
signalled) except the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing a task switch). These in-
structions set RF to the value specified by the
memory image. For example, at the end of
the breakpoint service routine, the IRET

NT

10PL

instruction can pop an EFLAG image having
the RF bit set and resume the program’s exe-
cution at the breakpoint address without gen-
erating another breakpoint fault on the same
location.

(Nested Task, bit 14)

This flag applies to Protected Mode. NT is set
to indicats that the execution of this task is
nested within another task. If set, it indicates
that the current nested task's Task State
Segment (TSS) has a valid back link to the
previous task's TSS. This bit is set or reset by
control transfers to other tasks. The value of
NT in EFLAGS is tested by the IRET instruc-
tion to determine whether to do an inter-task
return or an intra-task return. A POPF or an
IRET instruction will affect the setting of this
bit according to the image popped, at any
privilege level.

{Input/Qutput Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the numerically maximum CPL
(current privilege level) value permitted to ex-
ecute 1/0 instructions without generating an
exception 13 fault or consulting the 1/0 Per-
mission Bitmap. It also indicates the maxi-
mum CPL value allowing alteration of the IF
(INTR Enable Flag) bit when new values are
popped into the EFLAG register. POPF and
IRET instruction can alter the IOPL field when
executed at CPL = 0. Task switches can al-
ways alter the IOPL field, when the new flag
image is loaded from the incoming task’s
TSS.
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OF (Overflow Flag, bit 11) ZF  (Zero Flag, bit 6)
OF is set if the operation resulted in a signed ZF is set if all bits of the result are 0. Other-
overflow. Signed overflow occurs when the wise it is resst.
operation resulted in carry/borrow into the AE Auxiliary Carry Flag. bit 4
sign bit (high-order bit) of the result but did ( ry i a.g. it4) L ]
not result in a carry/borrow out of the high- The Auxiliary Flag is used to simplify the addi-
order bit, or vice-versa. For 8/16/32 hit oper- tion and subtraction of packed BCD quanti-
ations, OF is set according to overflow at bit ties. AF is set if the operation resulted in a
7/15/31, respectively. carry out of bit 3 (addition) or a borrow into bit
o ) 3 (subtraction). Otherwise AF is reset. AF is
DF  (Direction Flag, bit 10) affected by carry out of, or borrow into bit 3
DF defines whether ESI and/or EDI registers only, regardless of overall operand length: 8,
postdecrement or postincrement during the 16 or 32 bits.
string instructions. Postincrement occurs if PF Parity Flags, bit 2
DF is reset. Postdecrement occurs if DF is ( .ty .g - bit 2) , )
set. PF is set if the low-order eight bgs of :he1op-
. eration contains an even number of “1's”
IF (INTR Enable Fiag, bit 9) (even parity). PF is reset if the low-order eight
The IF flag, when set, allows recognition of bits have odd parity. PF is a function of only
external interrupts signalied on the INTR pin. the low-order eight bits, regardiess of oper-
When IF is reset, external interrupts signalled and size.
on the INTR are not recognized. IOPL indi- CF C Flag, bit 0
cates the maximum CPL value allowing alter- ¢ arry g ) ) )
ation of the IF bit when new values are CF is set if the operation resulted in a carry
popped into EFLAGS or FLAGS. out of_ (addmon),_or a borrqw into (subtractlon)
K the high-order bit. Otherwise CF is reset. For
TF  (Trap Enable Flag, bit 8) 8-, 16- or 32-bit operations, CF is set accord-
TF controls the generation of exception 1 ing to carry/borrow at bit 7, 15 or 31, respec-
trap when single-stepping through code. tively.
When TF is set, the Intel386 DX generates an
exception 1 trap after the next instruction is Note in these descriptions, *'set” means “set to 1,”
oxecuted. When TF is reset, exception 1 and “‘reset” means “reset to 0.”
traps occur only as a function of the break-
point addresses loaded into debug registers
DRO-DR3. 2.3.4 Segment Registers
SF (S'g,n F|ag., bit7) . . . Six 16-bit segment registers hold segment selector
SF is set if the high-order bit of the resultis  yajyes identifying the currently addressable memory
set, it is raset otherwise. For 8-, 16-, 32-bit  segments. Segment registers are shown in Figure 2-
operations, SF reflects the state of bit 7, 15, 4 |n Protected Mode, each segment may range in
31 respectively. size from one byte up to the entire linear and physi-
SEGMENT
REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)
- ~ N & Other N
Segment
15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CS- —
Selector SS- - -
Selector DS- —_—]—
Selector ES- —_ ] —
Selector FS- — -
Selector GS- —_ -
Figure 2-4. Intel386™ DX Segment Registers, and Associated Descriptor Registers
1-10
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cal space of the machine, 4 Gbytes (232 bytss). if a
maximum sized segment is used (limit
FFFFFFFFH) it should be Dword aligned (i.e., the
least two significant bits of the segment base should
be zero). This will avoid a segment limit violation (ex-
ception 13) caused by the wrap around. In Real Ad-

dress Mode, the maximum segment size is fixed at
64 Kbytes (216 bytes).

The six segments addressable at any given moment
are defined by the segment registers CS, SS, DS,
ES, FS and GS. The selector in CS indicates the
current code segment; the selector in SS indicates
the current stack segment; the selectors in DS, ES,
FS and GS indicate the current data segments.

2.3.5 Segment Descriptor Registers

The segment descriptor registers are not program-
mer visible, yet it is very useful to understand their
content. Inside the Intel386 DX, a descriptor register
(programmer invisible) is associated with each pro-
grammer-visible segment register, as shown by Fig-
ure 2-4. Each descriptor register holds a 32-bit seg-
ment base address, a 32-bit segment limit, and the
other necessary segment attributes.

When a selector value is loaded into a segment reg-
ister, the associated descriptor register is automati-
cally updated with the corract information. In Real
Address Mode, only the base address is updated
directly (by shifting the selector value four bits to the
left), since the segment maximum limit and attributes
are fixed in Real Mode. In Protected Mode, the base
address, the limit, and the attributes are all updated
per the contents of the segment descriptor indexed
by the selector.

Whenever a memory reference occurs, the segment

L7E D
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tion, the 32-bit limit is used for the limit-check opera-
tion, and the attributes are checked against the type

of memory referance requested.

2.3.6 Control Registers

The Intei386 DX has three control registers of 32
bits, CRO, CR2 and CR3, to hold machine state of a
global nature (not specific to an individual task).
These registers, along with System Address Regis-
ters described in the next section, hold machine

state that affects all tasks in the system. To access £
the Control Registers, load and store instructions ¥

are defined.

CRO0: Machine Control Register (includes 80286
Machine Status Word)

CRO, shown in Figure 2-5, contains 6 defined bits for
control and status purposes. The low-order 16 bits
of CRO are also known as the Machine Status Word,
MSW, for compatibility with 80286 Protected Mode.

. LMSW and SMSW instructions are taken as special

aliases of the load and store CRO operations, where
only the low-order 16 bits of CRO are involved. For
compatibility with 80286 operating systems the In-
tel386 DX LMSW instructions work in an identical
fashion to the LMSW instruction on the 80286. (i.e. It
only operates on the low-order 16-bits of CRO and it
ignores the new bits in CRO.) New intel386 DX oper-
ating systems should use the MOV CRO, Reg in-
struction.

The defined CRO bits are described below.
PG (Paging Enable, bit 31)

the PG bit is set to enable the on-chip paging
unit. It is reset to disable the on-chip paging
unit.

descriptor register associated with the segment be- R (reserved, bit 4)
ing used is automatiqally involved with the memory This bit is reserved by Intel. When loading CRO
reference. The 32-bit segment base address be- care should be taken to not alter the value of
comes a component of the linear address caicula- this bit.

31 24|23 16{15 8{7 0

P TIEIMIP

GOOOOOOOOOOOOOOOIOOOOOOOOOOORSMPECHO

— -~ J
MSW

NOTE:[ 0 _|indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-5. Control Register 0
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TS (Task Switched, bit 3)

TS is automatically set whenever a task switch
operation is performed. If TS is set, a coproces-
sor ESCape opcode will cause a Coprocessor
Not Available trap (exception 7). The trap han-
dler typically saves the Intel387 DX coproces-
sor context belonging to a previous task, loads
the Intel387 DX coprocessor state belonging to
the current task, and clears the TS bit before
returning to the faulting coprocessor opcode.

EM (Emulate Coprocessor, bit 2)

The EMulate coprocessor bit is set to cause all
coprocessor opcodes to generate a Coproces-
sor Not Available fault (exception 7). It is reset
to allow coprocessor opcodes to be executed
on an actual Intel387 DX coprocessor (this is
the default case after reset). Note that the
WAIT opcode is not affected by the EM bit set-
ting.
MP  (Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS
bit to determine if the WAIT opcode will gener-
ate a Coprocessor Not Available fault (excep-
tion 7) when TS = 1. When both MP = 1 and
TS = 1, the WAIT opcode generates a trap.
Otherwise, the WAIT opcode does not gener-
ate a trap. Note that TS is automatically set
whenever a task switch operation is performed.

PE (Protection Enable, bit 0)

The PE bit is set to enable the Protected Mode.
if PE is reset, the processor operates again in
Real Mode. PE may be set by loading MSW or
CRO. PE can be reset only by a load into CRO.
Resetting the PE bit is typically part of a longer
instruction sequence needed for proper tran-
sition from Protected Mode to Real Mode. Note
that for strict 80286 compatibility, PE cannot be
reset by the LMSW instruction.

CR1: reserved
CR1 is reserved for use in future Intel processors.
CR2: Page Fault Linear Address

CR2, shown in Figure 2-6, holds the 32-bit linear ad-
dress that caused the last page fault detected. The

L?PE D
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error code pushed onto the page fault handler's
stack when it is invoked provides additional status
information on this page fauit.

CR3: Page Directory Base Address

CR3, shown in Figure 2-6, contains the physical
base address of the page directory table. The In-
tel386 DX page directory table is always page-
aligned (4 Kbyte-aligned). Therefore the lowest
twelve bits of CR3 are ignored when written and
they store as undefined.

A task switch through a TSS which changes the
value in CR3, or an explicit load into CR3 with any
value, will invalidate all cached page table entries in
the paging unit cache. Note that if the value in CR3
does not change during the task switch, the cached
page table entries are not flushed.

2.3.7 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286 CPU
and intel386 DX protection model. These tables or
segments are:

GDT (Global Descriptor Table),
IDT (Interrupt Descriptor Table),
LDT (Local Descriptor Tabie),
TSS (Task State Segment).

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers illustrated in Figure 2-7.
These registers are named GDTR, IDTR, LDTR and
TR, respectively. Section 4 Protected Mode Archi-
tecture describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address
and 18-bit limit of the GDT and IDT, respectively.

The GDT and IDT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is
enabled) and 16-bit fimit values.

31 : 2423 16

8|7 0

PAGE FAULT LINEAR ADDRESS REGISTER CR2

PAGE DIRECTORY BASE REGISTER

[o]o]o]o[o]o]0]o]o]o]o0[0]cRa

NOTE: E indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-6. Control Registers 2and 3
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SYSTEM ADDRESS REGISTERS

47 32-BIT LINEAR BASE ADDRESS 16 16  LIMIT

0

GDTR
IDTR
SYSTEM SEGMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)
15 o " 32.BIT LINEAR BASE ADDRESS 32-BIT SEGMENT LIMIT ATTR|BUTE§

TR SELECTOR

LDTR SELECTOR

Figure 2-7. System Address and System Segment Registers

LDTR and TR

These registers hold the 16-bit selector for the LDT
descriptor and the TSS descriptor, respectively.

The LDT and TSS segments, since they are task-
specific segments, are defined by selector values
stored in the system segment registers. Note that a
segment descriptor register (programmer-invisible)
is associated with each system segment register.

2.3.8 Debug and Test Registers

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debug-
ging. Debug Registers DRO-3 specify the four linear
breakpoints. The Debug Control Register DR7 is
used to set the breakpoints and the Debug Status
Register DR6, displays the current state of the
breakpoints. The use of the debug registers is de-
scribed in section 2.12 Debugging support.

DEBUG REGISTERS
N 0

LINEAR BREAKPOINT ADDRESS 0 DRO
LINEAR BREAKPOINT ADDRESS 1 DR1
LINEAR BREAKPOINT ADDRESS 2 DR2
LINEAR BREAKPOINT ADDRESS 3 DR3
Intgl reserved. Do not define. DR4
Intgl reserved. Do not define. DR5
BREAKPOINT STATUS DR6
BREAKPOINT CONTROL DR7
TEST REGISTERS (FOR PAGE CACHE)

31 0

TEST CONTROL TR6
TEST STATUS TRA7

Figure 2-8. Debug and Test Registers

Test Registers: Two registers are used to control
the testing of the RAM/CAM (Content Addressable
Memories) in the Translation Lookaside Buffer por-
tion of the Intel386 DX. TR6 is the command test
register, and TR7 is the data register which contains
the data of the Translation Lookaside buffer test.
Their use is discussed in section 2.11 Testability.

Figure 2-8 shows the Debug and Test registers.

2.3.9 Register Accessibility

Thers are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode. Ta-
ble 2-1 summarizes these differences. See Section
4 Protected Mode Architecture for further details.

2.3.10 Compatibility

VERY IMPORTANT NOTE:
'COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer-
tain Intel386 DX register bits are intel reserved.
When reserved bits are called out, treat them as
fully undefined. This is essential for your soft-
ware compatibility with future processors! Fol-
low the guidelines below:

1) Do not depend on the states of any unde-
fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde-
fined bits when storing them to memory or
another register.

3) Do not depend on the ability to retain infor-
mation written into any undefined bits.

4) When loading registers always load the unde-
fined bits as zeros.

1-13
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Table 2-1. Register Usage

4826175 012L21Y TShHL MWW ITLL

In

tel.

Usein Use in Use in
Register Real Mode Protected Mode Virtual 8086 Mode
Load Store Load Store Load Store
General Registers Yes Yes Yes Yes Yes Yes
Segment Registers Yes Yes Yes Yes Yes Yes
Flag Register Yes Yes Yes Yes "1OPL* IoPL*
Control Registers Yes Yes PL=0 PL=0 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yeos PL=0 Yes No Yes
LDTR No No PL=20 Yes No No
TR No No PL=0 Yes No No
Debug Control Yes Yes PL=0 PL=0 No No
Test Registers Yes Yes PL=0 PL=0 No No

NOTES:

PL = 0: The registers can be accessed only when the current privilage level is zero.
*|OPL: The PUSHF and POPF instructions are made |/0 Privilege Level sensitive in Virtual 8086 Mode.

5) However, registers which have been previ-
ously stored may be reloaded without mask-
ing.

Depending upon the values of undefined regis-
ter bits will make your software dependent upon
the unspecified Intel386 DX handling of these
bits. Depending on undefined values risks mak-
ing your software incompatible with future proc-
essors that define usages for the Intel386 DX-
undefined bits. AVOID ANY SOFTWARE DEPEN-
DENCE UPON THE STATE OF UNDEFINED In-
tel386 DX REGISTER BITS.

2.4 INSTRUCTION SET

2.4.1 Instruction Set Overview
The instruction set is divided into nine categories of
operations:

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High Level Language Support

Operating System Support

Processor Control

These Intel386 DX instructions are listed in Table
2-2.

All Intel386 DX instructions operate on either 0, 1, 2,
or 3 operands; where an operand resides in a regis-
ter, in the instruction itself, or in memory. Most zero
operand instructions (e.g. CLI, STI) take only one
byte. One operand instructions generally are two
bytes long. The average instruction is 3.2 bytes long.
Since the Intel386 DX has a 16-byte instruction
queue, an average of 5 instructions will be pre-
fetched. The use of two operands permits the follow-
ing types of common instructions:

Register to Register
Memory to Register
immediate to Register
Register to Memory
Immediate to Memory.

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
Intel386 DX (32-bit code), operands are 8 or 32 bits;
when executing existing 80286 or 8086 code (186-bit
code), operands are B or 16 bits. Prefixes can be
added to all instructions which override the default
length of the operands, (i.e. use 32-bit operands for
16-bit code, or 16-bit operands for 32-bit code).

For a more elaborate description of the instruction
set, refer to the /ntel386 DX Programmer's Refer-
ence Manual.
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2.4.2 Intel386™ DX Instructions Table 2-2b. Arithmetic Instructions
Table 2-2a. Data Transfer ADDITION
GENERAL PURPOSE ADD Add operands
MOV Move operand ADC Add with carry

PUSH Push operand onto stack INC Increment operand by 1
POP Pop operand off stack AAA ASCI! adjust for addition
PUSHA  [Push all registers on stack DAA Decimal adjust for addition
POPA Pop all registers off stack SUBTRACTION
XCHG  |Exchange Operand, Register Su Subtract operands
XLAT Translate SBB Subtract with borrow
CONVERSION DEC Decrement operand by 1
MOVZX  [Move byte or Word, Dward, with zero NEG ___|Negats operand
extension : CMP Compare operands
MOVSX  |Move byte or Word, Dword, sign DAS Decimal adjust for subtraction
extended AAS ASCH Adjust for subtraction
CBW Convert byte to Word, or Word to Dword MULTIPLICATION
CWD . |Convert Word to DWORD MUL Multiply Double/Single Precision
CWDE Convert Word to DWORD extended IMUL Integer multiply
coQ Convert DWORD to QWORD AAM ASCII adjust after multiply
INPUT/QUTPUT DIVISION
IN Input operand from 1/0 space DIV Divide unsigned
ouT Output operand to 1/0 space DIV Integer Divide
ADDRESS OBJECT AAD ASCI! adjust before division
LEA Load effective address ’
LDS Load pointer into D segment register Table 2-2¢. String Instructions.
LES Load pointer into E segment register Movs Move by'te or Word, Dword string
- N - INS Input string from 1/0 space
LFS Load pointer into F segment register :
LGS Load pointer into G segment register ouTs Output string t0 1/O space -
LSS Load pointer into S (Stack) segment CMPS Compare byte or Word, D‘”°"? string
register SCAS Scan Byte or Word, Dword string
FLAG MANIPULATION LODS Load byte or Word, Dword string
LAHF Load A register from Flags - |STOS Store byte or Word, Dword string
SAHF Store A register in Flags REP Repeat
PUSHF | Push flags onto stack REPE/ ‘
POPF Pop flags off stack sz:.é ; Repeat while equal/zero
PUSHFD _|Push EFlags onto stack REPNZ | Repeat while not equai/not zero

POPFD |Pop EFlags off stack
CLC Clear Carry Flag

Table 2-2d. Logical Instructions

LOGICALS
CLD Clear Direction Flag NOT “NOT" operands
CMC Complement Carry Flag AND “AND" operands
STC Set Carry Flag OR “Inclusive OR" operands
STD Set Direction Flag XOR “Exclusive OR" operands
TEST “Test” operands
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Table 2-2d. Logical Instructions (Continued)

4826175 0L26L1L3 829 MR ITLL

intal.

Table 2-21. Pragram Control Instructions

SHIFTS (Continued)
SHL/SHR | Shift logical left or right ‘ UNCONDITIONAL TRANSFERS
SAL/SAR [Shift arithmetic left or right CALL Call procedure/task
SHLD/ RET Return from procedure
SHRD Double shift left or right JMP Jump
ROTATES ITERATION CONTROLS
ROL/ROR| Rotate left/right LOOP Loop
RCL/RCR |Rotate through carry left/right LOOPE/
Table 2-2e. Bit Manipulation Instructions LOOPZ _ |Loopif equal/zero
SINGLE BIT INSTRUCTIONS LOOPNE/
BT Bit Test LOOPNZ |Loop if not equal/not zero
f rogi _
BTS Bit Test and Set Joxz | JUMP 'IJ:QE':;L?;S 0
BTR Bit Test and Reset NT Pr———
BTC Bit Test and Complement L
BSF Bit Scan Forward INTO Interrupt if overflow
BSR Bit Scan Reverse IRET Return from interrupt/Task
Tabre 2.21. P Control nstructl Cu Clear interrupt Enable
able 221 rogram Canlrlinstfuctions__ |57/ et ntomupt Enabl
— Table 2-2g. High Level Language Instructions
SETCC | Setbyte equal to condition code
- BOUND | Check Array Bounds
JAZUNBE |Jump if above/not below nor equal -
N ENTER |Setup Parameter Block for Entering
JAE/JNB |Jump if above or equal/not below Procedure
JB/JNAE |Jump if below/not above nor equal LEAVE Leave Procedure
JBE/JNA |Jump if below or equal/not above Table 2-2h. Protection Model
JC Jump if carry SGDT | Store Global Descriptor Table
JE/JZ Jump if equal/zero - SIDT Store Interrupt Descriptor Table
JG/JNLE |Jump if greater/not less nor equal STR Store Task Register
JGE/JINL |Jump if greater or equal/not less SLDT Store Local Descriptor Table
JL/UNGE |Jump if less/not greater nor equal LGDT Load Global Descriptor Table
JLE/ING {Jump if less or equal/not greater - LoT Load Interrupt Descriptor Table
JNC Jump '.f not carry LTR Load Task Register
JNE/JINZ | Jump if not equal/not zero LLDT Load Local Descriptor Table
JNO Jump if not overflow ARPL Adjust Requested Privilege Level
JNP/JPO {Jump if not parity/parity odd LAR Load Access Rights
JNS Jump if not sign LSL Load Segment Limit
JO Jump if overflow VERR/
JP/JPE _ |Jump if parity/parity even VERW | Verify Segment for Reading or Writing
JS Jump if Sign LMSW L.oad Machine Status Word (lower
16 bits of CRO)
SMSW Store Machine Status Word
Table 2-2i. Processor Control Instructions
HLT Halt
WAIT Wait until BUSY # negated
ESC Escape
LOCK Lock Bus
1-16
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2.5 ADDRESSING MODES

2.5.1 Addressing Modes Overview

The Intel386 DX provides a total of 11 addressing
modes for instructions to specify operands. The ad-
dressing modes are optimized to allow the efficient
execution of high level languages such as C and
FORTRAN, and they cover the vast majority of data
references needed by high-level languages.

2.5.2 Register and Immediate Modes

Two of the addressing modes provide for instruc-
tions that operate on register or immediate oper-
ands:

Register Operand Mode: The operand is located
in one of the 8-, 16- or 32-bit general registers.

Immediate Operand Mode: The operand is in-
cluded in the instruction as part of the opcode.

2.5.3 32-Bit Memory Addressing
Modes

The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by using combina-
tions of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate valus,
following the instruction.

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the iocal variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters.

SCALE: The index register’s value can be multiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index
mode is especially useful for accessing arrays or
structures. )

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-
binations, since the effective address calculation is
pipelined with the execution of other instructions.

L?E D
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The one exception is the simultaneous use of Base
and Index components which requires one addition-
al clock.

~ As shown in Figure 2-9, the sffective address (EA) of

an operand is calculated according to the following
formula.

EA=Base Reg+(Index Reg * Scaling) + Displacement

Direct Mode: The operand's offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement,

EXAMPLE: INC Word PTR [500]

Register Indirect Mode: A BASE register contains
the address of the operand.
EXAMPLE: MOV [ECX], EDX

Based Mode: A BASE register's contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: MOV ECX, [EAX + 24]

Index Mode: An INDEX register's contents is added
to a DISPLACEMENT to form the operands offseat.
EXAMPLE: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX register's contents is
multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operands offset,
EXAMPLE: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to
form the effective address of an operand.
EXAMPLE: MOV EAX, [ESI] [EBX]

Based Scaled Index Mods: The contents of an IN-
DEX register is muitiplied by a SCALING factor and
the result is added to the contents of a BASE regis-
ter to obtain the operands offset.

EXAMPLE: MOV ECX, [EDX*8] [EAX]

Based Index Mode with Displacement: The contents
of an INDEX Register and a BASE register's con-
tents and a DISPLACEMENT are all summed to-
gether to form the operand offset.

EXAMPLE: ADD EDX, [ESI] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement: The
contents of an INDEX register are multiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand’s offset.

EXAMPLE: MOV EAX, LOCALTABLE[EDI*4]
[EBP + 80]

1-17
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SEGMENT REGISTER

SS

FS

INDEX REGISTER

ES
DS
~—= CS SELECTOR
SCALE
1,2,4,0R 8
4
> (‘) ¢ DISPLACEMENT
(IN INSTRUCTION)
EFFECTIVE
ADDRESS SEGMENT
LiMIT
LINEAR
DESCRIPTOR REGISTERS ., ADDRESS
(# )—————p] TARGET ADDRESS
S
SELECTED
SEGMENT
a 2104 £S
ACCESS RIGHTS DS
ACCESS RIGHTS €S
LIMIT j
b BASE ADDRESS EET TR
SEGMENT BASE ADDRESS

2316830~-51

Figure 2-9. Addressing Mode Calculations

2.5.4 Differences Between 16 and 32
Bit Addresses

In order to provide software compatibility with the
80286 and the 8086, the Intel386 DX can execute
16-bit instructions in Real and Protected Modes. The
processor determines the size of the instructions it is
executing by examining the D bit in the CS segment
Descriptor. If the D bit is 0 then all operand lengths
and effective addresses are assumed to be 16 bits
long. If the D bit is 1 then the default length for oper-
ands and addresses is 32 bits. In Real Mode the
default size for operands and addresses is 16-bits.

Regardiess of the defauit precision of the operands
or addresses, the intel386 DX is able to execute ei-
ther 16 or 32-bit instructions. This is specified via the
use of override prefixes. Two prefixes, the Operand
Size Prefix and the Address Length Prefix, over-
ride the value of the D bit on an individua! instruction
basis. These prefixes are automatically added by in-
tel assemblers.

Example: The processor is executing in Real Mode
and the programmer needs to access the EAX regis-
ters. The assembler code for this might be MOV
EAX, 32-bit MEMORYOP, ASM386 Macro Assem-
bler automatically determines that an Operand Size
Prefix is nesded and generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESI*2]. The assembler uses an
Address Length Prefix since, with D=0, the default
addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
DX.
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Table 2-3. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing

32-Bit Addressing

BASE REGISTER BX,BP
INDEX REGISTER Si,DI
SCALE FACTOR none
DISPLACEMENT 0, 8, 16 bits

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP

1,2,4,8

0, 8, 32 bits

The OPERAND LENGTH and Address Length Pre-
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64K bytes to be accessed in
Real Mode. A memory address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional Intel386 DX addressing modes.

When executing 32-bit cods, the Intel386 DX uses
either 8-, or 32-bit displacements, and any register
can be used as base or index registers. When exe-
cuting 16-bit code, the displacements are either 8, or
16 bits, and the base and index register conform to
the 80286 model. Table 2-3 illustrates the differenc-
es.

2.6 DATA TYPES

The intel386 DX supports all of the data types com-
monly used in high level languages:

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits,
which spans a maximum of four bytes.

Bit String: A set of contiguous bits, on the Intel386
DX bit strings can be up to 4 gigabits long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.
Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit quan-
tity. All operations assume a 2's complement rep-

resentation.

Unsigned Integer (Word): An unsigned 16-bit
quantity.

Unsigned Long Integer (Double Word): An un-
signed 32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.

Unsigned Quad Word: An unsigned 64-bit quanti-
ty.

Offset: A 16- or 32-bit offset only quantity which
indirectly references another memory location.

Pointer: A full pointer which consists of a 16-bit
segment selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCI! Alphanu-
meric or control character.

String: A contiguous sequence of bytes, words or
dwords. A string may contain between 1 byte and
4 Gbytes.

BCD: A byte (unpacked) representation of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of
two decimal digits 0-9 storing one digit in each
nibble.

When the Intel386 DX is coupled with an Intel387
DX Numerics Coprocessor then the following com-
mon Floating Point types are supported.

Floating Point: A signed 32-, 64-, or BO-bit real
number representation. Floating point numbers
are supported by the Intel387 DX numerics co-
processor.

Figure 2-10 illustrates the data types supported by
the Intel386 DX and the Intel387 DX numerics co-
processor.

B 482L175 012611k 5338 WA ITLL




INTEL CORP {UP/PRPHLS}

intel386™ DX MICROPROCESSOR

L?7E D WM 4826175 0126117 4?7y EEITLL

intal.

7 0
SIGNED
BYTE

o,
SIGN BIT )
MAGNITUDE

7 0

™]

| S |
MAGNITUOE

UNSIGNED
BYTE

+1 g
1514 87 0

SIGNED
WORD
severbMse
MAGNITUDE
+ 0
15 0
[
MAGNITUDE

UNSIGNED
WORD

+3
31

+2 +1
1615

0

SIGNED DOUBLE
WORD

I l I I | | STRING ”J_“

+N * [
7 0 7 07 0
I I |00.| I l I I

BINARY

CODED
DECIMAL  pcp BCD 8CD
(BCD) piGiT N DIGIT 1 DIGIT O

+N *1 [}
7 0 7 07 0
ASCIII?”I'”' es e If”l'”l”'“”l

ASCll ASCH ASCHI
CHARACTER  CHARACTER, CHARACTER,
*»N +1
7 0 7 07 0
PACKED | 0242 RARS RALSRALI
8co soe ]
L |
MOST LEAST
SIGNIFICANT DIGIT  SIGNIFICANT DIGIT
+N +1 0
7/15 0 7/15  07/15 0
BYTE m
smmcl I oo
o . #2 GIGABITS -2 GiGaBTs

I

SIGN BIT-4-MSB

Y L1}

32-BIT
BIT FIELD

) BITO
MAGNITUDE
*3 *2 *t 1] o
UNSIGNED DOUBLE SHORT
WORD 32-BIT
POINTER
MAGNITUDE OFFSET
07 +6 *5 +5 43 +2 +1 O +*3 +4 +3 +2 *t 0
4847 3231 1615 0 Lonc 0
SIGNED QUAD WWW’I
wono" [ l l | I l I ] 48-8IT
POINTER
SIGN BIT<)-MsB L 1 1
MAGNITUDE SELECTOR OFFSET
+9 48 47 #6 +5 ¢4 #3 42 +t O
79 0
FLOATING
ol L L LI 1T 111
SIGN 8IT <y 1 '
EXPONENT MAGNITUDE
+*5 *4d +3 +2 *1 0

NUMERIC DATA
fe—————BIT FIELD ]
110 32 BITS COPROCESSOR
231630-52

*SUPPORTED BY 80387

Figure 2-10. Intel386™ DX Supported Data Types
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2.7 MEMORY ORGANIZATION

2.7.1 Introduction

Memory on the Intel386 DX is divided up into 8-bit
quantities (bytes), 16-bit quantities (words), and
32-bit quantities {dwords). Words are stored in two
consecutive bytes in memory with the low-order byte
at the lowest address, the high order byte at the high
address. Dwords are stored in four consecutive
bytes in memory with the low-order byte at the low-
est address, the high-order byte at the highest ad-
dress. The address of a word or dword is the byte
address of the low-order byte.

In addition to these basic data types, the Intel386
DX supports two farger units of memory: pages and
segments. Memory can be divided up into one or
more variable length segments, which can bhe
swapped to disk or shared between programs. Mem-
ory can also be organized into one or more 4K byte
pages. Finally, both segmentation and paging can
be combined, gaining the advantages of both sys-
tems. The Intel386 DX supports both pages and
segments in order to provide maximum flexibility to
the system designer. Segmentation and paging are
complementary, Segmentation is usefut for organiz-
ing memory in logical modules, and as such is a tool
for the application programmer, while pages are use-
ful for the system programmer for managing the
physical memory of a system.

2.7.2 Address Spaces

The Intei386 DX has three distinct address spaces:
logical, linear, and physical. A logical address
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(also known as a virtual address) consists of a se-
lector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all
of the addressing components (BASE, INDEX, DIS-
PLACEMENT) discussed in section 2.5.3 Memory
Addressing Modes into an effective address. Since
each task on Intel386 DX has a maximum of 16K
(214 —1) selactors, and offsets can be 4 gigabytes,
(232 bits) this gives a total of 246 bits or 64 terabytes
of logical address space per task. The programmer
sees this virtual address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The
paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. in Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (i.e. the Local
Descriptor Table or Global Descriptor Table). The
selector’s linear base address is added to the offset
to form the final linear address.

Figure 2-11 shows the relationship between the vari-
ous address spaces.

EFFECTIVE ADDRESS CALCULATION
INDEX
BASE % DISPLACEMENT
32 0
SCALE
1,2,4,8
PHYSICAL
MEMORY
* BE3 - BEO
A3l =A2
32 EFFECTIVE _
" ADORESS 2
15 2 0 LOGICAL OR SEGMENTATION 32 | PacinG unm 3 N
14 VIRTUAL ADDRESS UNIT UNEAR *  § (OPTIONAL USE) |” PHYSICAL
/ N ADDRESS ADDRESS
SELECTOR t ” DESCRIPTOR "
INDEX
SEGMENT
REGISTER
231630-53

Figure 2-11. Address Translation
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2.7.3 Segment Register Usage

The main data structure used to organize memory is
the segment. On the Intel386 DX, segments are vari-
able sized blocks of linear addresses which have
certain attributes associated with them. There are
two main types of segments: code and data, the
segments are of variable size and can be as small
as 1 byte or as large as 4 gigabytes (232 bytes).

In order to provide compact instruction encoding,
and increase processor performance, instructions
do not need to explicitly specify which segment reg-
ister is used. A default segment register is automati-
cally chosen according to the rules of Table 2-4
{Segment Register Selection Rules). in general, data
references use the selector contained in the DS reg-
ister; Stack references use the SS register and In-
struction fetches use the CS register. The contents
of the Instruction Pointer provides the offset. Special
segment override prefixes allow the explicit use of a
given segment register, and override the implicit
rules listed in Table 2-4. The override prefixes also
allow the use of the ES, FS and GS segment regis-
ters.
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There are no restrictions regarding the overlapping
of the base addresses of any segments, Thus, all 6
segments could have the base address set to zero
and create a system with a four gigabyte linear ad-
dress space. This creates a system where the virtual
address space is the same as the linear address

space. Further details of segmentation are dis-
cussed in section 4.1.

2.8 1/0 SPACE

The Intel386 DX has two distinct physical address
spaces: Memory and 1/0. Generally, peripherals are
placed in /O space although the Intel386 DX also
supports memory-mapped peripherals. The /0
space consists of 64K bytes, it can be divided into
64K 8-bit ports, 32K 16-bit ports, or 16K 32-bit ports,
or any combination of ports which add up to less
than 84K bytes. The 64K 1/0 address space refers
to physical memory rather than linear address since
170 instructions do not go through the segmentation
or paging hardware. The M/IO # pin acts as an addi-
tional address line thus allowing the system designer
to easily determine which address space the proces-
sor is accessing.

Table 2-4. Segment Register Selection Rules

Type of Implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fetch CS None

Destination of PUSH, PUSHF, INT, S8 None

CALL, PUSHA Instructions

Source of POP, POPA, POPF, S8S None

IRET, RET instructions

Destination of STOS, MOVS, REP ES None

STQOS, REP MOVS Instructions

(Dl is Base Register)

Other Data References, with

Effective Address Using Base

Register of:
[EAX] DS DS,CS,SS,ES,FS,GS
[EBX] Ds DS,CS,SS,ES,FS,GS
[ECX] DS DS,CS,SS,ES,FS,GS
[EDX] DS DS,CS,SS,ES,FS,GS
{3])] DS DS,CS,SS,ES,FS,GS
[EDI) DS DS,CS,SS,ES,FS,GS
[EBP] ss DS,CS,S8,ES,FS,GS
[ESP] Sss DS,CS,SS,ES,FS,GS
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The 1/0 ports are accessed via the IN and OUT 170
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
DX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The 1/0 in-
structions cause the M/I0# pin to be driven low.

170 port addresses 00F8H through 00FFH are re-
served for use by Intel.

2.9 INTERRUPTS

2.9.1 Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be-
twesn interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately af-
ter the interrupted instruction. Sections 2.9.3 and
2.9.4 discuss the differences between Maskable and
Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. A fauit would occur in a virtual
memory system, when the processor referenced a
page or a segment which was not present. The oper-
ating system would fetch the page or segment from
disk, and then the Intel386 DX would restart the in-
struction. Traps are exceptions that are reported im-
mediately after the execution of the instruction
which caused the problem. User defined interrupts
are examples of traps. Aborts are exceptions which
do not permit the precise location of the instruction
causing the exception to be determined. Aborts are
used to report severe errors, such as a hardware
error, or illegal values in system tables.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
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immediately following the interrupted instruction. On
the cother hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Table 2-5 summarizes the possi-
ble interrupts for the Intel386 DX and shows where
the return address points.

The Intel386 DX has the ability to handle up to 256
different interrupts/exceptions. In order to service
the interrupts, a table with up to 256 interrupt vec-
tors must be defined. The interrupt vectors are sim-
ply pointers to the appropriate interrupt service rou-
tine. In Real Mode (see section 3.1), the vectors are
4 byte quantities, a Code Segment plus a 16-bit off-
set; in Protected Mode, the interrupt vectors are 8
byte quantities, which are put in an Interrupt Descrip-
tor Table (see section 4.1). Of the 256 possible inter-
rupts, 32 are reserved for use by Intel, the remaining
224 are free to be used by the system designer.

2.9.2 Interrupt Processing

When an interrupt occurs the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to aliow resumption of
the interrupted program. Next, an 8-bit vector is sup-
plied to the Intel386 DX which identifies the appro-
priate entry in the interrupt table. The table contains
the starting address of the interrupt service routine.
Then, the user supplied interrupt service routine is
executed. Finally, when an IRET instruction is exe-
cuted the old processor state is restored and pro-

. gram execution resumes at the appropriate instruc-

tion.

The 8-bit interrupt vector is supplied to the Intei386
DX in several different ways: exceptions supply the
interrupt vector internally; software INT instructions
contain or imply the vector; maskable hardware in-
terrupts supply the 8-bit vector via the interrupt ac-
knowledge bus sequence. Non-Maskable hardware
interrupts are assigned to interrupt vector 2.

2.9.3 Maskable Interrupt

Maskable interrupts are the most common way used
by the Intel386 DX to respond to asynchronous ex-
ternal hardware events. A hardware interrupt occurs
when the INTR is pulled high and the Interrupt Flag
bit (IF) is enabled. The processor only responds to
interrupts between instructions, (REPeat String in-
structions, have an “interrupt window”, between
memory moves, which allows interrupts during long
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Table 2-5. Interrupt Vector Assignments

ncton[Imempt|  smctonwmen | FLG Ge
umber Exception Faulting
Instruction
Divide Error 0 Dlv, IDIv YES FAULT
Debug Exception 1 any instruction YES TRAP*
NMI Interrupt 2 INT 2 or NMI NO NMI
One Byte Interrupt 3 INT NO TRAP
Interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid OP-Code -] Any lllegal Instruction YES FAULT
Device Not Available 7 ESC, WAIT YES FAULT
Double Fault 8 Any Instruction That Can ABORT
Generate an Exception .
Coprocessor Segment Overrun 9 ESC NO ABORT
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 11 Segment Register Instructions YES FAULT
Stack Fault 12 Stack References YES FAULT
General Protection Fault 13 Any Memory Reference YES FAULT
Intel Reserved 15
Page Fault 14 Any Memory Access or Code Fetch YES FAULT
Coprocessor Error 16 ESC, WAIT YES FAULT
Intel Reserved 17-31
Two Byte Interrupt 0-255 {INTn NO TRAP

* Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.

string moves). When an interrupt occurs the proces-
sor reads an 8-bit vector supplied by the hardware
which identifies the source of the interrupt, (one of
224 user defined interrupts). The exact nature of the
interrupt sequence is discussed in section 5.

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter-
rupts. When an |RET instruction is executed the
original state of the IF is restored.

2.9.4 Non-Maskable Interrupt

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NM1) would
be to activate a power failure routine. When the NMI

1-24

input is pulled high it causes an interrupt with an
internally supplied vector value of 2. Unlike a normal
hardware interrupt, no interrupt acknowledgment se-
quence is performed for an NMI.

While executing the NMI servicing procedure, the In-
tel386 DX will not service further NMI requests, until
an interrupt return (IRET) instruction is executed or
the processor is reset. If NMI occurs while currently
servicing an NM, its presence will be saved for serv-
icing after exacuting the first IRET instruction. The IF
bit is cleared at the beginning of an NMI interrupt to
inhibit further INTR interrupts.

2.9.5 Software Interrupts

A third type of interrupt/exception for the Intel386
DX is the software interrupt. An INT n instruction
causes the processor to execute the interrupt serv-
ice routine peinted to by the nth vector in the inter-
rupt table.
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A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt, is the single step
interrupt. it is discussed in section 2.12.

2.9.6 Interrupt and Exception
Priorities

Interrupts are externally-generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
interrupts (on the NMI input) are recognized at in-
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the Intel386 DX invokes the NMi service
routine first. If, after the NMI service routine has
been invoked, maskable interrupts are still enabled,
then the Intei386 DX will invoke the appropriate in-
terrupt service routine.

Table 2-6a. Intei386™ DX Priority for
Invoking Service Routines in Case of
Simultaneous External Interrupts

1. NMI
2.INTR

Exceptions are internally-generated events. Excep-
tions are detected by the Intel386 DX if, in the
course of executing an instruction, the Intei386 DX
detects a problematic condition. The Intel386 DX
then immediately invokes the appropriate exception
service routine. The state of the intei386 DX is such
that the instruction causing the exception can be re-
started. If the exception service routine has taken
care of the problematic condition, the instruction will
execute without causing the same exception.

It is possible for a single instruction to generate sev-
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper-
and location spans two “not present” pages). How-
ever, only one exception is generated upon each at-
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex-
ception, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe-
cutes successfully.

As the Intel386 DX executes instructions, it follows a
consistent cycle in checking for exceptions, as
shown in Table 2-6b. This cycle is repeated
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as each instruction is executed, and occurs in paral-
lel with instruction decoding and execution.

Table 2-6b. Sequence of Exception Checking

Consider the case of the Intel386 DX having just
completed an instruction. it then performs the
following checks before reaching the point where
the next instruction is completed:

1. Check for Exception 1 Traps from the instruc-
tion just compieted (single-step via Trap Flag,
or Data Breakpoints set in the Debug Regis-
ters).

2. Check for Exception 1 Faults in the next in-
struction (Instruction Execution Breakpoint set
in the Debug Registers for the next instruc-
tion).

3. Check for external NM! and INTR.

4. Check for Segmentation Faults that prevented
fetching the entire next instruction (exceptions
11 or 13).

5. Check for Page Faults that prevented fetching
the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction
(exception 6 if illegal opcode; exception 6 if in
Real Mode or in Virtual 8086 Mode and at-
tempting to execute an instruction for Protect-
ed Mode only (see 4.6.4); or exception 13 if
instruction is longer than 15 bytes, or privilege
violation in Protected Mode (i.e. not at IOPL or
at CPL=0).

7. 1f WAIT opcode, check if TS=1 and MP=1
(exception 7 if both are 1).

8. If ESCAPE opcode for numeric coprocessor,
check if EM=1 or TS=1 (exception 7 if either
are 1).

9. If WAIT opcode or ESCAPE opcode for nu-
meric coprocessor, check ERROR # input sig-
nal (exception 16 if ERROR# input is assert-
ed).

10. Check in the following order for each memo-

ry reference required by the instruction:

a. Check for Segmentation Fauits that pre-
vent transferring the entire memory quanti-
ty (exceptions 11, 12, 13).

b. Check for Page Faults that prevent trans-
ferring the entire memory quantity (excep-
tion 14).

Note that the order stated supports the concept
of the paging mechanism being “underneath”
the segmentation mechanism. Thersfore, for any
given code or data reference in memory, seg-
mentation exceptions are generated before pag-

ing exceptions are generated.
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2.9.7 Instruction Restart

The Intel386 DX fully supports restarting all instruc-
tions after faults. If an exception is detected in the
instruction to be executed (exception categories 4
through 10 in Table 2-6b), the Intel386 DX invokes
the appropriate exception service routine. The In-
tel386 DX is in a state that permits restart of the
instruction, for all cases but those in Table 2-6c.
Nots that all such cases are easily avoided by prop-
or design of the operating system.

Table 2-6¢. Conditions Preventing
Instruction Restart

A. An instruction causes a task switch to a task
whose Task State Segment is partially “not
present”. (An entirely “not present” TSS is re-
startable.) Partially present TSS's can be
avoided either by keeping the TSS's of such
tasks present in memory, or by aligning TSS
segments to reside entirely within a single 4K
page (for TSS segments of 4K bytes or less).

B. A coprocessor operand wraps around the top
of a 64K-byte segment or a 4G-byte segment,
and spans three pages, and the page holding
the middle portion of the operand is “not pres-
ent.” This condition can be avoided by starting
at a page boundary any segments containing
coprocessor operands if the segments are ap-
proximately 64K-200 bytes or larger (i.e. large
enough for wraparound of the coprocessor
operand to possibly occur).

Note that these conditions are avoided by using
the operating system designs mentioned in this
table.
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the page fault (exception 14) handler a second time,
rather than the double fault (exception 8) handler. A
subsequent fault, though, will lead to shutdown.

When a Double Fault occurs, the intel386 DX in-
vokes the exception service routine for exception 8.

2.10 RESET AND INITIALIZATION

When the processor is initialized or Reset the regis-
ters have the values shown in Table 2-7. The In-
161386 DX will then start executing instructions near
the top of physical memory, at location FFFFFFFOH.
When the first InterSegment Jump or Call is execut-
ed, address lines A20-31 will drop low for CS-rela-
tive memory cycles, and the Intel386 DX will only
execute instructions in the lowsr one megabyte of
physical memory. This allows the system designer to
use a ROM at the top of physical memory to initialize
the system and take care of Resets.

RESET forces the Intel386 DX to terminate all exe-
cution and local bus activity. No instruction execu-
tion or bus activity will occur as long as Reset is
active. Between 350 and 450 CLK2 periods after
Reset becomes inactive the Intel386 DX will start
executing instructions at the top of physical memory.

Table 2-7. Register Values after Reset

2.9.8 Double Fault

A Double Fault (exception 8) results when the proc-
essor attempts to invoke an exception service rou-
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so, detects an exception
other than a Page Fault (exception 14).

A Double Fault (exception 8) will also be generated
when the processor attempts to invoke the Page
Fault (exception 14) service routine, and dstects an
exception other than a second Page Fault. In any
functional system, the entire Page Fault service rou-
tine must remain “present” in memory.

Double page faults however do not raise the double

fault exception. if a second page fault occurs while

the processor is attempting to enter the service rou-
tine for the first time, then the processor will invoke
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Flag Word UUUUO002H Note 1

Machine Status Word (CRO) | UUUUUUUOH Note 2

Instruction Pointer OCO0FFFOH

Code Segment FOOOH Note 3

Data Segment 0000H

Stack Segment 0000H

Extra Segment (ES) 0000H

Extra Segment (FS) 0000H

Extra Segment (GS) 0000H

DX register component and
stepping ID Note 5

All other registers undefined Note 4

NOTES: ’

1. EFLAG Register. The upper 14 bits of the EFLAGS reg-
ister are undefined, VM (Bit 17) and RF (BIT) 16 are 0 as
are all other defined flag bits.

2. CRO: (Machine Status Word). All of the defined fields in
the CRO are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and
PE Bit 0).

3. The Code Segment Register (CS) will have its Base Ad-
drass set to FFFFOO00H and Limit set to OFFFFH.

4. All undefined bits are Intel Reserved and should not be
used.

5. DX register always holds component and stepping iden-
lifier (see 5.7). EAX register holds self-test signature if self-
test was requested (see 5.6).
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2.11 TESTABILITY

2.11.1 Self-Test

The Intel386 DX has the capability to perform a self-
test. The self-test checks the function of all of the
Control ROM and most of the non-random logic of
the part. Approximately one-half of the Intel386 DX
can be tested during self-test.

Self-Test is initiated on the intel386 DX when the
RESET pin transitions from HIGH to LOW, and the
BUSY # pin is low. The self-test takes about 2**19
clocks, or approximately 26 milliseconds with a
20 MHz Intel386 DX. At the completion of self-test
the processor performs reset and begins normal op-
eration. The part has successfully passed self-test if
the contents of the EAX register are zero (0). If the
results of EAX are not zero then the self-test has
detected a flaw in the part.

2.11.2 TLB Testing

The iIntel386 DX provides a mechanism for testing
the Translation Lookaside Buffer (TLB) if desired.
This particular mechanism is unique to the Intei386
DX and may not be continued in the same way in
future processors. When testing the TLB paging
must be turned off (PG = 0 in CRO) to enable the
TLB testing hardware and avoid interferance with
the test data being written to the TLB.

There are two TLB testing operations: 1) write en--

tries into the TLB, and, 2) perform TLB lookups. Two
Test Registers, shown in Figure 2-12, are provided
for the purpose of testing. TH6 is the “test command
register”, and TR7 is the “test data register”. The
fields within these registers are defined below.

C: This is the command bit. For a write into TR6 to
cause an immediate write into the TLB entry, write a
0 to this bit. For a write into TR6 to cause an immedi-
ate TLB lookup, write a 1 to this bit.

Linear Address: This is the tag field of the TLB. On
a TLB write, a TLB antry is allocated to this linear
address and the rest of that TLB entry is set per the
value of TR7 and the value just written into TR6. On
a TLB lookup, the TLB is interrogated per this value
and if one and only one TLB entry matches, the rest
of the fields of TR6 and TR7 are set from the match-
ing TLB entry.

Physical Address: This is the data field of the TLB.
On a write to the TLB, the TLB entry allocatad to the
linear address in TR6 is set to this value. On a TLB
lookup, the data field (physical address) from the
TLB is read out to here.

L7PE D
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PL: On a TLB write, PL=1 causes the REP field of
TR7 to select which of four associative blocks of the
TLB is to be written, but PL=0 allows the internal
pointer in the paging unit to select which TLB block
is written. On a TLB lookup, the PL bit indicates
whether the lookup was a hit (PL gets setto 1) or a
miss (PL gets reset to 0). .

V: The valid bit for this TLB entry. Ali valid bits can
also be cleared by writing to CR3.

D, D#: The dirty bit for/from the TLB entry.

U, U#: The user bit for/from the TLB entry.

W, W#: The writable bit for/from the TLB entry.
For D, U and W, both the attribute and its comple-
ment are provided as tag bits, to permit the option of

a “don’t care” on TLB lookups. The meaning of
these pairs of bits is given in the following table:

x| x# Effect During Value of Bt

TLB Lookup X after TLB Write
o o0 Miss All Bit X Becomes Undefined
0| 1 |MatchifX =20 Bit X Becomes 0
1] 0 |Matchif X =1 Bit X Becomes 1
111 Match all Bit X Becomes Undefined

For writing a TLB entry:
1. Write TR7 for the desired physical address, PL
and REP values.

2. Write TR6 with the appropriate linear address,
etc. (be sure to write C = 0 for “write” com-
mand).

For looking up (reading) a TLB entry:

1. Write TR6 with the appropriate linear address (be
sure to write C=1 for “lookup” command).

2. Read TR7 and TR6. if the PL bit in TR7 indicates
a hit, then the other values reveal the TLB con-
tents. If PL indicates a miss, then the other values
in TR7 and TR6 are indeterminate.

2.12 DEBUGGING SUPPORT

The Intei386 DX provides several features which
simplify the debugging process. The three catego-
ries of on-chip debugging aids are:

1) the code execution breakpoint opcode (0CCH),

2) the single-step capability provided by the TF bit in
the flag register, and

3) the code and data breakpoint capability provided
by the Debug Registers DR0-3, DR6, and DR7.
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Figure 2-12, Test Registers

2.12.1 Breakpoint Instruction

A single-byte-opcode breakpoint instruction is avail-
able for use by software debuggers. The breakpoint
opcode is 0CCh, and generates an exception 3 trap
when executed. In typical use, a debugger program
can “plant"” the breakpoint instruction at all desired
code execution breakpoints. The single-byte break-
point opcode is an alias for the two-byte general
software interrupt instruction, INT n, where n=3.
The only difference between INT 3 (OCCh) and INT n
is that INT 3 is never IOPL-sensitive but INT n i
IOPL-sensitive in Protected Mode and Virtual 8086
Mode. '

2.12.2 Single-Step Trap

if the single-step flag (TF, bit 8) in the EFLAG regis-
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex-
ception is auto vectored to exception number 1. Pre-
cisely, exception 1 occurs as a trap after the instruc-
tion following the instruction which set TF. In typical
practice, a debugger sets the TF bit of a flag register
image on the debugger's stack. It then typically
transfers control to the user program and loads the
flag image with a signal instruction, the IRET instruc-
tion. The singie-step trap occurs after executing one
instruction of the user program.

Since the exception 1 occurs as a trap (that is, it
occurs after the instruction has already executed),
the CS:EIP pushed onto the debugger’s stack points
to the next unexecuted instruction of the program
being debugged. An exception 1 handler, merely by
ending with an IRET instruction, can therefore effi-
ciently support single-stepping through a user pro-
gram.

2.12.3 Debug Registers

The Debug Registers are an advanced debugging
feature of the Intel386 DX. They allow data access
breakpoints as well as code execution breakpoints.
Since the breakpoints are indicated by on-chip regis-
ters, an instruction execution breakpoint can be
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placed in ROM code or in code shared by several
tasks, neither of which can be supported by the INT3
breakpoint opcode.

The Intel386 DX contains six Debug Registers, pro-
viding the ability to specify up to four distinct break-
points addresses, breakpoint control options, and
read breakpoint status. Initially after reset, break-
points are in the disabled state. Therefore, no break-
points will occur uniess the debug registers are pro-
grammed. Breakpoints set up in the Debug Regis-
ters are autovectored to exception number 1.

2.12.3.1 LINEAR ADDRESS BREAKPOINT
REGISTERS (DR0-DR3)

Up to four breakpoint addresses can be specified by
writing into Debug Registers DRO-DR3, shown in
Figure 2-13. The breakpoint addresses specified are
32-bit linear addresses. Intet386 DX hardware con-
tinuously compares the linear breakpoint addresses
in DRO-DR3 with the linear addresses generated by
executing software (a linear address is the result of
computing the effective address and adding the
32-bit segment base address). Note that if paging is
not enabled the linear address equals the physical
address. If paging is enabled, the linear address is
translated to a physical 32-bit address by the on-
chip paging unit. Regardless of whether paging is
enabled or not, however, the breakpoint registers
hold linear addresses.

2,12.3.2 DEBUG CONTROL REGISTER (DR7)

A Debug Control Register, DR7 shown in Figure
2-13, allows several debug control functions such as
enabling the breakpoints and setting up other con-
trol options for the breakpoints. The fields within the
Debug Control Register, DR7, are as follows:

LENi (breakpoint length specification bits)
A 2-bit LEN field exists for each of the four break-
points. LEN specifiss the length of the associated

breakpoint field. The choices for data breakpoints
are: 1 byts, 2 bytss, and 4 bytes. Instruction execu-
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31 , 16 15 0
BREAKPQINT 0 LINEAR ADDRESS DRoO
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 3 LINEAR ADDRESS DR3
Intgl reserved. Do not define. DOR4
Intgl reserved. Do not define. DRS

e a2 8lololofolo]o]o[o|o]ol3151 55| ORe
S T e S TS Tl o elslollelelelsllslels lsle] o
3 16 15 0

NOTE: indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-13. Debug Registers

tion breakpoints must have a length of 1 (LENi
00). Encoding of the LENi field is as follows:

Usage of Least
Significant Bits in
Breakpoint Address
Register !, (i=0-3)

All 32-bits used to
specify a single-byte
breakpoint field.
A1-A31usedto
specify a two-byte,
word-aligned
breakpoint field. AQ in
Breakpoint Address
Register is not used.

LENI
Encoding

Breakpoint
Field Width

00 1 byte

01 2 bytes

Undefined—
do notuse
this encoding

4 bytes

11 A2-A31 used to
specify a four-byte,
dword-aligned
breakpoint field. A0
and A1 in Breakpoint
Address Register are

not used.

The LEN:i field controls the size of breakpoint field i
by controlling whether all low-order linear address
bits in the breakpoint address register are used to
detect the breakpoint event. Therefore, all break-
point fields are aligned; 2-byte breakpoint fields be-
gin on Word boundaries, and 4-byte breakpoint
fields begin on Dword boundaries.

The following is an example of various size break-
point fields. Assume the breakpoint linear address in
DR2 is 00000005H. In that situation, the following
illustration indicates the region of the breakpoint
field for lengths of 1, 2, or 4 bytes.

DR2=00000005H; LEN2 = 008
31 0
00000008H
bkpt fid2 00000004H
00000000H
DR2=00000005H; LEN2 = 01B
31 0
00000008H
<« bkpt fid2 — [00000004H
00000000H
DR2=00000005H; LEN2 = 11B
31 0
00000008H
<« bkpti2 — 00000004H
[ [ | 00000000H
129
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RWi {(memory access qualifier bits)

A 2-bit RW field exists for each of the four break-
points. The 2-bit RW field specifies the type of usage
which must occur in order to activate the associated
breakpoint.

RW Usage
Encoding Causing Breakpoint
00 Instruction execution only
01 Data writes only
10 Undefined—do not use this encoding
11 Data reads and writes only

RW encoding 00 is used to set up an instruction
sxecution breakpoint. RW encodings 01 or 11 are
used to set up write-only or read/write data break-
points. '

Note that instruction execution breakpoints are
taken as faults (i.e. before the instruction exe-
cutes), but data breakpoints are taken as traps
(i.e. after the data transfer takes place).

Using LENi and RWi to Set Data Breakpoint i

A data breakpoint can be set up by writing the linear
address into DRi (i = 0-3). For data breakpoints,
RWi can = 01 (write-only) or 11 {write/read). LEN
can = 00, 01, or 11.

if a data access entirely or partly falls within the data
breakpoint field, the data breakpoint condition has
occurred, and if the breakpoint is enabled, an excep-
tion 1 trap will occur.

Using LENi and RWi to Set Instruction Execution
Breakpoint i

An instruction execution breakpoint can be set up by
writing address of the beginning of the instruction
(including prefixes if any) into DRi (i = 0-3). RWi
must = 00 and LEN must = 00 for instruction exe-
cution breakpoints.

If the instruction beginning at the breakpoint address
is about to be executed, the instruction execution
breakpoint condition has accurred, and if the break-
point is enabled, an exception 1 fault will occur be-
fore the instruction is executed.

Note that an instruction execution breakpoint ad-
dress must be equal to the beginning byte address
of an instruction (including prefixes) in order for the
instruction execution breakpoint to occur.

GD (Global Debug Register access detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level 0 in Protected Mode. The
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GD bit, when set, provides extra protection against
any Debug Register access even in Real Mode or at
privilege level 0 in Protected Mode. This additional
protection feature is provided to guarantee that a
software debugger (or ICETM-386) can have full con-
trol over the Debug Register resources when re-
quired. The GD bit, when set, causes an exception 1
fault if an instruction attempts to read or write any
Debug Register. The GD bit is then automatically
cleared when the exception 1 handler is invoked,
allowing the exception 1 handler free access to the
debug registers. :

GE and LE (Exact data breakpoint match, global and
local)

If either GE or LE is set, any data breakpoint trap will
be reported exactly after compistion of the instruc-
tion that caused the operand transfer. Exact report-
ing is provided by forcing the Intel386 DX execution
unit to wait for completion of data operand transfers
before beginning execution of the next instruction.

It exact data breakpoint match is not selected, data
breakpoints may not be reported until several in-
structions later or may not be reported at all. When
enabling a data breakpoint, it is therefore recom-
mended to enable the exact data breakpoint match.

When the Intei386 DX performs a task switch, the
LE bit is cleared. Thus, the LE bit supports fast task
switching out of tasks, that have enabled the exact
data breakpoint match for their task-local break-
points. The LE bit is cleared by the processor during
a task switch, to avoid having exact data breakpoint
match enabled in the new task. Note that exact data
breakpoint match must be re-enabled under soft-
ware control.

The Intel386 DX GE bit is unaffected during a task
switch. The GE bit supports exact data breakpoint
match that is to remain enabled during all tasks exe-
cuting in the system.

Note that instruction execution breakpoints are al-
ways reported exactly, whether or not exact data
breakpoint match is selected.

Gi and Li (breakpoint enable, global and local)

If either Gi or Li is set then the associated breakpoint
(as defined by the linear address in DRi, the length

“in LENi and the usage criteria in RWi) is enabled. If

either Gi or Li is set, and the Intel386 DX detects the
ith breakpoint condition, then the exception 1 han-
dier is invoked.

When the Intel386 DX performs a task switch to a
new Task State Segment (TSS), all Li bits are
cleared. Thus, the Li bits support fast task switching
out of tasks that use some task-local breakpoint
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registers. The Li bits are cleared by the processor
during a task switch, to avoid spurious exceptions in

the new task. Note that the breakpoints must be re-
enabled under software control.

All Intel386 DX Gi bits are unaffected during a task
switch. The Gi bits support breakpoints that are ac-
tive in all tasks executing in the system.

2.12.3.3 DEBUG STATUS REGISTER (DR§)

A Debug Status Register, DR6 shown in Figure 2-13,
allows the exception 1 handler to easily determine
why it was invoked. Note the exception 1 handler
can be invoked as a result of one of several events:

1) DRO Breakpoint fault/trap.
2) DR1 Breakpoint fault/trap.
3) DR2 Breakpoint fault/trap.
4) DR3 Breakpoint fault/trap.
5) Single-step (TF) trap.

6) Task switch trap.

7) Fault due to attempted debug register access
when GD=1.

The Debug Status Register contains single-bit flags
for each of the possible events invoking exception 1.
Note below that some of these events are faults {ex-
ception taken before the instruction is executed),
while other events are traps (exception taken after
the debug events occurred).

The flags in DRE are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before returning to the user pro-
gram to avoid future confusion in identifying the
source of exception 1.

The fields within the Debug Status Register, DRS,
are as follows:

Bi (debug fault/trap due to breakpoint 0-~3)

Four breakpoint indicator flags, BO-B3, correspond
one-to-one with the breakpoint registers in DRO-
DR3. A flag Bi is set when the condition described
by DRI, LENi, and RWi occurs.

if Gi or Liis set, and if the ith breakpoint is detected,
the processor will invoke the exception 1 handler.
The exception is handled as a fault if an instruction
execution breakpoint occurred, or as a trap if a data
breakpoint occurred.

IMPORTANT NOTE: A flag Bi is set whenever the
hardware detects a match condition on enabled
breakpoint i. Whenever a match is detected on at
least one enabled breakpoint i, the hardware imme-
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diately sets all Bi bits corresponding to breakpoint
conditions matching at that instant, whether enabled
or not. Therefore, the exception 1 handler may see
that multiple Bi bits are set, but only set Bi bits corre-
sponding to enabled breakpoints (Li or Gi set) are
true indications of why the exception 1 handler was
invoked.

BD (debug fault due to attempted register access
when GD bit set)

This bit is set if the exception 1 handler was invoked
due to an instruction attempting to read or write to
the debug registers when GD bit was set. If such an
event occurs, then the GD bit is automatically §
cleared when the exception 1 handier is invoked,
allowing handler access to the debug registers.

BS (debug trap due to single-step)

This bit is set if the exception 1 handler was invoked
due to the TF bit in the flag register being set (for
single-stepping). See section 2.12.2.

BT (debug trap due to task switch)

This bit is set if the exception 1 handler was invoked
due to a task switch occurring to a task having an
Intel386 DX TSS with the T bit set. (See Figure
4-15a). Note the task switch into the new task oc-
curs normally, but before the first instruction of the
task is executed, the exception 1 handler is invoked.
With respect to the task switch operation, the opera-
tion is considered to be a trap.

2.12.3.4 USE OF RESUME FLAG (RF) IN FLAG
REGISTER

The Resume Flag (RF) in the flag word can sup-
press an instruction execution breakpoint when the
exception 1 handler returns to a user program at a
user address which is also an instruction execution
breakpoint. See section 2.3.3.

3. REAL MODE ARCHITECTURE

3.1 REAL MODE INTRODUCTION

When the processor is reset or powered up it is ini-
tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the
32-hit register set of the Intel386 DX. The address-
ing mechanism, memory size, interrupt handling, are
all identical to the Real Mode on the 80286.
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Figure 3-1. Real Address Mode Addressing

All of the Intel386 DX instructions are available in
Real Mode (except those instructions listed in 4.6.4).
The default operand size in Real Mode is 16-bits,
just like the 8086. In order to use the 32-bit registers
and addressing modes, override prefixes must be
used. In addition, the segment size on the Intel386
DX in Real Mode is 64K bytes so 32-bit effective
addresses must have a value less the 0000FFFFH.
The primary purpose of Real Mode is to set up the
processor for Protected Mode Operation.

The LOCK prefix on the intel386 DX, even in Real
Mode, is more restrictive than on the 80286. This is
due to the addition of paging on the Intel386 DX in
Protected Mode and Virtual 8086 Mode. Paging
makes it impossible to guarantee that repeated
string instructions can be LOCKed. The Intel386 DX
can't require that all pages holding the string be
physically present in memory. Hence, a Page Fault
(exception 14) might have to be taken during the
repeated string instruction. Therefore the LOCK pre-
fix can't be supported during repeated string instruc-
tions.

These are the only instruction forms where the
LOCK prefix is legal on the Intel386 DX:

Operands
Opcode (Dest, Source)
BIT Test and . i
SET/RESET/COMPLEMENT | Mem: Reg/immed
XCHG Reg, Mem
XCHG Mem, Reg
ADD, OR, ADC, SBB, Mem, Reg/immed
AND, SUB, XOR
NOT, NEG, INC, DEC Mem

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
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read/modify/write operations on memory operands
using the instructions above. For example, even the
ADD Reg, Mem is not LOCKable, because the Mem
operand is not the destination (and therefore no
memory read/modify/operation is being performed).

Since, on the Intel386 DX, repeated string instruc-
tions are not LOCKable, it is not possible to LOCK
the bus for a long period of time. Therefore, the
LOCK prefix is not 1OPL-sensitive on the Intel386
DX. The LOCK prefix can be used at any privilege
level, but only on the instruction forms listed above.

3.2 MEMORY ADDRESSING

In Real Mode the maximum memory size is limited to
1 megabyte. Thus, only address lines A2-A19 are
active. (Exception, the high address lines A20-A31
are high during CS-relative memory cycles until an
intersegment jump or call is executed (see section
2.10)).

Since paging is not allowed in Real Mode the linear
addresses are the same as physical addresses.
Physical addresses are formed in Real Mode by
adding the contents of the appropriate segment reg-
ister which is shifted left by four bits to an effective
address. This addition resuits in a physical address
from 00000000H to 0010FFEFH. This is compatible
with 80286 Real Mode. Since segment registers are
shifted left by 4 bits this implies that Real Mode seg-
ments always start on 16 byte boundaries.

All segments in Real Mode ars exactly 64K bytes
long, and may be read, written, or executed. The
Intel386 DX will generate an exception 13 if a data
operand or instruction fetch occurs past the end of a
segment. (i.e. if an operand has an offset greater
than FFFFH, for example a word with a low byte at
FFFFH and the high byte at 0000H.)
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Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64K bytes an-
other segment can be overlayed on top of the un-
used portion of the previous segment. This aliows
the programmer to minimize the amount of physical
memory needed for a program.

3.3 RESERVED LOCATIONS

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations 00000H
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFFOH
through FFFFFFFFH are reserved for system initiali-
zation.

3.4 INTERRUPTS

Many of the exceptions shown in Table 2-5 and dis-
cussed in section 2.9 are not applicable to Real
Mode operation, in particular exceptions 10, 11, 14,
will not happen in Real Mode. Other exceptions
have slightly different meanings in Real Mode; Table
3-1 identifies these exceptions.

3.5 SHUTDOWN AND HALT

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
{IF=1), or RESET will force the Intel386 DX out of
halt. If interrupted, the saved CS:IP will point to the
next instruction after the HLT.

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode,
shutdown can occur under two conditions:

An interrupt or an exception occur (Exceptions 8
or 13) and the interrupt vector is larger than the
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Interrupt Descriptor Table (i.e. There is not an in-
terrupt handler for the interrupt).

A CALL, INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even.
(e.g. pushing a value on the stack when SP =
0001 resulting in a stack segment greater than
FFFFH)

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Table limit is large
enough to contain the NM! interrupt vector (at least
0017H) and the stack has enough room to contain §
the vector and flag information (i.e. SP is greater
than 0005H). Otherwise shutdown can only be exit-
ed via the RESET input.

4. PROTECTED MODE
ARCHITECTURE

4.1 INTRODUCTION

The complete capabilities of the Intel386 DX are un-
locked when the processor operates in Protected
Virtual Address Mode {Protected Mode). Protected
Mode vastly increases the linear address space to
four gigabytes (232 bytes) and allows the running of
virtual memory programs of almost uniimited size
(64 terabytes or 246 bytes). In addition Protected
Mode allows the Intel386 DX to run all of the existing
8086 and 80286 software, while providing a sophisti-
cated memory management and a hardware-assist-
ed protection mechanism. Protected Mode allows
the use of additional instructions especially opti-
mized for supporting multitasking operating systems.
The base architecture of the Intel386 DX remains
the same, the registers, instructions, and addressing
modes described in the previous sections are re-
tained. The main difference between Protected
Mode, and Real Mode from a programmer's view is
the increased address space, and a different ad-
dressing mechanism.
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Tabie 3-1
Function Interrupt Related Return
Number instructions Address Location
Interrupt table limit too small 8 INT Vector is not Before
within table limit Instruction
CS, DS, ES, FS, GS 13 Word memory reference Before
Segment overrun exception beyond offset = FFFFH. Instruction
An attempt to execute :
past the end of CS segment.
SS Segment overrun exception 12 Stack Reference Before
. beyond offset = FFFFH Instruction
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4.2 ADDRESSING MECHANISM

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha-
nism maps the 32-bit linear address into a 32-bit
physical address. .

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode the se-
" lector is used to specify an index into an operating
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system defined table (see Figure 4-1). The table
contains the 32-bit base address of a given seg-

ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Intel386 DX. As such, paging oper-
ates beneath segmentation. The paging mechanism
translates the protected linear address which comes
from the segmentation unit into a physical address.
Figure 4-2 shows the complete Intel386 DX address-
ing mechanism with paging enabled.

48/32 BIT POINTER

SEGMENT LIMIT
SELECTOR | OFFSET
47/31 31/15 0
* MEMORY OPERAND
1 vpTo SELECTED
ACCESS RIGHTS 458 SEGMENT
LIMIT
BASE ADDRESS
SEGMENT BASE
SEGMENT ADDRESS
DESCRIPTOR 23163055
Figure 4-1. Protected Mode Addressing
48 BIT POINTER
o 4 PHYSICAL ADDRESS
SEGMENT I OFFSET KBYTES
15 31
AKBYTES
Intel386™
DX CPU PAGING 4K BYTES
ACCESS RIGHTS MECHANISN P:;:IECSASL
A
il o WEworY operand | | PHYSICAL PacE:
BASE ADDRESS PAGE FRAME 4K BYTES
SEGMENT ADDRESS
DESCRIPTOR . 4K BYTES
4KBYTES
4K BYTES
231830-56

Figure 4-2. Paging and Segmentation
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4.3 SEGMENTATION

4.3.1 Segmentation introduction

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about a
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in tables recognized by hardware.

4.3.2 Terminology

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically smaller than less privileged
levels.

RPL: Requestor Privilege Level—The privilege level
of the original supplier of the selector. RPL is deter-
mined by the least two significant bits of a selector.

DPL: Descriptor Privilege Level—This is the least

privileged level at which a task may access that de-

scriptor (and the segment associated with that de-
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

~CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equats the
privilege level of the code segment being executed.
CPL can also be determined by examining the low-
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level—The effective privi-
lege level is the least privileged of the RPL and DPL.
Since smaller privilege level values indicate greater
privilege, EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.
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4.3.3 Descriptor Tables

4.3.3.1 DESCRIPTOR TABLES INTRODUCTION

The descriptor tables define all of the segments
which are used in an Intel386 DX system. There are
three types of tables on the Intel386 DX which hold
descriptors: tha Global Descriptor Table, Local De-
scriptor Table, and the Interrupt Descriptor Table. All
of the tables are variable length memory arrays.
They can range in size between 8 bytes and 64K
bytes. Each table can hold up to 8192 8 byte de-

scriptors. The upper 13 bits of a selector are used as } 4

an index into the descriptor table. The tables have
registers associated with them which hold the 32-bit
linear base address, and the 16-bit limit of each ta-
ble.

Each of the tables has a register associated with it
the GDTR, LDTR, and the IDTR (see Figure 4-3).

v The LGDT, LLDT, and LIDT instructions, load the

base and limit of the Global, Local, and Interrupt De-
scriptor Tables, respectively, into the appropriate
register. The SGDT, SLDT, and SIDT instructions
store the base and limit values. These tables are
manipulated by the operating system. Therefore, the
load descriptor table instructions are privileged in-
structions.

4.3.3.2 GLOBAL DESCRIPTOR TABLE

The Global Descriptor Table (GDT) contains de-
scriptors which are possibly available to all of the
tasks in a system. The GDT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e. interrupt and trap
descriptors). Every Intel386 DX system contains a
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Figure 4-3. Descriptor Table Registers
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GDT. Generally the GDT contains code and data
sagments used by the operating systems and task
state segments, and descriptors for the LDTs in a
system.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

4.3.3.3 LOCAL DESCRIPTOR TABLE

LDTs contain descriptors which are associatsd with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task's code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cessed by a task if its segment descriptor doss not
exist in either the current LDT or the GDT. This pro-
vides both isolation and protection for a task's seg-
ments, while still allowing global data to be shared
among tasks.

Unlike the 6 byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selsctor. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT.

4.3.3.4 INTERRUPT DESCRIPTOR TABLE

The third table needed for Intel386 DX systems is
the Interrupt Descriptor Table. (See Figure 4-4.) The
IDT contains the descriptors which point to the loca-
tion of up to 256 interrupt service routines. The IDT
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may contain only task gates, interrupt gates, and
trap gates. The IDT should be at least 256 bytes in
size in order to hold the descriptors for the 32 intel
Reserved Interrupts. Every interrupt used by a sys-
tem must have an entry in the IDT. The IDT entries

are referenced via INT instructions, extsrnal inter-
rupt vectors, and exceptions. (See 2.9 Interrupts).
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Figure 4-4. Interrupt Descriptor
Table Register Use

4.3.4 Descriptors
4.3.4.1 DESCRIPTOR ATTRIBUTE BITS

The object to which the segment selector points to
is called a descriptor. Descriptars are eight byte
quantities which contain attributes about a given re-
gion of linear address space (i.e. a segment). These
attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or

31 0 BYTE
ADDRESS
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT BASE

BASE31...24 | GI D | 0| AVL 19...18 P DTL S l'I'YF’EI A 23...16 +4

BASE  Base Address of the segment

LIMIT  The length of the segment

P Present Bit 1 =Present 0=Not Present

DPL Descriptor Privilege Level 0-3

] Segment Descriptor 0= System Descriptor  1=Code or Data Segment Descriptor

TYPE Type of Segment

A Accessed Bit

G Granularity Bit 1= Segment length is page granular 0= Segment length is byte granular

D Default Operation Size (recognized in code segment descriptors only)  1=232.bit segment 0= 16-bit segment

0 Bit must be zero (0) for compatibility with future processors

AVL Available field for user or OS
NOTE: .
In a maximum-size segment (ie. a segment with G=1 and segment limit 19...0=FFFFFH), the lowest 12 bits of the
segment base should be zero (ie. segment base 11...000 = 000H).

Figure 4-5. Segment Descriptors
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32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. Figure 4-5 shows the gen-
eral format of a descriptor. All segments on the In-
1ei386 DX have three attribute fields in common: the
P bit, the DPL bit, and the S bit. The Present P bit is
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(for code and data). The segment S bit in the seg-
ment descriptor determines if a given segment is a
system segment or a code or data segment. If the S
bit is 1 then the segment is either a code or data
segment, if it is 0 then the segment is a system seg-
ment.

B 4526175 0126134 553 MR ITLL

1 if the segment is loaded in physical memory, if
P =0 then any attempt to access this segment caus-
es a not present exception (exception 11). The De-
scriptor Privilege Level DPL is a two-bit field which
specifies the protection level 0-3 associated with a
segment.

4.3.4.2 Intei386™ DX CODE, DATA
DESCRIPTORS (S=1)

Figure 4-6 shows the general format of a code and
data descriptor and Table 4-1 illustrates how the bits

The Intel386 DX has two main categories of seg- in the Access Rights Byte are interpreted.

ments system segments and non-system segments

N 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT ACCESS BASE
BASE31...24 | G | D/B | 0| AVL RIGHTS +4
19...16 23...16
BYTE
D/B 1= Detault Instructions Attributes are 32-Bits G Granularity Bit 1= Segment length is page granular
0= Default Instruction Attributes are 16-Bits 0= Segmant length is byte granular
AVL Available field for user or OS 0 Bit must be zero (0) for compatibility with future processors

NOTE:
in a maximum-size segment (ie. a segment with G=1 and sagment limit 19..0=FFFFFH), the lowest 12 bits of the
segment base should be zero (ie. segment base 11...000 = 000H).

Figure 4-6. Segment Descriptors

Tabie 4-1. Access Rights Byte Definition for Code and Data Descriptions

Bit
Position Name Function
7 Present (P) P =1 Segmentis mapped into physical memory.
P =0 Nomapping to physical memory exits, base and limit are not
used.
8-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL})
4 Segment Descrip- | S =1 Code or Data (includes stacks) segment descriptor
tor (S} S =0 System Segment Descriptor or Gate Descriptor
3 Executable (E) E =0 Descriptor type is data segment: i
2 Expansion Direc- EDO Expand up segment, offsets must be < limit. Data
tion {ED) ED = 1 Expand down segment, offsets mustbe > limit. ¢ Segment
1 Writeable (W) W = 0 Data segment may not be written into. S =1,
Type W = 1 Data segment may be written into. . ) E=0)
E'ei_d, . 3 Executable (E) E =1 Descriptor type is code segment: W If
efinition 2 Conforming (C) C =1 Code segment may only be executed when Code
CPL = DPL and CPL remains unchanged. r Segment
1 Readable (R) R =0 Code segment may not be read. . (S =1,
R =1 Code segment may be read. E=1)
0 Accessed (A) A = 0 Segment has not been accessed.
A =1 Segment selector has been loaded into segment register or
used by selector test instructions.
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Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev-
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. Intel386 DX segments can be one
magabyte long with byte granularity (G=0) or four
gigabytes with page granularity (G=1), (i.e., 220
pages each page is 4K bytes in length). The granu-
larity is totally unrelated to paging. An Intel386 DX
system can consist of segments with byte granulari-
ty, and page granularity, whether or not paging is
enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E=1, S=1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R=0, and execute/read if R=1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases. Alias-
es are writeable data segments which occupy the
same range of linear address space as the code
segment.

The D bit indicates the default length for operands
and effective addresses. If D=1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. If
D=0 then 16-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 80286
code segments will execute on the Intel386 DX as-
suming the D bit is set 0.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C=1,
can be executed and shared by programs at difter-
ent privilege levels. (See section 4.4 Protection.)
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Segments identified as data segments (E=0, S=1)
are used for two types of Intel386 DX segments:
stack and data segments. The expansion direction
(ED) bit specifies if a segment expands downward
(stack) or upward (data). If a segment is a stack seg-
ment all offsets must be greater than the segment
limit. On a data segment all offsets must be less
than or equal to the limit. in other words, stack seg-
ments start at the base linear address plus the maxi-
mum segment limit and grow down to the base linear
address plus the limit. On the other hand, data seg-
ments start at the base linear address and expand to
the base linear address plus limit.

The write W bit controls the ability to write into a
segment. Data segments are read-only if W=0. The
stack segment must have W=1,

The B bit controls the size of the stack pointer regis-
ter. If B=1, then PUSHes, POPs, and CALLs all use
the 32-bit ESP register for stack references and as-
sume an upper limit of FFFFFFFFH. If B=0, stack
instructions all use the 16-bit SP register and as-
sume an upper limit of FFFFH.

4.3.4.3 SYSTEM DESCRIPTOR FORMATS

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 4-7
shows the general format of system segment de-
scriptors, and the various types of system segments.
Intel386 DX system descriptors contain a 32-bit
base linear address and a 20-bit segment limit.
80286 system descriptors have a 24-bit base ad-
dress and a 16-bit segment limit. 80286 system de-
scriptors are identified by the upper 16 bits being all
zero.

NOTE:

3 16 0
SEGMENTBASE 15...0 SEGMENT LIMIT15...0 0
LIMIT BA
BASE31...24 |G|0J0]|O P| DPL | O TYPE SE +4
19...16 . L, les...1e

Type Defines Type Dgﬂna:

[ Invatid 8 Invalid

1 Available 80286 TSS 9 Available Intel386™ DX TSS

2 LDT A Undefined {lntel Reserved)

3 Busy 80286 TSS B Busy Intel386™ DX TSS

4 80286 Call Gate G Intet386™ DX Cali Gate

5 Task Gate {for 80286 or Intel386™ DX Task) D Undefined (Intel Reserved)

6 80286 Interrupt Gate E Intel386™ DX interrupt Gate

7 80286 Trap Gate F Intei386™™ DX Trap Gate

In @ maximum-size segment (ie. a segment with G=1 and segment limit 19...0=FFFFFH), the lowest 12 bits of the
segment base should be zero (ie. segment base 11...000=000H).

Figure 4-7. System Segments Descriptors
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4.3.4.4 LDT DESCRIPTORS (S=0, TYPE=2)

LDT descriptors (S=0 TYPE=2) contain informa-
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Since the instruction to load the LDTR is only
available at privilege level 0, the DPL field is ignored.
LDT descriptors are only allowed in the Global De-
scriptor Table (GDT).

4.3.4.5 TSS DESCRIPTORS (S=0,
TYPE=1, 3, 9, B)

A Task State Segment (TSS) descriptor contains in-
formation about the location, size, and privilege level
of a Task State Segment (TSS). ATSS in turn is a
special fixed format segment which contains all the
state information for a task and a linkage field to
permit nesting tasks. The TYPE field is used to indi-
cate whether the task is currently BUSY (i.e. on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a
80286 or an Intel386 DX TSS. The Task Register
(TR) contains the selector which points to the cur-
rent Task State Segment.

4.3.4.6 GATE DESCRIPTORS (§=0,
TYPE=4-7,C, F)

Gates are used to control access to entry points
within the target code segment. The various types of
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gate descriptors are call gates, task gates, inter-
rupt gates, and trap gates. Gates provide a level of
indirection between the source and destination of
the control transfer. This indirection allows the proc-
essor to automatically perform protection checks. It
also allows systam designers to control entry points
to the operating system. Call gates are used to
change privilege levels (see section 4.4 Protection),
task gates are used to perform a task switch, and
interrupt and trap gates are used to specify interrupt
service routines.

Figure 4-8 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer

program control to a more privileged level. The call §

gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop-
ied from the caller’s stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter-
rupts (resets the IF bit) while the trap gate does not.

B 4825175 012L1l3L 326 MM ITLL

31 24 16 8 5 0
SELECTOR OFFSET15...0 0
WORD
OFFSET31...16 DPL | O TYPE O[O0 0]|COUNT|+4
! | 1 1 4...0
Gate Descriptor Flelds
Name Value Deacription
Type 4 80286 cail gate
5 Task gate (for B0286 or Intei386™ DX task)
(-] 80286 interrupt gate
7 80288 trap gate
C Intel386T™™ DX call gate
E Intel386™ DX interrupt gate
F Intel386™ DX trap gate
P 0 Descriptor contents are not valid
1 Descriptor contents are valid

DPL—least privileged level at which a task may access the gate. WORD COUNT 0-31—the number of parameters to copy from caller’s stack
to the called procedure’s stack. The parameters are 32-bit quantities for Intei388™ DX gates, and 16-bit quantities for 80286 gates.

DESTINATION 16-bit Selector to the targst code segment
SELECTOR solector or
Selector to the target task state segmant for task gate

DESTINATION offset
OFFSET 18-bit 80286
32-bit intel386™ DX

Entry point within the target code segment

Figure 4-8. Gate Descriptor Formats
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Task gates are used to switch tasks. Task gates
may only refer to a task state segment (see section
4.4.6 Task Switching) therefore only the destination
selector portion of a task gate descriptor is used,
and the destination offset is ignored.

Exception 13 is generated when a destination selec-
tor does not refer to a correct descriptor type, i.e., a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de-
scriptors. P=1 indicates that the gate contents are
valid. P=0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
scriptor privilege level and specifies when this de-
scriptor may be used by a task (see section 4.4 Pro-
tection). The S field, bit 4 of the access rights byte,
must be 0 to indicate a system control descriptor.
The type field specifies the descriptor type as indi-
cated in Figure 4-8.

4.3.4.7 DIFFERENCES BETWEEN Intei386™ DX
AND 80286 DESCRIPTORS

In order to provide operating system compatibility
between the 80286 and Intel386 DX, the Intel386
DX supports all of the 80286 segment descriptors.
Figure 4-9 shows the general format of an 80286
system segment descriptor. The only differences be-
tween 80286 and Intel386 DX descriptor formats are
that the values of the type fields, and the limit and
base address fields have been expanded for the in-
tel386 DX. The 80286 system segment descriptors
contained a 24-bit base address and 16-bit limit,
while the Intel386 DX system segment descriptors
have a 32-bit base address, a 20-bit limit field, and a
granularity bit.

By supporting 80286 system segments the Intel386
DX is able to execute 80286 application programs
on an Intel386 DX operating system. This is possible
because the processor automatically understands
which descriptors are 80286-style descriptors and
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which descriptors are Intel386 DX-style descriptors.
In particular, if the upper word of a descriptor is zero,
then that descriptor is a 80286-style descriptor.

The only other differences between 80286-style de-
scriptors and Intel386 DX descriptors is the interpre-
tation of the word count field of call gates and the B
bit. The word count field specifies the number of
18-bit quantities to copy for 80286 call gates and
32-bit quantities for Intel386 DX call gates. The B bit
controls the size of PUSHes when using a call gate;
if B=0 PUSHes are 16 bits, if B=1 PUSHes are 32
bits.

4.3.4.8 SELECTOR FIELDS

A selector in Protected Mode has three fields: Local
or Gilobal Descriptor Table Indicator (TI), Descriptor
Entry Index (Index), and Requestor (the selector's)
Privilege Level (RPL) as shown in Figure 4-10. The
Tl bits select one of two memory-based tables of
descriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de-
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector’s
privilege attributes.

4.3.4.9 SEGMENT DESCRIPTOR CACHE

In addition to the selector value, every sagment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register's con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment rogisters after changing a descriptor’s
value.

31 [} _
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 4]
Intel Reserved BASE
Setto 0 DPLOIS| [ TP |23, 1e ™
BASE Base Address of the segment DPL Descriptor Privilege Leval 0-3
LIMIT The length of the segmant s System Descriptor 0=System 1=User
P Present Bit 1=Present 0= Not Presant TYPE Type of Segment
Figure 4-9. 80286 Code and Data Segment Descriptors
1-40
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SELECTOR
15 43210
SEGMENT 7| ReL
REGISTER fo] o --—-0]o]1]1]1] |
- * | TaBLE
INDEX INDICATOR
Ti=1 Ti= l
N N
'L DESCRIPTOR 'L
— NUMBER A
6 6
N 5 5
4 4
3.1 DESCRIPTOR. 3
2 2
1 1
0 0 NULL
LOCAL GLOBAL
DESCRIPTOR DESCRIPTOR
TABLE TABLE 231630-50

Figure 4-10. Example Descriptor Selection
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4.3.4.10 SEGMENT DESCRIPTOR REGISTER
SETTINGS

The contents of the segment descriptor cache vary
depending on the mode the Intei386 DX is operating
in. When operating in Real Address Mode, the seg-
ment base, !imit, and other atiributes within the seg-
ment cache registers are defined as shown in Figure
4-11.

L?E D MM 4Y4A7LL7S5 012L139 035 =@ ITLY
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For compatiblity with the 8086 architecture, the base
is set to sixteen times the current selector value, the
limit is fixed at O000FFFFH, and the attributes are
fixed so as to indicate the segment is present and
fully usable. In Real Address Mode, the internal
“privilege level” is always fixed to the highest level,

level 0, so 1/0 and other privileged opcodes may be
executed. .

intersegment MP, or INT). (See Figure 4-13 Example.)

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32 BIT BASE 32-BIT LIMIT OTHER ATTRIBUTES

(UPDATED DURING SELECTOR (FIXED) (FIXED)

LOAD INTO SEGMENT REGISTER)
CONFORMING PRIVILEGE ’
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE .
EXPANSION DIRECTION y
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT

______ BASE LT } , Yy 3
cs 16X CURRENT CS SELECTOR® 0000FFFFH |Y|o|Y|B{U|Y|Y|Y|~
SS 16X CURRENT SS SELECTOR O00CFFFFH |Y| 0| Y|BlU|Y|Y N W
DS 16X CURRENT DS SELECTOR DOOGFFFFR Y| 0| Y|BIU|Y|Y|N| =] -
ES 168X CURRENT ES SELECTOR OOOOFFFFH |Y[O[Y B{U|Y|[YIN|=|~-
FS 16X CURRENT FS SELECTOR 000OFFFFR_|Y|0|Y B lU[Y[Y|N[=]=
S 16X CURRENT GS SELECTOR GOOOFFFFH Y] 0| Y|B|U|Y[Y[N[ =]~

*Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (e.g. intersegment CALL, or

231630-60

Key: Y = yes D = expand down
N =no 8 = byte granularity
0 = privilege isvel 0 P = page granularity
1 = privilege lovel 1 W = push/pop 16-bit words
2 = privilege lavel 2 F = push/pop 32-bit dwords
3 = privilege lavel 3 - = does not appiy to that segment cache register
U = expand up
Figure 4-11. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes are Fixed)
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When operating in Protected Mode, the segment
base, limit, and other attributes within the segment

cache registers are defined as shown in Figurs 4-12,
In Protected Mode, each of these fields are defined

ment register.

B uA2hl?S5 012kL40 857
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according to the contents of the segment descriptor
indexed by the selector value loaded into the seg-

SEGMENT
32 - BIT BASE

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

CONFORMING PRIVILEGE

DESCRIPTOR CACHE REGISTER CONTENTS
32 = BIT LIMIT

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

OTHER ATTRIBUTES

(UPDATED DURING
SELECTOR LQAD INTO
SEGMENT REGISTER)

Key: Y = fixed yes

N = fixed no

d = per segment descriptor
{exception 12 in case of S8)
(special case for S8)

{special case for SS)

- = does not apply to that segment cache register

p = per segment descriptor; descriptor must indicate “present” to avoid exception 11

r = per segment descriptor, but descriptor must indicate “readable’ to avoid exception 13

w = per segment descriptor, but descriptor must indicate “writabie™ to avoid exception 13

STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT

BASE LIMIT } v
CS | BASE PER SEG DESCR | LIMIT PER SEG DESCR |p|d|d|d|d|d|N|Y|-]|d
SS_| BASE PER SEG DESCR | LIMIT PER SEG DESCR  |pid|d|d|d|r [w|N|d ]|~
DS | BASE PER SEG DESCR | LIMIT PER SEG DESCR  |p|d|d|d|d|d|d|N]|~| -
ES | BASE PER SEG DESCR | LIMIT PER SEG DESCR _ |p|d|d|d|d [d[d|N[=|~=
FS_| BASE PER SEG DESCR | LIMIT PER SEG DESCR __ |pid[d|d[d|d[d[N[=| =
GS | BASE PER SEG DESCR | LIMIT PER SEG DESCR |pld|d[d[d]d[d[N]=}=

Figure 4-12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)
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When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de-
fined as shown in Figure 4-13. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at

L?E D MR 432L175 0l2bklul
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0000FFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,

level 3, to allow trapping of all IOPL-sensitive in-
structions and level-0-only instructions.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32 = BIT BASE 32 = BIT LiIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)
CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY 3
ACCESSED
PRIVILEGE LEVEL
PRESENT
BASE LIMIT ¥ v
cs 16X CURRENT CS SELECTOR OQOOFFFFH |Y|31Y|B|U|Y|Y]Y ]~
SS 16X CURRENT SS SELECTOR OOOOFFFFH Y [{3|Y|B|U|Y|YIN
DS 16X CURRENT DS SELECTOR O0O0OFFFFH |Y[3!Y|BIUIY|Y|N|=|=
ES 16X CURRENT ES SELECTOR O0OQFFFFH |YI3|Y|BIUIY|YIN ==
Fs 16X CURRENT FS SELECTOR O00OFFFFH  |YI3|Y|BIUJYIYIN|~|~
GS 16X CURRENT GS SELECTOR OCOOFFFFH IY[{3[YIB[UIYIYINI=|=
""""""""""""""""""""""""" 231630-62
Key: Y = yes D = expand down
N =no B = byte granutarity
0 = privilege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32.bit dwords
3 = privilege level 3 - = does not apply to that segment cache register
U = expand up

Figure 4-13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)
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4.4 PROTECTION

4.4.1 Protection Concepts

cou
ENFORCED
SOFYWARE
INTERFACES

085 EXTENSIONS

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

231630-63

Figure 4-14. Four-Level Hierachical Protection

The intel386 DX has four levels of protection which
are optimized to support the needs of a multi-tasking
operating system to isolate and protect user pro-
grams from each other and the operating system.
The privilege levels control the use of privileged in-
structions, I/Q instructions, and access to segments
and segment descriptors. Unlike traditional micro-
processor-based systems where this protection is
achieved only through the use of complex external
hardware and software the Intel386 DX provides the
protection as part of its integrated Memory Manage-
ment Unit. The Intei386 DX offers an additional type
of protection on a page basis, when paging is en-
abled (See section 4.5.3 Page Level Protection).

The four-level hierarchical privilege system is illus-
trated in Figure 4-14. It is an extension of the user/
supervisor privilege mode commonly used by mini-
computers and, in fact, the user/supervisor mode is
fully supported by the Intsl386 DX paging mecha-
nism. The privilege levels (PL) are numbered 0
through 3. Leval 0 is the most privileged or trusted
level.

4.4.2 Rules of Privilege

The Intei386 DX controls access to both data and
procedures between levels of a task, according to
the following rules.

¢ Data stored in a segment with privilege level p can
be accessed only by code executing at a privilege
level at least as privileged as p.

* A code segment/procedure with privilege level p
can only be called by a task executing at the same
or a lesser privilege level than p.

L7E D W 4826175 0l2kLuZ
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4.4.3 Privilege Levels

4.4.3.1 TASK PRIVILEGE

At any point in time, a task on the Intel386 DX al-
ways executes at one of the four privilege levels.

-The Current Privilege Level {CPL) specifies the

task’s privilege level. A task’s CPL may only be
changed by control transfers through gate descrip-
tors to a code segment with a different privilege lev-
el. (See section 4.4.4 Privilege Level Transfers)
Thus, an application program running at PL = 3 may

call an operating system routing at PL = 1 (via a §
gate) which would cause the task's CPL to be set to }

1 until the operating system routine was finished.

4.4.3.2 SELECTOR PRIVILEGE (RPL)

The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector's RPL is only used to es-
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task’s effective privitege level (EPL). The
EPL is defined as being the least privileged (i.e. nu-
merically larger) level of a task’s CPL and a selec-
tor's APL. Thus, if selector's RPL = 0 then the CPL
always specifies the privilege level for making an ac-
cess using the selector. On the other hand if RPL =
3 then a selector can only access segments at level
3 regardless of the task's CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL)
instruction is provided to force the RPL bits to the
originator's CPL.

4.4.3.3 I/0 PRIVILEGE AND 1/0 PERMISSION
BITMAP

The 170 privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which 1/0 instructions can be unconditionally per-
formed. I/Q instructions can be unconditionally per-
formed when CPL < IOPL. (The I/0 instructions are
IN, OUT, INS, OUTS, REP INS, and REP QUTS.)
When CPL > IOPL, and the current task is associat-
ed with a 286 TSS, attempted 1/0 instructions cause
an exception 13 fault. When CPL > IOPL, and the
current task is associated with an Intel386 DX TSS,
the /O Permission Bitmap (part of an Intei386 DX
TSS) is consulted on whether 170 to the port is al-
lowed, or an exception 13 fault is to be generated
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instead. For diagrams of the 1/0 Permission Bitmap,
refer to Figures 4-15a and 4-15b. For further infor-
mation on how the |/O Permission Bitmap is used in
Protected Mode or in Virtual 8086 Mode, refer to
section 4.6.4 Protection and 1/0 Permission Bitmap.

The 1/0 privilege level (IOPL) also affects whether

several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called “|OPL-sensitive” instructions and they are
CLI and STI. (Note that the LOCK prefix is not IOPL-
sensitive on the Intel386 DX.)

The IOPL also affects whether the |F (interrupts en-
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL < |OPL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL > IOPL, the IF bit
cannot be changed by a new value POP’ed into {(or
otherwise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exception is
generated.

Table 4-2. Pointer Test Instructions

Instruction| Operands Function

ARPL Selector,

Register

Adjust Requested Privi-
lege Level: adjusts the
RPL of the selector to the
numeric maximum of
current selector RPL value
and the RPL value in the
register. Set zero flag if
selector RPL was
changed.

VERR |Selector |VERIify for Read: sets the
zero flag if the segment
referred to by the selector

can be read.

VERW |Selector |VERify for Write: sets the
zero flag if the segment
referred to by the selector

can be written.

LSL Register,
Selector

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type allow.
Set zero flag if successful.

LAR Register,
Selector

Load Access Rights: reads
the descriptor access
rights byta into the register
if privilege rules allow. Set
zero flag if successful.
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The Intei386 DX provides several instructions to
speed pointer testing and help maintain system in-
tegrity by verifying that the selector value refers to
an appropriate segment. Table 4-2 summarizes the
selector validation procedures available for the In-
tel386 DX.

4.4.3.4 PRIVILEGE VALIDATION

This pointer verification prevents the common prob-
lem of an apptication at PL = 3 calling a operating
systems routine at PL = 0 and passing the operat-
ing system routine a “bad” pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc-
tion to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

4.4.3.5 DESCRIPTOR ACCESS

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and thoss involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Any time an instruction loads data segment registers
(DS, ES, FS, GS) the intel386 DX makes protection
validation checks. Selectors loaded in the DS, ES,
FS, GS registers must refer only to data segments or
readable code segments. The data access rules are
specified in section 4.2.2 Rules of Privilege. The
only exception to those rules is readable conforming
code segments which can be accessed at any privi-
lege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

4.4.4 Privilege Level Transfers
Inter-segment control transfers occur when a selec-

tor is loaded in the CS ragister. For a typical system
most of these transfers are simply the result of a call

M 4826175 012LL43 S5LL WM ITLL



INTEL CORP {UP/PRPHLSY

integl.

L7E D

M 4826175 0126244 4TS EE ITLL

Intel386™ DX MICROPROCESSOR

Table 4-3. Descriptor Types Used for Contro! Transfer

Descriptor | Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* | Code Segment | GDT/LDT
Intersegment to the same or higher privilege level | CALL Call Gate GDT/LDT
Interrupt within task may change CPL Interrupt Instruction, Trap or DT

Exception, External Interrupt

Interrupt Gate
Intersegment to a lower privilege level RET, IRET* Code Segment | GDT/LDT
(changes task CPL)

CALL, JMP Task State GDT

Segment

Task Switch CALL, JMP Task Gate GDT/LDT

IRET** Task Gate DT

Interrupt Instruction,

Exception, External

Interrupt

*NT (Nested Task bit of ftag regisier) = 0
**NT (Nested Task bit of flag register) = 1

or a jump to another routine. There are five types of
control transfers which are summarized in Table 4-3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

~ Privilege level transitions can only occur via
gates.

— JMPs can be made to a non-conforming code
segment with the same privilege or to a conform-
ing code segment with greater or egual privilege.

— CALLs can be made to a non-conforming code
segment with the same privilege or viaa gate to a
more privileged level.

— Interrupts handled within the task obey the same
privilege rules as CALLs.

— Conforming Code segments are accessible by
privilege levels which are the same or less privi-
leged than the conforming-code segment's DPL.

— Both the requested privilege level (RPL) in the
selector pointing to the gate and the task's CPL

must be of equal or greater privilege than the
gate's DPL.

— The code segment selected in the gate must be
the same or more privileged than the task’s CPL.

— Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

— Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who's DPL is less privi-
leged or the same privilege as the old task's CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi-
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see section 4.4.6 Task Switching).
During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis-
ters and the previous stack pointer is pushed onto
the new stack. i

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou-
tine calls that pass parameters on the stack and
cross privitege levels, a fixed number of words (as
specified in the gate's word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

1-47



INTEL CORP {UP/PRPHLS}

Intei386™ DX MICROPROCESSOR

L?PE D

M 4326175

0l261lu45 339 M@ ITL)

NOTE:
BIT_MAP__OFFSET
must be < DFFFH

Type = 3: Available Intel386™ DX TSS,
Type = 8: Busy inteid86™ DX TSS

31 TRT) ) J
0000000000000000 { BACK LINK o TS M
£5P0 .
©000000000600000 1 $50 ]
EsP1 ¢ | stacxs
0000000000000000 1 881 LI iy 0Nz
ESP2 14
0000000000000000 | 552 18
3 1€
£ 20
TS 24
X F
Fex L
DX 30
] bl
o ]
o L
= o s
= a4 | sTame
0000000030000000 ES i
50000000000000D0 cs «
00000000¢000000¢ 3 s
0000000000000000 [ 54
©000000000000000 F3 b
0000060000000000 [ ¢
2000000000000000 LT hod
WMT_NAP_OFFSET(15:0) 90000000000a0000 | T q\
AVALARLE L8 e
b SYSTEM STATUS, ETC. » TRaAP T
r IN Ima388™ ox Cry 158 v
3 24] 13 18]18 of? °K
] se]ss o s0] 39 32] BT MAP_OFFSIY
13 an]sr sa]re 1271 .“
............. : o8] oFFsiT e
:c:mzs: s]i':'r :r OFFSET » 10
N L 3 [
sast -g- T 1/0 NTHAP I
45407 . 1R
* fosrirop) °E 85430 (:::T-.;T'ﬂ’m ::‘o :x . |r::
______________ 1 USING TSS LINIT.)
TASK REGISTER §5471 OFFSET + 1FF4
B 85503 $3472 | OFFSET + 1FFR
“r Stuctor 45538 45804 | orrser + 1rre
18 0 ~FFH” OFFSET-+ 2000
% 155 umr = orrser + 200w
31 Intel386™ DX CPU TSS DESCRIPTOR (IN GOT) °
SEGMENT BASE 15...0 SEGMENT LIMET 15..0
BASE 31..24 Iol1|o|o| i rlo;c. lol P o

231630-84

1-48

Figure 4-15a. Intel386™ DX TSS and TSS Registers



INTEL CORP {UP/PRPHLS}

L7PE D

Intel386™ DX MICROPROCESSOR

313029282726252423222120191817161514131211109 8 7 6 § 4 3 2 1 0
St{tr 11101 10/j600011 1t1Jlo1 001 100[00000O0T 1
631001000 1t 1t 1 00O Of1 11111001 1111001
LT [ R U SR 1 T T I 2 T T T T AR N R T T S T
12710 0000000|00000D00C|DOO0O0D0DO0O0OG[(000OCGOOCOO

Tti1 111111

T stc.

1/Q Ports Accessible: 2 - 9, 12, 13,

15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 —> 60, 62, 63, 96 —» 127

o
231630-71

Figure 4-15b. Sample 1/0 Permission Bit Map

4.4.5 Call Gates

Gates provide protected, indirect CALLs. One of the
maijor uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
ed procedures (such as those which allocate memo-
ry, ot perform |/0).

Gate descriptors follow the data access rules of priv-
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor’'s DPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou-
tine. When an inter-level Intel386 DX call gate is ac-
tivated, the following actions oceur.

1. Load CS:EIP from gate check for validity
2. SS is pushed zero-extended to 32 bits
3. ESP is pushed

4. Copy Word Count 32-bit parameters from the
old stack to the new stack

5. Push Return address on stack

The procedure is identical for 80286 Call gates, ex-
cept that 16-bit parameters are copied and 16-bit
registers are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disable further interrupts (i.e. the IF
bit is set to 0), and Trap gates leave the interrupt
status unchanged.

4.4.6 Task Switching

A very important attribute of any muiti-tasking/muiti-
user operating systems is its ability to rapidly switch
between tasks or processes. The Intel38s DX direct-
ly supports this operation by providing a task switch
instruction in hardware. The Intel386 DX task switch
operation saves the entire state of the machine

{all of the registers, address space, and a link to the
previous task), loads a new execution state, per- &
forms protection checks, and commences execution |

in the new task, in about 17 microseconds. Like &

transfer of control via gates, the task switch opera-
tion is invoked by executing an inter-segment JMP
or CALL instruction which refers to a Task State
Segment (TSS), or a task gate descriptor in the GDT
or LDT. An INT n instruction, exception, trap, or ex-
ternal interrupt may also invoke the task switch op-
eration if there is a task gate descriptor in the asso-
ciated IDT descriptor slot.

The TSS descriptor points to a segment (see Figure
4-15) containing the entire Intel386 DX execution .
state while a task gate descriptor contains a TSS
selector. The intel386 DX supports both 80286 and
Intel386 DX style TSSs. Figure 4-16 shows a 80286
TSS. The limit of an Intel386 DX TSS must be great-
er than 0064H {002BH for a 80286 TSS), and can be
as large as 4 Gigabytes. In the additional TSS
space, the operating system is free to store addition-
al information such as the reason the task is inac-
tive, time the task has spent running, and open files
belong to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
Intel386 DX called the Task State Segment Register
(TR). This register contains a selector referring to
the task state segment descriptor that defines the
current TSS. A hidden base and limit ragister associ-
ated with TR are loaded whenever TR is loaded with
a8 new selector. Returning from a task is accom-
plished by the IRET instruction. When IRET is exe-
cuted, control is returned to the task which was in-
terrupted. The current executing task's state is
saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status
word (CRO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. if NT = 0, the IRET
instruction performs the regular return; when NT =
1, IRET performs a task switch operation back to the
previous task. The NT bit is set or reset in the follow-
ing fashion:
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Figure 4-16. 80286 TSS

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit wil!
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The Intel386 DX task state segment is marked busy
by changing the descriptor type field from TYPE 9H
to TYPE BH. An 80286 TSS is marked busy by
changing the descriptor type field from TYPE 1 to
TYPE 3. Use of a selector that references a busy
task state segment causes an exception 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see section 4.6 Virtual Mode).

The coprocessor’s state is not automatically saved
when a task switch occurs, because the incoming
task may not use the coprocessor. The Task
Switched (TS) Bit (bit 3 in the CRO) helps deal with
the coprocessor’'s state in a multi-tasking environ-
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ment. Whenever the Intel386 DX switches tasks, it
sets the TS bit. The Intel386 DX detscts the first use
of a processor extension instruction after a task
switch and causes the processor extension not
available exception 7. The exception handler for ex-
ception 7 may then decide whether to save the state
of the coprocessor. A processor extension not pres-
ent exception (7) will occur when attempting to exe-
cute an ESC or WAIT instruction if the Task
Switched and Monitor coprocessor extension bits
are both set (i.e. TS = 1 and MP = 1).

The T bit in the Intel386 DX TSS indicates that the
processor should generate a debug exception when
switching to a task. If T = 1 then upon entry to a
new task a debug exception 1 will be generated.

4.4.7 Initialization and Transition to
Protected Mode

Since the Intel386 DX begins executing in Real
Mode immediately after RESET it is necessary to
initialize the system tables and registers with the ap-
propriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256 bytes long,
and GDT must contain descriptors for the initial
code, and datd segments. Figure 4-17 shows the
tables and Figure 4-18 the descriptors needed for a
simple Protected Mode Intel386 DX system. It has a
single code and single data/stack segment each
four gigabytes long and a single privilege level PL =
0.

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CR0, R/M
instruction. This puts the Intel386 DX in Protected
Mode.

After enabling Protected Mods, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
which is especially appropriate for multi-tasking op-
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GDT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.
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Figure 4-17. Simple Protected System
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Figure 4-18. GDT Descriptors for Simple System

4.4.8 Tools for Building Protected
Systems

In order to simpiify the design of a protected multi-
tasking system, Intel provides a tool which allows
the system designer an easy method of constructing
the data structures needed for a Protected Mode
Intel386 DX system. This tool is the builder BLD-386.
BLD-386 lets the operating system writer specify all
of the segment descriptors discussed in the previous
sections (LDTs, IDTs, GDTs, Gates, and TSSs) ina
high-level language.

4.5 PAGING

4.5.1 Paging Concepts

Paging is another type of memory management use-
ful for virtual memory multitasking operating sys-
tems. Unlike segmentation which modularizes pro-
grams and data into variable length segments,
paging divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical
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structure of a program. While segment selectors can
be considered the logical “name” of a program
module or data structure, a page most likely corre-
sponds to only a portion of a module or data struc-
ture.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

4.5.2 Paging Organization

4.5.2.1 PAGE MECHANISM

The Intel386 DX uses two levels of tables to trans-
late the linear address (from the segmentation unit}
into a physical address. There are three compo-
nents to the paging mechanism of the Intel386 DX:
the page directory, the page tables, and the page
itself (page frame). All memory-resident elements of
the Intei386 DX paging mechanism are the same
size, namely, 4K bytes. A uniform size for all of the
elements simplifies memory allocation and realloca-
tion schemes, since there is no problem with memo-
ry fragmentation. Figure 4-19 shows how the paging
mechanism works.
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4.5.2.2 PAGE DESCRIPTOR BASE REGISTER

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al-
ways page aligned. Loading it via a MOV CR3, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CRO. {(See 4.5.4 Translation
Lookaslde Buffer).

4.5.2.3 PAGE DIRECTORY

The Page Directory is 4K bytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta-
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4-20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

TWO LEVEL PAGING SCHEME
31 22 12 0
——>| orectory | rasee | oreser | USER
LINEAR MEMORY
ADDRESS 12,
to} 1p 4
4 B
3 : ADDRESS
Intei386™ DX CPU J
31 0 »
3 0 + >
CRO | {
™\ . a
CR1 » >
Q/ PAGE TABLE
cR2 T
CR3 ROOT >
DIRECTORY
CONTROL REGISTERS
231630-67
Figure 4-19, Paging Mechanism
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Figure 4-20. Page Directory Entry (Points to Page Table)
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Figure 4-21. Page Table Entry (Points to Page)

4.5.2.4 PAGE TABLES

Each Page Table is 4K bytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4-21). Ad-
dress bits A12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper-
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi-
cal address. Page tables can be shared between
tasks and swapped to disks.

4.5.2.5 PAGE DIRECTORY/TABLE ENTRIES

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If
P = 1 the entry can be used for address transtation;
if P = 0 the entry can not be used for transiation.
Note that the present bit of the page table entry that
points to the page where code is currently being ex-
ecuted should always be set. Code that marks its
own page not present should not be written. All of
the oth<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>