
IRFN5210

MECHANICAL DATA Dimensions in mm (inches)

SMD 1 PACKAGE (TO-276AB)

Pad 1 – Source

Pad 2 – Drain Pad 3 – Gate

P-CHANNEL POWER MOSFET

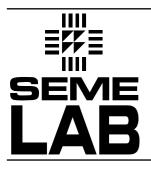
V _{DSS}	-100V
I _{D(cont)}	-31A
R _{DS(on)}	0.060Ω

FEATURES

- HERMETICALLY SEALED SURFACE MOUNT PACKAGE
- SMALL FOOTPRINT EFFICIENT USE OF PCB SPACE.
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- HIGH PACKING DENSITIES

Note: IRF5210SMD also available with pins 1 and 3 reversed.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)


V _{GS}	Gate – Source Voltage	±20V		
I _D	Continuous Drain Current $(V_{GS} = 0, T_{case} = 25^{\circ}C)$	-31A		
I _D	Continuous Drain Current $(V_{GS} = 0, T_{case} = 100^{\circ}C)$	-19A		
I _{DM}	Pulsed Drain Current ¹	-124A		
P _D	Power Dissipation @ T _{case} = 25°C	125W		
	Linear Derating Factor	1.0W/°C		
E _{AS}	Single Pulse Avalanche Energy ²	340mJ		
dv/dt	Peak Diode Recovery ³	4.0V/ns		
T _J , T _{stg}	Operating and Storage Temperature Range	–55 to 150°C		
TL	Package Mounting Surface Temperature (for 5 sec)	300°C		
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	1.0°C/W		

Notes 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%

2) @ V_{DD} = -25V , L = 1.9mH , Peak I_{AS} = -19A , V_{GS} = -10V, R_G = 25 Ω , Starting T_J = 25°C

3) @ I_{SD} \leq -19A , di/dt \leq -390A/ μs , V_{DD} \leq -100V , T_J \leq 150°C

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

IRFN5210

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

Parameter		Test Conditions		Min.	Тур.	Max.	Unit
	STATIC ELECTRICAL RATINGS						•
BV_DSS	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = -250μA	-100			V
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C			-0.11		
ΔT_{J}	Breakdown Voltage	I _D = -1mA	= -1mA				V/°C
R _{DS(on)}	Static Drain – Source On–State Resistance ¹	V _{GS} = -10V	I _D = -19A			0.06	Ω
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = -250μA	-2.0		-4.0	V
9 _{fs}	Forward Transconductance ¹	$V_{DS} = -50V$	I _{DS} = -19A	10			S(Ω)
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0$	V _{DS} = -80V T _J = 125°C			-25 -250	μΑ
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = -20V	-			-100	
I _{GSS}	Reverse Gate – Source Leakage	V _{GS} = 20V				100	nA
	DYNAMIC CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{GS} = 0$			2700		pF
C _{oss}	Output Capacitance	V _{DS} = -25V			830		
C _{rss}	Reverse Transfer Capacitance	f = 1MHz			470		
Qg	Total Gate Charge ¹	V _{GS} = -10V V _{DS} = -80V	I _D = -19A			215	nC
Q _{gs}	Gate – Source Charge ¹	V _{GS} = -10V	I _D = -19A			30	
Q _{gd}	Gate – Drain ("Miller") Charge ¹	V _{DS} = -80V	D			115	nC
t _{d(on)}	Turn–On Delay Time		N/ 40V/			28	
t _r	Rise Time	$V_{DD} = -50V$				150	1
t _{d(off)}	Turn–Off Delay Time	– I _D = -19Α – R _G = 2.5Ω				103	ns
t _f	Fall Time					116	-
	SOURCE - DRAIN DIODE CHARAC	TERISTICS					
I _S	Continuous Source Current					-31	A
I _{SM}	Pulse Source Current ²					-124	
V _{SD}	Diode Forward Voltage	I _S = -19A V _{GS} = 0	T _J = 25°C			-1.6	V
t _{rr}	Reverse Recovery Time	I _F = -19A	T _J = 25°C			290	ns
Q _{rr}	Reverse Recovery Charge	d _i / d _t ≤ 100A/μ	s V _{DD} ≤ -50V			2.1	μC
t _{on}	Forward Turn–On Time				Negligible		1

Notes

1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%

2) Repetitive Rating – Pulse width limited by maximum junction temperature.

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.