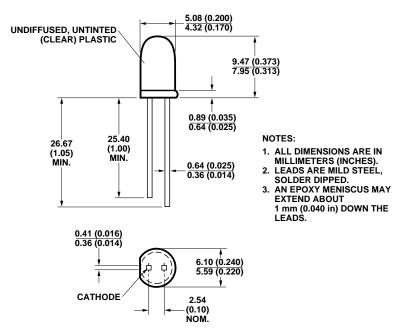


T-1³/4 670 nm High Radiant Intensity Emitter

Technical Data

HEMT-3300

Features


- High Efficiency
- Nonsaturating Output
- Narrow Beam Angle
- Visible Flux Aids Alignment
- Bandwidth: DC to 3 MHz
- IC Compatible/Low Current Requirement

Description

The HEMT-3300 is a visible, near-IR, source using a GaAsP on GaP LED chip optimized for maximum quantum efficiency at 670 nm. The emitter's beam is sufficiently narrow to minimize stray flux problems, yet broad enough to simplify optical

alignment. This product is suitable for use in consumer and industrial applications such as optical transducers and encoders, smoke detectors, assembly line monitors, small parts counters, paper tape readers, and fiber optic drivers.

Package Dimensions

Absolute Maximum Ratings at T_A = 25 $^{\circ}\!\mathrm{C}$

Power Dissipation	120 mW
(de	rate linearly from 50°C at 1.6 mW/°C)
Average Forward Current	30 mA
(de	erate linearly from 50°C at $0.4 \text{ mA/}^{\circ}\text{C}$)
Peak Forward Current	See Figure 5
Operating and Storage Temperatu	re Range55°C to +100°C
Lead Soldering Temperature	
	(1.6 mm [0.063 in.] from body)

Electrical/Optical Characteristics at $T_A=25\,^{\circ}\!\mathrm{C}$

Symbol	Description	Min.	Тур.	Max.	Units	Test Conditions	Fig.
I _e	Axial Radiant Intensity	200	500		μW/sr	$I_F = 10 \text{ mA}$	3, 4
K _e	Temperature Coefficient of Intensity		-0.009		°C-1	$I_F = 10$ mA, Note 1	
$\eta_{ m v}$	Luminous Efficacy		22		lm/W	Note 2	
$2\theta_{1/2}$	Half Intensity Total Angle		22		deg.	Note 3, $I_F = 10 \text{ mA}$	6
$\lambda_{ ext{PEAK}}$	Peak Wavelength		670		nm	Measured at Peak	1
$\Delta \lambda_{ ext{PEAK}} / \Delta T$	Spectral Shift Temperature Coefficient		0.089		nm/°C	Measured at Peak, Note 4	
t_{r}	Output Rise Time (10% to 90%)		120		ns	$I_{PEAK} = 10 \text{ mA}$	
$\mathrm{t_{f}}$	Output Fall Time (90% to 10%)		50		ns	$I_{PEAK} = 10 \text{ mA}$	
C_{O}	Capacitance		15		pF	$V_F = 0$; $f = 1 \text{ MHz}$	
BV_R	Reverse Breakdown Voltage	5.0			V	$I_{R} = 100 \ \mu A$	
$V_{ m F}$	Forward Voltage		1.9	2.5	V	$I_F = 10 \text{ mA}$	2
$\Delta V_F/\Delta T$	Temperature Coefficient of $V_{\rm F}$		-2.2		mV/°C	$I_{\rm F} = 100 \; \mu {\rm A}$	
$R\theta_{J-PIN}$	Thermal Resistance		260		°C/W	LED Junction to Cathode Lead.	

- 1. I_e (T) = I_e (25°C)exp [K_e(T 25°C)]. 2. $I_V = \eta_v I_e$ where I_v is in candela, I_e in watts/steradian and η_v in lumen/watt. 3. $\theta_{1/2}$ is the off-axis angle at which the radiant intensity is half the axial intensity. 4. λ_{PEAK} (T) = λ_{PEAK} (25°C) + ($\Delta\lambda_{PEAK}/\Delta T$) (T 25°C).

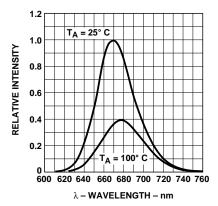


Figure 1. Relative Intensity vs. Wavelength.

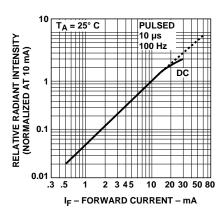


Figure 3. Relative Radiant Intensity vs. Forward Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings)

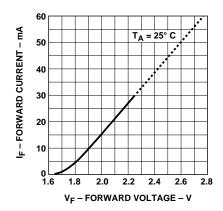


Figure 2. Forward Current vs. Forward Voltage.

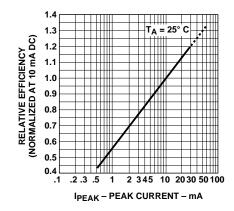


Figure 4. Relative Efficiency (Radiant Intensity per Unit Current) vs. Peak Current.

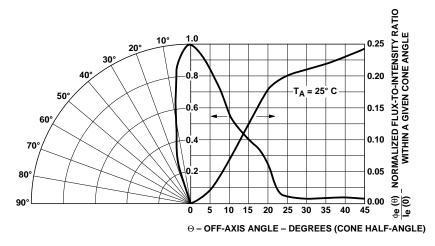


Figure 6. Far-Field Radiation Pattern.

