

AIGAAS INFRARED EMITTING DIODE

QED522/523

PACKAGE DIMENSIONS

NOTES:

- 1. DIMENSIONS ARE IN INCHES (mm).
 2. TOLERANCE IS ± .010 (.25)
 UNLESS OTHERWISE SPECIFIED.
- 3. TAB DENOTES CATHODE.

DESCRIPTION

The QED52X is an 880 nm AlGaAs LED encapsulated in a clear, peach tinted, plastic TO-46 package.

FEATURES

- Tight production E₀ distribution.
- Steel lead frames for improved reliability in solder mounting.
- Good optical-to-mechanical alignment.
- Narrow emission angle.
- Mechanically and wavelength matched to QSD72X series phototransistor.
- Plastic package color allows easy recognition from phototransistor.
- High irradiance level.

AIGAAS INFRARED EMITTING DIODE

ABSOLUTE MAXIMUM RATINGS (TA = 2	25°C Unless Otherwise Specified)
Storage Temperature	
Operating Temperature	-40°C to + 100°C
Soldering:	1000
Lead Temperature (Iron)	240°C for 5 sec. (2.3.4.5
Lead Temperature (Flow)	260°C for 10 sec. (2.3)
Continuous Forward Current	
Reverse Voltage	5.0 Volt
Power Dissipation	

ELECTRICAL CHARACTERISTICS (T _A = 25°C Unless Otherwise Specified) (All measurements made under pulse conditions.)							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	
Forward Voltage	V _F	_		1.70	V	$I_F = 20 \text{ mA}$	
Reverse Leakage Current	I _R	-		10	μΑ	$V_{R} = 5.0 \text{ V}$	
Peak Emission Wavelength	$\lambda_{\scriptscriptstyle P}$	_	880		nm	$I_F = 20 \text{ mA}$	
Emission Angle at ½ Power	Θ	_	±15		Degrees		
Radiant Incidence QED522	E,	0.10		0.45	mW/10° Cone	$I_F = 20 \text{ mA}^{(6,7)}$	
Radiant Incidence QED523	E,	0.20		_	mW/10° Cone	$I_F = 20 \text{ mA}^{(6,7)}$	

NOTES

- Derate power dissipation linearly 2.67 mW/°C above 25°C.
 RMA flux is recommended.
 Methanol or Isopropyl alcohols are recommended as cleaning agents.
 Soldering iron tip '¼e" (1.6 mm) minimum from housing.
 As long as leads are not under any stress or spring tension.
 Measurement is taken at the end of a single 100 μsec pulse.
 E_s is a measurement of the average apertured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E_s is not necessarily uniform within the measurement area.

1