FEATURES) *K’{“
m Eight full-duplex asynch@h&ﬁs channels supporting

data rates up to 64
Register-based lmer{ t acknowledges eliminate need
for separate mteuuat acknowledge signals

Automatic pi!%rtt;iahon scheme allows device to
respond tcfahb fiterrupt acknowledge with the highest
inter! Iiten‘upt pending (host-programmable)

Sophisti ted interrupt schemes
ectored Interrupts
air Share ™ Intefrupts

(=~ Good Data ™ Interrupts for improved throughput

— Simultaneous interrupt requests for three classes of
interrupts: Rx, Tx, and modem state changes

Independent baud-rate generators for each channel/
direction

Improved host/controller software interface
Generation and detection of special characters
On-chip flow control

— In-band (Xon, Xoff generation and detection)

— Out-of-band (DTR/DSR or RTS/CTS)

On-chip FIFO — 8 bytes each for Rx, Tx, and Status
Line break detection and generation

Multiple-chip daisy-chain cascading feature

0dd, even, forced, or no parity

Four modem/general-purpose I/O signals per channel
System clock up to 12.5 MHz

CMOS technology in 84-pin PLCC

CL-CD180

Data Book

Intelligent Octal-Channel
Asynchronous
Communications Controlier

OVERVIEW

The CL-CD180 is an |/O controller capable of
controlling eight full-duplex channels transferring
data at rates up to 64 kbps. The advantage of the
CL-CD180lies in its ability to move data efficiently
from the serial channels to the host. This resultsin
an order-of-magnitude improvement in system-
level throughput and a reduction in overhead on
the host CPU.

To increase the overall data throughput of the
system, the chip relies on a combination of fea-
tures. Most important are the buffers for transmit
andreceive data. Each serial channel has three 8-
byte FIFOs — one each for transmit, receive, and
receive exception status. The Receive FIFOs
have programmabile thresholds to minimize inter-
rupt latency requirements.

(cont. next page)

Functional

TxD
Block Diagram < \SERIAL |[«— RxD AN
<+ —» MODEM UL
SERIAL > TxD O
| | «—— RxD PAWY.
RESET* —» INTERFACE| T oo \\)
CSt —> LI 7.
DS* —» SERIAL
OLK RAM INTERFACE [:k?@
R/W* —» L TXD®
A[0:6) —» SERIAL **ﬂm
INTELMOT* —»| HosT I > INTERFACE “ﬁ 45 MODEM
IREQ3* «— BUS
IREG2* <] INTERFACE < | SERIALS ;’;g
IREQ1* «—] LOGIC INTERFACE ‘_/ > MODEM
DTADCT'%(! RISC FIRMWARE cal | 1@
-] PROCESSOR ROM pa— .? «— RxD
DB[0:7] <— THINTERFACE [T\ | nCrem
IACKIN® —» = > TxD
IACKOUT* «—{ ~fu4e | SERIAL RxD
&)) INTERFACE | _ MODEM
4 —» TXD
> SERIAL
N e <—— RxD
Y INTERFACE A MODEM

N May 1993

!

—= CIRRUS LOGIC

CL-CD180
Eight-Channel Serial Controller

Before beginning any new design with this device, please contact Cirrus Logic, Inc.,
for the latest errata information. See the back cover of this document for sales office

locations and phone numbers. This data sheet applies to Revision ‘C’ or later devices.

OVERVIEW (cont)

The CL-CD180 is based on a high-performance
proprietary RISC processor architecture developed
by Cirrus Logic specifically for data communication
applications. This processor executes all instruc-
tions in one clock cycle, and uses a register window
architecture to ensure zero-overhead context switch
for each type of internal interrupt.

The CL-CD180 is fabricated in an advanced CMOS
process. The chip’s high throughput, low power
consumption, and high level of integration permit
system designs with minimum parts count, maxi-
mum performance, and maximum reliability.

T -] Address TxD f—
-] - Data RxD jegt—
DTR" |
Address DSR* |— Channel 0
Decode & > cs* RTS* }—
Controt »{ Ds* cTs* fa—
Logie »1 RW cD* ft—
cPU - DTACK®
] IACKIN® -3 Channel 1
CL-CD180 [3% Chernsiz
ja—3» Channel 3
[Channel &
IREG3*
Interrupt a [« Channel 5
€ Convotier [€ IREQZ L€ Channel 6
[€—] REQ | Channei 7

Typical CL-CD180 Host CPU Interface

Average
Number

of
Instruction
Cycles

per
Character
(68000)

12

2698 CL-CD180

CL-CD180 Performance

CL-CD180 Features/Benefits

Unique Features
B Three 8-byte FIFOs per channel

W User-programmable receive FIFO interrupt threshold

B Data Interrupt for transferring mulitiple bytes of data

W Interrupt vectoring by device ID and type of
service required

B Automatic flow control

Benefits

Greatly reduces real-time interrupt response time
requirement of the host CPU. Simplifies system tasks in a
real-time multi-tasking environment.

Enables tailoring of interrupt conditions to different system
requirements. Speeds software development.

Reduces host time required to transfer data and significantly
improves system performance. ‘Frees-up’ bandwidth for
host to perform higher-level system tasks.

Permits direct jump into proper interrupt service routine,
improving overall system performance.

Real-time control of data flow reduces risk of losing valuable
data.

DATA BOOK

May 1993

CL-CD180 N
Eight-Channel Serial Controller ——
S i === CIRRUS LOGIC
Table of Contents
Section Page Section Page
1. PIN INFORMATION ...c.ceoeirerererenenenen 5 3.3.2 Un-Clocked Versus Clocked Bus Interface ...41
11 Pin DIagramo..eeveeeeeeeeeeeesseseeesnennn .5 34 Interface Examples ..., 43
1.2 Pin Assignments.... ...6 341 Interfacing to 80X86-Family Processors........ 43
1.3 Pin DeSCrIPHONS......oirveeerreieee e eeeeseeanaees 7 342 Interfacing to 680X0-Family Processors.......43
3.43 Interfacingtothe VMEBuUScccooeceeneee 44
2. FUNCTIONAL DESCRIPTION........ 10
24 IOOAUCHON .o 10 4 SERIALINTERFACES........cooooneu... 46
22 Internal Operation...............ccccveveeuereveeunnn. 12 41 Receiver Operation................ooovnn. 46
23 Service Request And Interrupt Operation.....17 ~ 4.1.1 Basic Operation ..., 46
2.3.1 Theory of Operation..............cc.ccorvverenrennences 17 41.2 Receive FIFO Operation.............ccccccceeo.e. 46
23.2 Internal Implementation of the Service 4.1.3 FIFO Timer Operations.............c..coooocoovnnenn. 48
Request LOgiC........cccorvmercceicrnc e, 41.4 Receive Service Requestsc.ccceneeee. 48
2.3.3 Priorities and Fair Share™ 415 Receive Good Data™ Service Request........ 49
24 Types of Service Requests 4.1.6 Receive Exception Service Request 49
241 Receive Service Requests 417 Typesof EIrors.........ccccviiiiiiiinniniciinnins 50
2.4.1.1 Receive Good Data™ 418 Typesof Exceptions...........ccccovrmnncivnnnnninns 50
2.4.1.2 Receive Exception............ccccccevniniiiinnnnns 4.1.8.1 Special Character Recognition.................... 50
24.2 Transmit Service Requests..........ccocoveeennne 26 4.1.8.2 Flow-Control Characters...........co.ccvevveevrenens 51
243 Modem Signal Change Service Requests....26 4.1.8.3 No New Data Received Time-out 53
2.4.3.1 Using Modem Pins as Input/Output 419 Programming NOteS..........cccovrrrerviincnenns 55
25 Implementing Service Requests.................. 42 Transmitter Operationcc.ccccoevevenene.n. 55
25.1 Method 1a — Full Interrupt — Type A, 421 Basic Operationc.cccveverereriiererennes 55
Three-Level Interrupt with Three-Leve! 422 FIFO OPeration............oooeeeeoverereememsen 56
252 azl::g\;ﬂ?gge FuII InterrutTeB """"""" 28 423 Transmit Service Requests.......................... 56
Three-Level Interrupt withpSing)I'g-Le\‘/eI 424 Spec!al Transmitter Comm.an.ds T 57
ACKNOWIBAGEceorrrecncereerereeneecenerneeennae 29 425 Special Character Transmission Via Send
253 Method 2b — Interrupt Interface, Single-Level Special Character Qommand
Interrupt with Single-Level Acknowledge30 4.2.6 Embedded Transmit Commands....
25.4 Method 3b — Polled Interface 3t 427 Sending Breakscooeee.
255 Comparison of |nterrupt and Polled Code 428 Sending Inter-Character Delays
SEQUENCES....ovveeenriiccrreieercce e eeeese e nes 33 429 Summary of Special Transmitter Commands 58
25.6 Cascading Service Requests with Multiple 43 Flow Control............occeenireceniinnreecn e
CL-CD1B0S......ooi it 34 431 Receiver Flow Control
257 Multiple CL-CD180s without Cascading 35 432 Receiver Hardware (Out-of-Band) Flow
258 Acknowledging Service Requests 35 Controb ..o 60
3, SYSTEM BUS INTERFACE AND :gi {F_!eceivgr Software (In-Band) Flow Control ...60
3. ransmitter Flow Control...............cccooeeeeneeee 62
SYSTEM CLOCK......onrnerrrrrrersssnenss 36 435 Transmitter Hardware (Out.of.Band) Flow
3.1 System Interface Considerations.................. 37 COMTOL ..ot eraen e 63
3.2 System Clock and Bit Rate Options.............. 37 43.6 Transmitter Software (In-Band) Flow
321 System ClocK.......coveiereiiieciieecee e 37 COMIOL ..ottt 63
322 BitRate Optionsccccoooiiiviniiiciiis 38 44 Modem Signals and General-Purpose 1/0O....66
3.2.3 Maximum Throughput Limitsccccooe..... 40 441 Generating Service Requests with Modem
33 CL-CD180 Basic Bus Interface and PinS.....ooiiii e 67
AdAressing........oooveeeeirrcece e 40 442 Using Modem Pins as
3.3.1 Intel® Versus Motorola® Interface Signals General-Purpose /O ... 67
and Addressing..........cocceeeveeecenrcinnieneecene 40 45 Testing the CL-CD180 — Loopback Tests68

DATA BOOK

N CL-CD180
—— Eight-Channel Serial Controller
—TY
——T CImUS lo GIC _________________ T E—
Table of Contents (cont)
Section Page Section Page
5. PROGRAMMINGc..ccociinvnnnene 70 6438 (Ss%%c;ial C;arg/cxr Register 1 (SCHR1)
. —_— e e 97
51 Types of Registersccccoiiviininnnnnnns 70 . ead/vvr :
52 AcCess DUty CYCI........ocooeovurerireverrneennns 70 649 %%‘ﬁicgggm:nzegmer 2 (SCHR2) o7
53 Accessing FIFOs Versus Other Registers 71 6.410 Soecial Character R t3$CHR3 """""
5.4 INANZANON ...oooroeeseoeseeeseenssersecre s 410 Special Character Register 3 ()
Giobal Intialisati ($0B) — Read/Writeccccvcenerenincencnnnes 98
55 obg nitial |zat|on......... e 6.4.11 Special Character Register 4 (SCHR4)
56 Service Request Initialization ($0C) — Read/WIitecoovrverrcriencneenns 98
57 Prescaler s e 6.4.12 Modem Change Register (MCR)
5.8 Channe} I_nmallzathn and Changes.............. 73 ($12) — Read/Writecc.oooovevercrerernnnn. 99
59 Transmitting Data...............cccoooiiiinnn, 74 §.4.13 Modem Signal Value Register (MSVR)
510 Receiving Dataccooeevvviniiiiiiiiis 74 ($28) — Read/Writeccooceericinciecne 101
6.4.14 Modem Signal Value Request-To-Send
6. DETAILED REGISTER (MSVRTS) ($29) — Write Oyc...... 102
DESCRIPTIONS ------------------------------ 75 6.4.15 Modem Signal Value Data_TerminaI_Ready
6.1 Register Map Quick Reference..................... 75 (MSVDTR) ($2A) — Write Only 102
6.2 Global Registersccccvviiiiiiiiniinnnnnen.
6.2.1 Miscellaneous Registers........... 7. ELECTRICAL SPE_ClFICATIONS' 103
6.2.2 Configuration Registersc..ccceeevrrrennnn. 741 Absolute Maximum Ratings 103
6.2.3 Service Request/interrupt Control 7.2 Recommended Operating Conditions 103
RegIStersccoeeviiimiccnrcie s 82 73 DC Electrical Characteristics 103
6.3 Indexed Indirect Registers...............cccoceeeee 85 74 index of Timing Information 104
6.3.1 R%c7eive gatad(‘gu'nt Register (RDCR) - 75 AC Electrical Characteristics 105
6 g‘ecz_i\; Poa Re’;i’;{é}"@sg """""""""""" 751 Clocked BUS INEMACe..........cccororsocrr, 105
e ($78) — REAd ONlYy..orrr oo 86 7.5.2 Un-Clocked Bus Interfacec..c...e. 115
6.3.3 Receive Character Status Register (RCSR) 8. PACKAGE DIMENSIONS —
($7A) —Read Onlycocvrvmerreeeeresrenens 86 84-Pin PLCC oo 123
63.4 Tansmit Data Register (TDR) ~ — 0 T e
($7B) — Write Only e s 87 9. ORDERING INFORMATION.......... 124
6.3.5 Endof Interrupt Routine Register (EOIR)
($7F) —erte Only 87 A. Appendix A — Diﬁerences Between
6.4 Channel Reglsters..... 88 Revision B and Revision C.......... 125
A o p el IER) gg A1 MSVDTR and MSVRTS — Separated
— Read/Writecccoeemeecenrensieennces .
6.4.2 Channel Command Register (CCR) A2 i:t?\:ref):)onA%T}-(? ;:,clie:sTeS OutpUtS ..o 122
($01) — Read/Writecocooevvrveiniiciins 89 . ve LIALR HOIEASE v
6.4.3 Channel Control Status Register (CCSR) A3 Register-Based Acknowledge.................... 126
($06) — Read Onlyccceviviiiiiiiiiiicinie, 95 A3.1 Receive Request Acknowledge Register
6.4.4 Receiver Bit Register (RBR) (RRAR) Address = 77 (hex) (Read Only),
($33) — Read OnlYocovvermereeeriereriecence 96 Transmit Request Acknowledge Register
6.45 Receive Time-out Period Register (RTPR) &Tcﬁam Qgg[j%ssst ;;iéﬁ&gesgg%’t‘z)'
($18)'— Rgad/Wrne s s e 96 (MMAR) Address = 75 (hex) (Read Only) .. 126
646 Receive Bit Rate Period Register - High Byte A.3.2 Service Request Configuration Register
EQEZTRH)R(%J,)VS‘T LowByte (RBPRL) ™™ (sRCR) Adaress = 66 (h6x) . 127
— Read/Writeccoevevrvieicene =00 ANEX) i
6.4.7 Transmit Bit Rate Period Register — HighByte ~ A.3.3 Service Request Status Register
(TBPRH) ($39) and Low Byte (TBPRL) (SRSR) Address = 65 (hex)ccovveins 128
($3A) — Read/Writecoovevviiiiiinnecs 97 A4 R/W* Hold Time After CS* and DS*............ 128

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

—= CIRRUS LOGIC

1. PIN INFORMATION

The CL-CD180 is available in a 84-pin plastic leaded chip carrier (PLCC) device configuration, shown
below.

1.1 Pin Diagram

o & = = —
a a Q o &
Q Q Qo Q ¢ 2
Y hoobhhd A NE -+~-8oo oo o=
CEERRGEL PG g ERPGREOR XL
mT?iTT?TTT>iTTiTTTi
CTS4* — == 12 74 f==-«—DS"* (RD")
DTR4'/CD4’ w—»-=313 O 73 =—-—A6
DSR4* — =14 72 =—-«—AS5
INTEUMOT* — =15 71 = A4
DTRSEL —»e==16 70 =-=—A3
DTACKDLY —m-=g417 69 pm=m-e—A2
N/C =18 68 = w— A1
N/C =19

67 =—a-=— AC
IACKOUT® «——e===x420

RTS5" wt—e=H21 CL'CD1 80 : :: BEB};

GND =22 84-Pin PLCC 64 = GND
CTS5* —»- =23 63 ==« DB5

DRT5*/CD5* - 24 62 ==-w— DB4
DSR5* — =425

61 ==« DB3
RTS6* w—e=26

60 =3 DB2
CTS6" — =27 58 f==mt-4—» DB1

DTR6*/CD6" wat—m =428
DSR6* — e e—=—q29
RTS7* w———e==q30

58 ==« DBO
57 p=—-<— CLK
56 f=——--— RESET*

55 == TEST
DTR7*/CD7* ~a—w—x32 54 f=—=x-«— |ACKIN*

CTS7* —m =431

DSR7*—m»==33
RxD0 —m=—={34
RxD1 —m=35
RxD2 —»=e==436
RxD3 ——-==137
RxD4 —e===438
RxD5s — =39
RxDs —===440
RxD7 — =141
TxDoO <—l=“ 42
=443

TxD1 -—e==]44
TxD2 w—e==d45
TxD3 -—e=46
TxD4 e—E==447
TxD5 -w—e=={48
TxDe ~—===49
TxD7 ~+—e==—{50
-y 519
=152
IREQa* —==53

Vce
IREQ1*
IREQ2*

DATA BOOK

— CL-CD180
—= CIRRUS LOGIC p—

!
T
O
1B
3
1
X
| »n
1]
)
(@)
o
1E
12
1

1.2 Pin Assignments

The following conventions are used in the table below: (*) denotes an active-low signal; | = Input,
IO = Input/Output, O = Output, and OD = Open Drain.

Symbol Pin # #of Pins Type Symbol Pin # # of Pins Type
General Communlcations Interface
CLK 57 1 | RxDI[0:7] 34:41 8 |
RESET* 56 1 | TxD[0:7] 42,44:50 8 o
NOTE: Both the CLK and-RESET* Pins have a vy, DSHIL07] 812610, 8 !
specification of 2.7 volts. A 1-KQ pullup, or use . 14,25,29,33
of a driver of logic families that are specifiedby ~ DTR[0:7]"/ 80,84,5,9, 8 1’0
their manufacturers as providing a Vg of at CD[0:7] 13,24,28,32
least 3.0 volts (such as advanced CMOS, ad- CTS[0:7]" 79,83,4,8, 8 I
vanced Schottky, or others) when driving a 12,23,27,31
micro-amp load, is recommended. RTS[0:7]* 78,82,3,7 8 0
Microprocessor Interface DTRSEL 1;21 26,30 ; |
A[0:6] 67:73 7 |
DB[0:7] 58:63,65:66 8 11O Miscellaneous
cs . ” ! ! N/C 18,19 2 -
DS* (RD*) 74 1 | Voo 143 2 _
RW" (WR') 5 ! ! GND 22,64 2 -
DTACK* 76 1 oD Test 55 1 _
DTACKDLY 17 1 |
INTEL/MOT* 15 1 |
Service Request Interface
IACKIN* 54 1 |
IACKOUT* 20 1 0]
IREQ3* 53 1 oD
IREQ2* 52 1 oD
IREQ1* 51 1 OD

DATA BOOK

CL-CD180

1.3 Pin Descriptions

i

——= CIRRUS LOGIC

Symbol Number Type Description

General

CLK 57 | SYSTEM CLOCK: Input for 1x clock signal.

RESET* 56 ! RESET: Resets CL-CD180. All internal registers are

cleared or initialized.

Microprocessor Interface

A[0:6]

67:73 |

ADDRESS: Address inputs, used to select the various inter-
nal registers of the CL-CD180.

DB[0:7]

58:63,65:66 1/O

DATA BUS /0.

cs*

77 |

CHIP SELECT: Must be low for all reads and writes to the
CL-CD180, but not for service acknowledgment cycles.
Must never be low when |IACKIN* is low.

DS* (RD*)

74 {

DATA STROBE: When the INTEL/MOT* Pin is low, this sig-
nal is used to control access to the CL-CD180, and data
hold time on the bus. When the INTEL/MOT* Pin is high, this
pin performs the same function for read cycles and service
acknowledgment cycles.

RW* (WR*)

75 |

READ/WRITE: When the INTEL/MOT* Pin is low, this signal
controls whether the current bus cycle is a read or a write.
When the INTEL/MOT* Pin is high, this signal strobes data
into the CL-CD180 on write cycles only.

DTACK*

76 oD

DATA TRANSFER ACKNOWLEDGE: Open-drain output.
This signal indicates the completion of an internal bus cycle
within the CL-CD180. It can be used to insert wait states by
the host. Note that the bus cycles are of fixed length, and if
the bus interface is correctly designed, DTACK" is not re-
quired to insert wait states.

DTACKDLY

17 |

DTACK DELAY: Controls the time of assertion of DTACK to
allow ‘fine tuning’ of the number of wait states inserted.
When low, DTACK asserts earlier than when high.

May 1993

R — 7
DATA BOOK

!

——== CIRRUS LOGIC

1.3 Pin Descriptions (cont.)

Symbol Number Type

CL-CD180
Eight-Channel Serial Controller

Description

INTEL/MOT* 15 |

INTEL/MOT*: Selects either of two bus-handshake styles.
When low, DS* acts as Data Strobe, and the R/W* Pin acts
as Read/Write. When INTEL/MOT"* is high, the two pins act
as RD* Strobe and WR* Strobe. INTEL/MOT* does not af-
fect the timing of the bus interface, only the logical meaning
of these two pins. INTEL/MOT* may be tied either high or
low, but should not be changed during regular operation.

Service Request Interface

ACKNOWLEDGMENT (SERVICE) INPUT: Must be low
only during service acknowledge bus cycles. Must never be
low when CS* is low.

ACKNOWLEDGMENT (SERVICE) OUTPUT: Goes low
whenever the CL-CD180 recognizes a valid acknowledg-
ment is occurring {either hardware- or register-based) that is
not for the CL-CD180. In daisy-chain applications, the
IACKOUT* should be connected to the IACKIN* of the next
CL-CD180.

RECEIVE REQUEST OUTPUT: Asserts whenever the
CL-CD180 has a receive condition requiring service. Ne-
gates whenever a service acknowledgment of the receive
type occurs.

TRANSMIT REQUEST OUTPUT: Asserts whenever the
CL-CD180 has a transmit condition requiring service. Ne-
gates whenever a service acknowledgment of the transmit
type occurs.

IACKIN* 54 I
IACKOUT* 20 O
IREQ3* 53 OD
IREQ2* 52 oD
IREQ1* 51 OD

MODEM REQUEST OUTPUT: Asserts whenever the
CL-CD180 has a modem signal change condition requiring
service. Negates whenever a service acknowledgment of
the modem signal change type occurs.

Communications Interface

RxDI[0:7]} 34:41]

RECEIVED DATA INPUTS.

TxD[0:7] 42,44:50 O

TRANSMITTED DATA OUTPUTS.

DATA BOOK

CL-CD180

1.3 Pin Descriptions (cont.)

Symbol

Number Type

!

——= CIRRUS LOGIC

Description

NOTE: The following ‘modem control’ signals are named arbitrarily. The CD* Signal is a general-purpose input. The
DSR* and DTR* Signals can be used by the CL-CD180 receiver for handshake or flow control, or may be
used as general-purpose inputs and outputs. The RTS* and CTS" Signals can be used by the CL-CD180
transmitter as handshake or flow control, or may be used as general-purpose inputs and outputs. In all
cases, the CL-CD180 can be programmed to generate interrupts whenever the input pins change state in
a specified direction.

DSR*[0:7] 81,2,6,10, I DATA SET READY INPUTS: May be used to control the
14,25,29,33 Receive Shift Register for flow-control purposes, or may be
used as general-purpose inputs.

DTR*[0:7)/ 80,8459, 1O DATA TERMINAL READY /CARRIER DETECT:

CD*[0:7] 13,24,28,32 Depending on the state of the DTRSEL input, these pins are
either DTR outputs or CD inputs. When selected as DTR
(DTRSEL = high), and if enabled by MCORY1, they are used
by the receiver to indicate that the Receive FIFO has ex-
ceeded a user-defined threshold; in other words, as a signal
to flow-control the remote sender. These pins may also be
used as general-purpose outputs. When selected as CD
(DTRSEL = low), they become CD inputs. They can also be
used as general-purpose inputs.

CTS*[0:7] 79,83,4,8, | CLEAR-TO-SEND INPUTS: Used by the transmitter as a

12,23,27,31 permission-to-send, or may be used as general-purpose in-
puts.

RTS*[0:7] 78,82,3,7, 0 REQUEST-TO-SEND OUTPUTS: Used by the transmitter

11,21,26,30 to indicate that there is data to be sent. May be used as gen-
eral-purpose outputs.

DTRSEL 16 | DTR SELECT: This input sets the mode for the DTR*/CD*
pins. When DTRSEL is high, the DTR*/CD* pins implement
the DTR* output; when low, the DTR*/CD* Pins become CD*
inputs.

Miscellaneous

N/C 18,19 - NO CONNECT: Make no connections to these pins.

VCC 1,43 - +5V.

GND 22,64 - GROUND.

TEST 55 - TEST: This is a test pin and should be connected to ground.

EE— 9
DATA BOOK

CIRRUS LOGIC
2. FUNCTIONAL DESCRIPTION

2.1 Introduction

The CL-CD180 I/O coprocessor controls eight full-
duplex channels that transfer data at rates up to 64
kbps. The CL-CD180 moves data efficiently be-
tween the serial channels and the host, resulting in
a great improvement in system-level throughput
and a reduction in overhead on the host CPU. This
improvement is obtained by reducing the number
of service requests (interrupts) the host must re-
spond to and reducing the complexity and time re-
quired to handle each service request.

The CL-CD180 relies on a combination of features
to achieve reduction in the number and complexity
of service requests. Most important are the buffers
for transmit and receive data. Each serial channel
has three 8-byte FIFOs — one each for transmit,
receive, and receive-exception status. The Re-
ceive FIFOs have programmable thresholds to
minimize interrupt latency requirements. The vec-
tored service requests and the Good Data™ Inter-
rupt allow the host system to immediately transfer
data upon beginning processing of a service re-
quest, without tedious checking of flags and error
conditions.

The CL-CD180 is based on a high-performance,
proprietary RISC processor architecture devel-
oped by Cirrus Logic specifically for data commu-
nications applications. The CL-CD180 processor
executes all instructions in one clock cycle, and it
uses a register window architecture to ensure
zero-overhead context switch for each type of in-
ternal interrupt. The instruction set of this proces-
sor is optimized for bit-oriented tasks that,
combined with instantaneous response to sending
or receiving one bit, allow highly efficient process-
ing of characters. All firmware for the CL-CD180
processor is contained in an on-chip ROM, and re-
quires no user programming.

The CL-CD180 processor is assisted in its task by
specialized peripheral logic. Serial data transmis-
sion and reception is handled by ‘bit engines’.
Each channel has a bit engine for transmitting and
another for receiving. While each engine handies
all bit-leve! timing, bit-to-character assembly is
done in firmware. Bits are passed to the CL-CD180
processor by internal interrupts over a special bus

CL-CD180

dedicated to this purpose. Special internal-inter-
rupt context hardware reduces overhead on inter-
nal interrupts to zero by pointing to the correct
register window for every possible context, and a
unique Global Index Register eliminates address
calculations by always pointing to the current
channel. External service requests to the host sys-
tem are also hardware-assisted. There is a queue
for each of the three classes of external service re-
quests, and the request/acknowledgment mecha-
nism is entirely in hardware to minimize response
time.

The CL-CD180 processor assembles bits into
characters, checks parity and formatting parame-
ters, and stores the data in the FIFOs as required.
FIFOs are maintained as RAM-based structures,
and both the local CL-CD180 processor and the
host access them via Pointer Registers by an In-
dexed Addressing Mode.

The CL-CD180 communicates with the host via
service requests and service acknowledgments.
Service requests can be handled either as inter-
rupts or by polling. Regardless of the method used,
the CL-CD180 has features to minimize both the
number of requests to be serviced and the time re-
quired to service them. The number of service re-
quests is reduced by the FIFOs since a service
request is required only every eight characters. To
reduce the time required per request, the
CL-CD180 supplies separate vectors for four dif-
ferent types of service requests. This reduces the
time required by the host CPU to determine what
action to take. For example, there is a unique vec-
tor for Good Data so that the host wastes no time
checking status bits for error conditions. If there is
an error condition, the CL-CD180 supplies a
unique vector pointing to the error-handling rou-
tine. Other vectors report transmit status and
modem signal change.

Service requests to the host system are imple-
mented on the CL-CD180 by three hardware ser-
vice request state machines. Each machine has
the ability to ‘queue-up’ multiple requests. The
state machines are designed to offer the fastest re-
sponse possible. Whenever the CL-CD180 pro-
cessor determines that a condition needs a
service request, it queues the request with the ap-
propriate state machine. The state machine posts
the external request, monitors acknowledgment

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

cycles from the host, and informs the CL-CD180
processor when a valid service acknowledgment
has been completely serviced. This allows the
CL-CD180 to correctly maintain the internal con-
text for processing the channel being serviced.

Because the CL-CD180 processor processes
every character sent or received, features such as
Automatic Flow Control and Special Character
Recognition are easily implemented. This reduces
the processing burden on the host system. Both In-
Band (Xon, Xoff) and Out-of-Band (RTS/CTS,
DTR/DSR) Flow Control Modes are supported. For
In-Band Flow Control, the CL-CD180 automati-
cally starts and stops its transmitter when the re-
mote unit sends flow-control characters. The
CL-CD180 makes it easy for the local host to fiow-
control the remote via the ‘Send Special Character’
commands. For Out-of-Band Flow Control, the
transmitter will optionally assert RTS and monitor
CTS for permission to send, and assert/negate
DTR when the Receive FIFO reaches a user-defin-
able threshold. DSR may be used to gate the re-
ceiver on and off. Together, the In-Band and Out-
of-Band features allow the data flow to be con-
trolled in real time with minimum or no host inter-
vention, and they also prevent loss of data.

Systems with multiple CL-CD180s are easily im-
plemented, with no external glue, via a daisy-chain
scheme. A Fair Share feature ensures equal ac-
cess for all service requests, both within one
CL-CD180 and across multiple devices. Alter-
nately, multiple CL-CD180s may be operated in
parallel as independent devices.

Serial channels on the CL-CD180 are entirely in-
dependent of one another. Any channel may be
programmed to a combination of features regard-
less of the state of other channels. Bit-rate gener-
ators are programmed by loading a divisor value,
so the transmitters and receivers can each operate
at any standard or non-standard data rate.

May 1993

i

——== CIRRUS LOGIC

The CL-CD180 can detect the received line-break
condition, send break characters of any length,
and transmit delays. This is done via transmit com-
mands embedded in the Transmit Data Stream.
The CL-CD180 can also be programmed to detect
user-defined special characters and generate a
special service request to the host. Parity checking
is performed automatically, but can be overridden
by the host to force parity errors for test purposes.
Character length and Stop Bit length are also pro-
grammable per-channel.

Modem pins on the CL-CD180 are general-pur-
pose, i.e., they are not hard-wired into the UART
functions. If modem pins are not needed to inter-
face to actual modems, they can be used as gen-
eral-purpose /O pins. In either case they are
readable and writable directly by the host system.
In addition, the CL-CD180 can be programmed to
monitor levels on modem input pins and generate
service requests to the host upon detecting a
specified change.

The CL-CD180 is fabricated in an advanced
CMOS process. lts high throughput, low-power
consumption, and high level of integration permits
system designs with minimum parts count, maxi-
mum performance, and greater reliability.

There is a significant difference between the
CL-CD180 and conventional dumb UARTS; the
CL-CD180 is more efficient and is truly intelligent,
even when operating in a polied environment. Sys-
tems built with the CL-CD180 interface between
the host and the I/O device at a higher level than
systems built with conventional UARTSs. For exam-
ple, with a dumb UART, the host must test each
channel for presence of data, a process that is
time-consuming. With the CL-CD180, the host
queries the entire serial I/O subsystem for the
presence of data. If data is present, the CL-CD180
determines which channel it is on, and whether it
is good or erroneous. Thus, using the CL-CD180,
the host-peripheral interface is easier to imple-
ment, faster, and more efficient.

DATA BOOK

i

—= CIRRUS LOGIC

2.2 Internal Operation

The internal architecture of the CL-CD180 is
shown in Figure 2—1. The foundation of the design
is a custom-designed CPU that Cirrus Logic has
developed especially for this application. This CPU
is optimized for bit-oriented tasks associated with
UART functions, and it has a set of registers for
each channel, arranged in a register window archi-
tecture. These registers and the ALU are eight bits
wide. The CL-CD180 processor has a 16-bit in-
struction word that it retrieves from an on-chip
ROM. Every instruction is one word long and exe-
cuted in one-clock cycle.

Whenever an internal interrupt occurs (from a bit
engine), the CL-CD180 processor automatically
switches context to that channel’s block of regis-
ters. No time is lost in saving any machine state.
The CL-CD180 processor executes the instruc-
tions necessary to handle that bit (typically three to
six instructions) and then returns to the context it
was in prior to the internal interrupt. All internal in-
terrupts are at the same priority level; the interrupt
handler block ensures Fair Share access across
channels.

Each channel’s serial interface logic consists of a
Receive-bit Engine, a Transmit-bit Engine, a Re-
ceive-baud-rate Generator, a Transmit-baud-rate
Generator, and a Timer. The Receive-bit Engine
samples the state of the RxD Pin at the time indi-
cated by the Receive-baud-rate Generator, and it
reports this value to the CL-CD180 processor as
an interrupt. The Transmit-bit Engine works in a
similar manner, but with a slight difference. At the
baud rate tick, it outputs the next bit and generates
an interrupt to the CL-CD180 processor requesting
the following bit.

The baud-rate generators are 16-bit dividers that
operate from a master clock, which is the system
clock divided by 16. All baud-rate generators are
independent, so a channel can send and receive at
any speed. In addition to the baud-rate generators,
there are two channel timers for each channel.
One is an 8-bit divider, operating off the master
prescaler timer tick. This timer is used to time-out
partially full FIFOs to avoid 'stale’ data. The other

CL-CD180
Eight-Channel Serial Controller

is used to time embedded delays in the Transmit
Data Stream.

All eight channels are continuously scanned by in-
ternal logic that generates interrupts to the
CL-CD180 processor in a ‘fair' manner. This Fair
Share Interrupt feature is the same as the mecha-
nism used to share service requests across multi-
ple devices. Whenever two or more channels are
contending for interrupt service, the channel that is
serviced first will not assert again until all other cur-
rently pending channels have been serviced. This
prevents a fast, 64-kbps channel from ‘hogging’
service from a slow 1200-bps channel, yet it allows
the faster channel the additional service it needs to
support its higher speed. This allows more overall
throughput than a ‘round-robin’ or an ‘equal-ac-
cess’ method would provide.

Service requests for the host are handled by fast,
dedicated logic on each of the three levels pro-
vided. Whenever the CL-CD180 processor detects
a condition requiring external-host service, it
queues the request with the service-request ma-
chine for that level. This machine asserts the Ex-
ternal Request Pin, and it watches for a service
acknowledgment of the same level. When a ser-
vice acknowledgment is sensed, the machine au-
tomatically provides the vector to the host and sets
up the internal context of the CL-CD180 for ser-
vice. Upon completion of the service, the machine
restores the normal context. The queue for service
requests is two deep, so in a busy system there
can be another request immediately pending when
the first one is completed. This method avoids any
delay between requests, and improves overall effi-
ciency.

Modem /O signals are implemented as ‘conven-
tional input-output circuits, readable, and writable
by either the on-chip or the host CPU. This allows
maximum flexibility in using these signals either in
the conventional way, or for any other I/O function
desired. When the CL-CD180 processor is using
these pins to implement flow-control functions, it
reads them under software control and imple-
ments the function that way. There is no direct
hardware association between the modem pins
and the serial I/O hardware.

12 ———
DATA BOOK

May 1993

CL-CD180
Eight-Channel Serial Controller

i

—= CIRRUS LOGIC

Receive Bit Engine [€— RxData
Transmit Bit Engine [~ TxData
— Dual-Baud Rate
Generators
Receive Bit Engine [®€— RxData
IREQ3" «— RECEIVE T it Bit Engine | TxData
IREQ2" «— SERVICE
IREQ 1" -—] M requesT [[DualBaud Rate
QUEUE Generators
JACKOUT*
IACKIN"—™ T
service | [TRANsMT Receive Bit Engine [€— RxData
SERVKCE
REL%léE'g‘T H request ROM Transmit Bit Engine [TxData
QUEVE H Dual-Baud Rate
Generators
MODEM N B
1 SE!%E'C;' cpu | Receive Bit Engine [€— RyData
QUEUE 1 Transmit Bit Engine | TxData
g & 4 DualBaud Rate
ADR[0-6] z3 Generators
DATA[0-7] < 2
cS* —» £T
g/sw_) L1 1 Receive Bit Engine |&€— RxData
DTACK" €—] gys RAM Transmit Bit Engine | TxData
INTELMOT* — o] 'NTERFACE] ™ DuarBaud Rate
RESET* » Generators
CLK—p]
- PER
CHANNEL i i i
N 2 TIMER R Bit Engine [€— Rxpata
Transmit Bit Engine |- TxData
|—» RTS* |4 Dual-Baud Rate
€ CTS* Generators
|—» DTR'/CD"
|«—— DSR*
1/0 PINS
(MODEM i Recsive Bit Engine
CoNTROL) [::::gz g [€ RxData
€ 4lines Transmit Bit Engine |- TxData
4 ines | | DuarBaud Rate
y Generators
[€2 4 lines
[€2 4 lines
Receive Bit Engine j€— RyData
Transmit Bit Engine |—» TxData
L{ DualBaud Rate
Generators
514180-1
Figure 2-1. Internal Block Diagram
May 1993 —— D— - 13
DATA BOOK

!

——== CIRRUS LOGIC

The CL-CD180 workload can be divided into two
categories:

o Bit-to-character conversion (and vice versa) —
the ‘traditional’ UART function.

e Character-level processing such as flow control,
FIFO management, and host interface functions.

The CL-CD180 internal processor handles all
these tasks in firmware. A foreground/background
scheme is used: foreground for internal bit-engine
interrupts and background for everything else. This
internal structure represented in Figure 2-2,
shows how the foreground communicates with the
background. Foreground code handles bit-to-char-
acter assembly for receive, and character-to-bit
disassembly for transmit. In either case a Holding
Register, together with a Full/Empty Bit, acts as
the ‘gateway’ between the interrupt-driven fore-
ground and the polling-loop background code.

The background code executes the polling loop as
shown in Figure 2-3. After power-on reset, the
software runs continuously in an inner and an
outer loop. Lower-priority tasks are handled in the
outer loop, and higher-priority tasks are handled in
the inner loop. The highest-priority tasks are bit
events, which are handled by foreground (i.e., in-
terrupt-driven) code.

The inner loop executes eight times as often as the
outer loop. It checks each channel’s full/empty bits
to sense if another character needs to be moved.
It first checks receive, and if there is a character to
be moved, it is moved and execution moves on to
the next channel. If receive data needs no pro-
cessing, then transmit is checked. This mechanism
gives a slightly higher priority to receive than to
transmit; and it is desirable because missing a re-

CL-CD180
Eight-Channel Serial Controller

ceive character is a fatal error and being late in
transmitting one is not an error. (The effect of this
may be observed by programming the CL-CD180
for higher-than-rated serial baud rates and provid-
ing a source of receive traffic with virtually 100-per-
cent loading. As the CL-CD180 is heavily loaded,
it will leave short gaps between transmit charac-
ters because the firmware is following the ‘receive’
path through the code. Refer to Section 3.2.3 for
details on maximum performance and maximum
line speed).

After eight passes through the inner loop (i.e.,
checking all eight channels for data), one pass is
made through the outer loop. This pass checks
one channel for host commands (such as ‘Send
Special Character’), timer functions, and a condi-
tion that requires posting an external service re-
quest (e.g., Receive FIFO full, Transmit FIFO
empty, modem signal change, etc.). If required, the
firmware posts the service request within the
queue of the appropriate service-request logic. It
then continues normal operation, until the host re-
sponds to the service request. After a single pass
through the outer loop, eight passes through the
inner loop are again made. -

In most cases the CL-CD180 checks the appropri-
ate bit in RAM to determine which options are en-
abled and modifies its processing accordingly.
Some control bits must be interpreted and moved
by CL-CD180 firmware from their location in option
bit registers to other locations in the chip. There-
fore, the host must notify the CL-CD180 when
these bits are modified. The CL-CD180 will then
alter the channel as commanded. Refer to
Section 4.2 for details on channel command func-
tions.

DATA BOOK

CL-CD180

Eight-Channel Serial Controller

Receiver
FIFO

May 1993

!

|

CIRRUS LOGIC

r Receive Data Count Register l

Receive

Status

FIFO

A

-

I Recelver Holding Register

L1

|

Receiver Shift Register

Full/

Empty

Bit

RECEIVER

Transmitter
FIFO

Background Code:

H.R.-to-FIFO transter, flow
control, other features

(Polling Loop)

J

r

_

Foreground Code:
Bit Assembly,
S.R.-to-H.R. transter

(Interrupt-Driven)

~

J

DTR DSR
Out In

-

N
;

I Transmitter Holding Register

i

HEEENEE

Tranmsitter Shift Register

Fulv/
Empty
Bit

TRANSMITTER

_

Background Code:

FIFO-to-H.R. transfer, flow

control, other features
(Polling Loop})

J

r

.

Foreground Code:
Bit Disassembly,
H.R.-to-S.R. transfer

(Interrupt-Driven)

RTS CTsS
Out In

514180-2

Figure 2-2. Foreground/Background Internal Structure

15
DATA BOOK

!

16

——t

Power-On
Reset

CIRRUS LOGIC

initialization

CL-CD180

Eight-Channel Serial Controller

l

For Quter_Loop

> i=1to 8

Host Command
Processing

Timer Functions

I

For Inner_Loop

Y

j=1to8

It
Rcv_Hid_Reg
= full

If
Xmt_Hid_Reg
= empty

N

»~
Global
(Software)
Reset

Process Receive Char;

check all special features; —

place in FIFO

Process Transmit Char;
check all special features;
fetch from FIFO

Process Recelve Interrupt

Receive Service
Request Scanning

]

Transmit Service
Request Scanning

]

Modem Service
Request Scanning

O

Figure 2-3. Internal Operation Flow Chart

DATA BOOK

514180-3

CL-CD180
Eight-Channel Serial Controller

2.3 Service Request And Interrupt
Operation

The CL-CD180 enhances design efficiency be-
cause it is an intelligent device that more closely
resembles an add-in controller board than a mere
collection of TTL. Conventional UARTs are basi-
cally passive, ‘dumb’ logic. For example, when
polling a device for channels requiring service,
each channel is not individually tested. Because of
this, certain restrictions are placed on when and
how FIFOs are accessed. The CL-CD180 proces-
sor must determine what the host is doing, and
when to manage the queue of events correctly and
efficiently.

NOTE: Any revision after B of the CL-CD180 has had
additional features added to enhance its useful-
ness. These new features relate to interrupt
processing and are controlled by two new reg-
isters: the Service Request Control Register
(SRCR) and the Service Request Status Regis-
ter (SRSR). Please see the descriptions in this
section and the register descriptions in
Section 6 for complete details.

Interrupt-Driven Versus Polled

Choosing the software interface, interrupt-driven
versus polled, is critical to overall system perfor-
mance. This choice also affects how the software
is written. In hardware implementation, a program-
mer has a choice of Mixed Mode, i.e., when to poll
versus when to be interrupt-driven. Mixed-mode
Operation allows a programmer to optimize the ef-
ficiency of the system according to changing
needs. The advantages of each method are dis-
cussed in Section 2.5.

2.3.1 Theory of Operation

The CL-CD180 has three independent service re-
quest levels, one for each of the three categories
— Receive, Transmit, and Modem Signal Change.
The priority of these lines is not fixed, but may be
determined in one of the following three ways:

o It may be set within the CL-CD180 by the
AutoPriority Option Bits.

e A system designer may assign priorities by the
manner in which the three service request lines
are connected to the host interrupt controller.

e Under software control, the host system may de-
fine and redefine the order of service requests.

May 1993

!

—= CIRRUS LOGIC

The Service Request interface to the host is imple-
mented with five signals — IREQ1*, IREQ2",
IREQ3*, IACKIN*, and IACKOUT*. IREQ1*,
IREQ2*, and IREQ3* are asserted when a service
request is pending; IACKIN* is asserted during
service-acknowledgment cycles; and IACKOUT* is
used in multiple—CL-CD180 designs to share ser-
vice requests and daisy-chain acknowledgments.

Whenever the CL-CD180 processor determines
that one or more channels need service from the
host, it loads the appropriate service-request state
machine with the information about the type of re-
quest. The service-request state machine for that
level will then assert its request signal. Note that ali
three request signals can be active at the same
time. At this point, the CL-CD180 has not deter-
mined which request should be handled first — it
simply asserts any and all lines, as required by the
status of various channels. (This is true even if the
AutoPri Option is enabled; AutoPri takes effect
when a service request is acknowledged, and at
that time the CL-CD180 determines which is the
most important request.)

The host, after noticing that one or more of the
three service request pins are active — either be-
cause the host was interrupted or it polled an ex-
ternal or internal CL-CD180 status register —
decides which of the requests (if more than one is
active) it will service first. The host begins the ser-
vice operation by issuing a Service Acknowledge
Cycle. The purpose of this cycle is to cause the
CL-CD180 to set up its internal state for that type
of request. (Note that if AutoPri is set, the host
need not determine which level of service request
to acknowledge; it simply acknowledges the
CL-CD180 request and the CL-CD180 will return
the vector for the highest-priority active request.)

If AutoPri is not being used, the CL-CD180 needs
to be informed which one of the three possible
pending requests the host wants to acknowledge.
There are two different ways CL-CD180 can be in-
formed of this — hardware and software.

The hardware method is based on the value in the
address bus. The CL-CD180 determines the type
of request being acknowledged by the value
placed in the address bus during the acknowledge
cycle. This is the method used by Motorola®-family
processors. The host places the level of interrupt

DATA BOOK

!

—== CIRRUS LOGIC

being serviced on the low-order address bits dur-
ing an interrupt acknowledgment cycle. When the
host performs a Service Acknowledge Cycle, the
CL-CD180 compares the value on the address bus
with the three unique values stored in three inter-
nal registers — the Priority Interrupt Level Register
1 (PILR1) for modem requests, the Priority Inter-
rupt Level Register 2 (PILR2) for transmit requests,
and the Priority Interrupt Level Register 3 (PILR3)
for receive requests. These values are set by the
user at system initialization. A match will occur on
only one of these registers, and this informs the
CL-CD180 of the type of request being acknowl-
edged.

In most circumstances the address bus should not
have a value that does not match one of the three
PILR values during an acknowledgment cycle.
This will cause the CL-CD180 to not recognize that
any bus cycle is occurring, and it will not assert
DTACK®, or terminate the cycle, or take any other
action. Doing this will not affect the CL-CD180, but
the system must have some other provision to ter-
minate the bus cycle. If, for example, the
CL-CD180 shares an interrupt level with another
device, different values on the address bus should
be used to control responses to an acknowledg-
ment, but the bus cycle should terminate in a us-
able way.

Service acknowledgments can also be performed
by software. The host simply reads one of three
Request Acknowledge Registers, and the
CL-CD180 performs as if a hardware service ac-
knowledge cycle had been executed.

Regardless of the method of acknowledgment
used, within the CL-CD180, each service request
state machine makes the following determination:
if it has an internal service request pending, and
there is a service acknowledge of the same type, it
asserts its internal-acknowledge-accepted signal
back to the Service Request Controller logic, ne-
gates the Service Request Output Pin, and holds
its acknowledge-out daisy chain in a negated
state. It also drives the value in the Global interrupt
Vector Register (GIVR) onto the data bus, for the
host to read as part of the Service Acknowledge
Cycle. The GIVR value placed on the bus during
the Service Acknowledge Cycle serves two pur-
poses. The least-significant three bits of GIVR indi-
cate which of the four types of service requests are

CL-CD180

occurring. The upper-five bits are user-defined and
serve to identify, in daisy-chained CL-CD180 sys-
tems, which of the multiple CL-CD180s is active.

If the service request state machine does not have
a service request pending, and there is a software
acknowledgment or address bus match, it passes
the service acknowledgment down the chain by
asserting IACKOUT™. If there is no match, the state
machine remains idle.

If a service request is pending and the Receive
Service Request is to be handled, the CL-CD180
is notified because the three PILR registers have
different values in them; therefore, only one match
(receive service, in this case) occurred. The inter-
nal grant from the service request state machine
causes the receive service type code and active
channel number (previously stored at the time the
request was posted by the CL-CD180 processor)
to be pushed onto the service request stack. This
automatically causes the FIFO pointers to be set
up for the active channel, with no host intervention.

The host, at this point, has all the information
needed to handle the service request. It deter-
mines the exact type of service being requested
(Transmit, Receive Good Data, Receive Excep-
tion, or Modem Signal Change) and which of the
multiple CL-CD180s is requesting service. It gets
the channel number by reading the Global Inter-
rupting Channel Register (GICR) and then pro-
ceeds to service the request. At the completion of
the service, the host performs a dummy write to
the CL-CD180 End-Of-Interrupt Register (EOIR),
that causes the CL-CD180 to exit its internal ser-
vice request state by popping the service request
stack. At this time the CL-CD180 is ready to be
serviced on another of its outstanding requests. If
another request of the same level is pending, two
clock periods after the write to EOIR are required
for the CL-CD180 to re-assert the request line.

Because the CL-CD180 has a service request
stack, it can support nested-service requests. For
example, the host can be in middle of a Transmit
Service Request, detect that Receive Service Re-
quest has asserted, process the Receive Service
Request, and after exiting the receive service rou-
tine, resume the Transmit Service Request. The
CL-CD180 stack is three deep, so all three types
(one of each) can be nested if desired. The current

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

service request context (i.e., the stack) is readable
in the Service Request Status Register.

The Global Interrupting Channel Registers (GICR)
are actually three registers that provide the num-
ber of the channel requesting service. Reading
any of these registers will cause the CL-CD180 to
mask in three bits, specifying the channel number
of the currently active channel. Normally these
registers are read by the host when it is handling a
service request. In this case, the three bits will be
the number of the channel requesting service. If
any of the three GICR Registers are read when the
CL-CD180 is not in a service-request context, the
three bits will be the current value in the CAR. The
current channel number is masked into the con-
tents of Bits 4:2 of this register by the CL-CD180
when it is read by the host. The actual contents of
the register are not modified.

These three registers are provided as a conve-
nience to the user. In most applications, the user
will only use one of these locations, and set the
register to some arbitrary value. However, it may
be useful to sometimes record information about
the state of the CL-CD180 (or the software driving
it) that is associated with each of the three service-
request types. In this case, the user may store
whatever information is desired in the unused bits.
Then, when entering a service routine, the soft-
ware can check these bits to find what state they
were left in, and this could be used as a ‘sub-vec-
tor'.

i

—= CIRRUS LOGIC

Internal Implementation of the Service
Request Logic

23.2

As discussed above, the heart of each service re-
quest level is an asynchronous state machine. This
state machine has three inputs:

o MATCH from the Priority Interrupt Level Register
comparator,

o |ACKIN* from the host system, and
e INTERNAL_REQUEST from the CL-CD180.

NOTE: Software acknowledgments (reads from the
Service Request Acknowledge Registers), in
effect, force the MATCH value true for their re-
spective level.

It also has three outputs:
e Svc_Req to the host system,
e INTERNAL_GRANT to the CL-CD180, and

e |IACKOUT*, which is combined with the other
two IACKOUT" Signals to provide IACKOUT" to
the next CL-CD180 in the daisy chain.

May 1993

P 19
DATA BOOK

CL-CD180

i

——== CIRRUS LOGIC

Figure 2—4 shows logic implemented by the state machine, which is described in Table 2-1.

Table 2-1. State Machine Logic

State Name Output Condition Comments
IDLE all outputs inactive
IF (INTERNAL_REQUEST = 1) GoTo REQ_ACTIVE ; normal ‘resting’ state
ELSE IF (IACKIN* = 1 & MATCH =1) | GoTo PASS_ACK ; pass this acknowledge
ELSE Stay at IDLE ; wait here
REQ_ACTIVE request asserted
IF (IACKIN* = 1 & MATCH =1) GoTo KEEP_ACK ; keep this acknowledge
IF (IACKIN* = 1 & MATCH =0 Stay at REQ_ACTIVE ; wait here, ACK is for some other level (1)
ELSE . Stay at REQ_ACTIVE ; wait here
PASS_ACK IACKOUT"* asserted
IF JACKIN* = 0} GoTo IDLE ; return when [ACK is gone
ELSE Stay at PASS_ACK ; wait here while IACK active
KEEP_ACK GoTo IDLE INTERNAL_GRANT asserted
IF (IACKIN* = 0) ; return when |ACK is gone
ELSE Stay at KEEP_ACK ; wait here while IACK active

NOTE: The (1) denotes the point at which, if there is no match, the CL-CD180 determines notto pass the IACK
down the daisy chain. It does this for two reasons: first, it is unacceptable to have the IACKOUT" ‘glitch’ low;
and second, the state machine should be as fast as possible. When the state machine senses an IACKIN*
and match is not valid, it cannot conclude that it should assert IACKOUT*; the IACKIN* may be for one of
the other two service requests levels. It could wait for the results of the other two MATCH comparators; how-
ever, this would complicate, and therefore slow down, the response of the state machine. The reason this
complication would cause delay is (to implement the logical function ‘assert IACKOUT" if no match’) it must
determine how long to wait before declaring a no-match condition. To implement this delay function, a syn-
chronous state machine would be required, which at a 15-MHz clock, would mean a delay of several hun-
dred nanoseconds from IACKIN* to IACKOUT*, instead of the 65 ns currently specified.

W
20 DATA BOOK May 1993

CL-CD180

IDLE state (1)
All Outputs Inactive

IF
INTERNAL_REQUEST
= active

False .

IF
IACKIN* = active
AND
MATCH = yes

True

pm— N
—
——r——

——= CIRRUS LOGIC

REQUEST_ACTIVE state (2)
Assert REQUEST

IACKIN® = KEEP_ACK state (4)
AND Assert INTERNAL_GRANT
MATCH =yes

False

IF
IACKIN* = inactive

MATCH = no

(This block is redundant. Itis placed
here to emphasize that if there is no
MATCH, nothing happens.)

PASS_ACK state (3)
Assert IACKOUT*

False

IF
IACKIN* = inactive

Flgure 2—4.

514180-4

Internal Service Acknowledge Decision Tree

—
DATA BOOK

21

May 1993

i

—= CIRRUS LOGIC

2.3.3 Priorities and Fair Share™

The CL-CD180 implements a Fair Share mecha-
nism to ensure that all channels receive equal ser-
vice, without any ‘data starvation’. Fair Share
works automatically among the channels in one
chip and across multiple chips.

Figure 2-5 shows a Fair Share Operation block di-
agram. On each of the three service request lines,
the CL-CD180 monitors both the internal and ex-
ternal value of the line. (The external value can dif-
fer because, in multiple-CL-CD180 applications, it

CL-CD180

can be driven by other CL-CD180s.) At the end of
a service acknowiedgment bus cycle, the
CL-CD180 checks the state of both request val-
ues. If they are different, the CL-CD180 deter-
mines that there is another part also driving the
request line, and it will not re-assert its own re-
quest line until the external request has gone inac-
tive. This inactive level means every other
CL-CD180 with a pending request has been ser-
viced; therefore, it is now okay to re-assert re-
quests without ‘hogging’ the host’s attention.

Internal Req I\ External Req (I/O Pin)
To CL-CD180 L~
Internal Request OK-to-Assert
Logic <
S Q 4|
Latch
R

514180-5

Figure 2-5. Internal Falr Share™ Operation

2 ———
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

2.4 Types of Service Requests

The categories of service requests that a
CL-CD180 can generate are explained below.
Each channel's transmitter, receiver, and modem
pins require service from the host occasionally;
however, each category of service request condi-
tions can tolerate different latencies in being ser-
viced. Conditions for service requests fall into
three basic categories:

e Data is received from the remote device and
needs to be transferred to the host.

e Data from the host can be given to the Transmit-
ter FIFO, which is now empty.

e A modem signal changes state.

Three separate service request levels are provided
to support the following three categories:

Request Match

Source Pin Name Register Name
Receive Data IREQ3* PILR3
Transmit Data IREQ2* PILR2
Modem Signal Change IREQ1* PILR1

2.4.1 Recelve Service Requests

The Receive Service Request is unique as it has
two sub-types; i.e., it is capable of returning one of
the two different vectors during a service request
acknowledge cycle. The two sub-types are — ‘Re-
ceive Good Data’ and ‘Receive Exception'. The
reason there are two types within one category of
service request is that, while Good Data and Ex-
ceptions require different handling, they are both of
equal priority, and need to be serviced in the order
they are received. For example, suppose two good
characters are received, then an exception charac-
ter, and then another good character. There must
be a service request for the first two bytes of Good
Data, then for the Exception, and then for more
Good Data. If Exception Service Request is at a
different level, the exception character will be pro-
cessed either before or after the Good Data, and
not in sequence as it should be. This method also
allows the Receive Good Data-handling routine in
the host to be very fast and efficient, since it only
has to move ‘N’ bytes to a buffer. All special-case
conditions can be put in a separate handler, where
they will not slow down normal data transfers.

I

——= CIRRUS LOGIC

Exception characters are characters with errors or
that match the defined special characters, line
breaks, and certain time-out conditions.

Data must not be read from the Receive FIFO or
the Receive Status FIFO except when the
CL-CD180 is within the context of a Receive Data
Service Request.

2.41.1 Receive Good Data™

A Receive Good Data Service Request is asserted
for any of the following three conditions:

1) RxFIFO threshold reached, and the FIFO con-
tains Good Data.

2) RxFIFO threshold not reached, but the FIFO
contains Good Data, and the Receive Data
Timer times-out.

3) RxFIFO threshold not reached, but the FIFO
contains Good Data, and the newly arrived data
contains an exception condition.

When any of these conditions occur, the modified
service request vector indicates to the host that the
service request is for Good Data. The CL-CD180
continues to add bytes to the FIFO, and it incre-
ments the Count Register for each good byte
added, and this allows for optimally efficient use of
the FIFO.

it is not necessary to accept any or all of the Good
Data that is available when a Good Data Interrupt
is received. If a host buffer is too full to accept eight
bytes, a smaller number (even 0) can be read, the
service request context left, and the host buffer
handled first. The CL-CD180 will again generate
another Good Data Service Request when any of
the three conditions listed above are met.

If the condition which caused the request in the
first place remains true, the CL-CD180 quickly
generates another service request. If no data is
read, this is always the case. If some, but not all, of
the available data is read, Conditions 1 and 2 will
not be true, but Condition 3 may be if an exception
condition was the cause of the Good Data Inter-
rupt. If this becomes a problem, one solution is to
temporarily disable receiving interrupts on that
channel. To avoid FIFO overflow, do not disable the
channel for too long.

May 1993

23
DATA BOOK

!

—= CIRRUS LOGIC

2.4.1.2 Recelve Exception

Unusual or exception conditions are reported to
the host one character at a time through the Re-
ceive Exception Service Request. As with normal
receive processing, the host determines the re-
questing channel by reading the GICR. It can then
determine the specific exception(s) by reading the
Receive Character Status Register.

Exception conditions are generated for parity er-
rors, framing errors, FIFO overrun, special charac-
ter recognition, break detect, and for a special
feature called the ‘No New Data Timer’ (NNDT).

NNDT is a receive timer option to generate a ser-
vice request for the first receive data time-out fol-
lowing the transfer of all data from the FIFO to the
host. It is often useful, when managing relatively
large 1/O buffers, for an I/O processor to determine
that ‘no data has arrived lately’. This event is used
to transfer the contents of the local buffer that has
been storing data from the CL-CD180 FIFO for
host-system processing.

This service request is a receive exception sub-
type, and can be used to signal that it is time to
transfer the buffer. This feature can be enabled or

CL-CD180
Eight-Channel Serial Controller

disabled by controlling the NNDT Bit in the Service
Request Enable Register. As shown in Figure 2—6,
every time a received character is loaded into the
FIFO, the timer is restarted. If the timer times-out,
the CL-CD180 checks if there is any data in the
FIFO. If there is, a Good Data Service Request is
posted to avoid ‘stale data'. If there is no data in the
FIFO, the CL-CD180 checks that NNDT is enabled
and ‘armed’. Arming occurs when the last charac-
ter is transferred out of the FIFO to the host. If
NNDT is on and armed, a Receive Exception Ser-
vice Request is posted to inform the host of this
event. Note that the NNDT is not armed if the last
character removed from the FIFO was an excep-
tion character.

Every Receive Exception is a unique, one-charac-
ter event. The Receive Data Count Register has no
meaning, unlike the Receive Good Data case, the
Status Byte in the receive exception handling rou-
tine must be read. The Receive Data Count Regis-
ter and the associated data character will be
discarded by the CL-CD180 at the end of the ser-
vice routine. The Status Byte must be read before
reading the Data Byte. Once the Data Register is
read, the Status Byte is no longer available.

24 -
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

i

—= CIRRUS LOGIC

|
|
|
|

|
|
|
|

-) (...from Other)
Background Scanning Background
Detects New Character Processing...

k Arrived

Put Character in FIFO;
Reload Timer

*

Resume BackgroumD

Scanning Loop...
T

Post Receive Good
Data Service Request

NoNewData
Timeout Feature
Enabled
?

NNDT
internal flag
‘armed’
?

Clear NNDT
internal flag

Y

Post Receive Exception
Service Request

—):(

Resume Background
Scanning Loop...

514180-6

Figure 2-6. Recelve Timer Operation

. _
May 1993 m— 25

!

—= CIRRUS LOGIC

2.4.2 Transmit Service Requests

Each transmitter contains eight bytes of Transmit
FIFO in addition to the Transmit Holding Register
and the Transmit Shift Register. As data is being
transmitted, the FIFO status is being monitored by
the CL-CD180. A service request is invoked for
one of the following conditions:

o Transmit FIFO Empty — When the Transmit
FIFO is empty, there is still one character in the
Transmit Holding Register and one character in
the Transmit Shift Register. The host has two
character times to respond to this request with-
out causing a gap in the Transmit Data Stream.

e Transmitter Empty — The Transmit FIFO,
Transmit Holding Register, and the Transmit
Shift Registers are now all empty. This signifies
that all characters written to the FIFO have been
completely transmitted.

The host can select which one of these causes a
Transmit Service Request, and it will be used by
programming the options in the Service Request
Enable Register (SRER).

Data must notbe put into the Transmit FIFO at any
time other than when the CL-CD180 is in a Trans-
mit Service Request context for that channel. Dur-
ing a transmit service, characters (up to eight) are
placed into the FIFO via the Transmit Data Regis-
ter (TDR).

243 Modem Signal Change Service
Requests

The CL-CD180 may be programmed to assert a
service request when a channel’s modem input
signals have changed states. The change-detect
options are programmed in the Modem Change
Option Registers. Individual modem pin service re-
quests are enabled by setting the corresponding
bits in the Service Request Enable Register.

The host must read the Modem Change Register
during a modem change service to determine
which modem signal changes were detected. This
is indicated by a ‘1’ in the appropriate bit location.
The Modem Change Register must be resetto a'0’
by the host before exiting the service request be-
cause the CL-CD180 does not do this. Refer to
Section 4.4 for more details.

CL-CD180
Eight-Channel Serial Controller

24.3.1 Using Modem Pins as Input/Output

The pins labelled as modem pins are general-pur-
pose /O pins that can be controlled by either the
CL-CD180 processor or the host system. There is
no direct, hardwired connection from any modem
pin directly to a transmitter or a receiver. This
means that these pins can be used for general-
purpose I/O if they are not needed for modem-con-
trol purposes. See Section 4.4 for more details.

2.5 Implementing Service Requests

The CL-CD180 is designed to easily interface with
any processor, yet be efficient and flexible enough
to provide maximum throughput. The CL-CD180
generates service requests and waits for acknowl-
edgments of these from the host. However, service
requests may be implemented in either hardware
or software; likewise, acknowledgments can be af-
fected either way to offer maximum advantages to
the system designer and programmer. This inter-
facing can begrouped as various steps.

Service requests must be ‘noticed’ by the host sys-
tem before they can be acted on, and this can be
done the following three ways:

1. Provide three levels of interrupt support, with
three separate levels and three separate
vectors. This is well-suited to Motorola®
680X0 processors.

2. Provide a single level of interrupt support;
this is an effective method when using 8-bit
processors such as the Z-80 and many Intel®
microprocessors.

3. Poll the device directly in software.

Once the host has ‘noticed’ the service request, it
has the following two choices for acknowledging
the request and begining to service it:

a. Acknowledge the request via a hardware-
based service acknowiedgment, as is typi-
cally done in interrupt-driven systems.

b. Acknowledge the request in software by
reading from a register in the CL-CD180.

2 —
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

Table 2-2. Service Request Methods

|

—= CIRRUS LOGIC

How the host detects the Service Request

| 2.singleevel
| Hardware
_ Interrupt

3. Software
- Polling

How the host
acknowledges-

the Interrupt

 acknowledge

=l 1a 2a Not recommended | 3a Not recommended
. Full Interrupt — Type A | (Inefficient) (Inefficient)
SR 1b 2b 3b
‘se.mma Full Interrupt — Type B | Single Interrupt Software Polled

Thus, there are six theoretically possible options
for interfacing the CL-CD180 to the host system.
Two of the methods (2a and 3a) are not practical to
implement without external hardware, and offer no
performance advantage. Each of the other four
methods has advantages and drawbacks depend-
ing on the type of host CPU being used and
whether or not that host CPU supports more than
one CL-CD180. The four methods used are listed
in Table 2-2.

ta. This method is called ‘Full Interrupt — Type
A’. The system is fully interrupt driven with
acknowledgments in hardware. It requires a
host with at least three interrupt priority levels
available and the ability to acknowledge on
multiple levels. This is the technique used by
Motorola 680X0 processors. It is the most ef-
ficient method when the host CPU has a rel-
atively fast interrupt context switch time and
when the host CPU has duties other than
driving the CL-CD180s.

1b. This method is called ‘Full Interrupt — Type
B'. It still has three levels of interrupt, but pro-
vides a single acknowledgment level. It is
commonly used in Intel-type processor sys-
tems where there is an 8259A interrupt con-
troller. The 8259A receives the three levels
of interrupt, but it provides its own vector to
the host rather than that of the CL-CD180s.
The host then acknowledges the CL-CD180s
Service Request by reading the Vector Reg-
ister.

May 1993

2b. This method is called ‘Single Interrupt’, and
is best-suited to systems having only a single
interrupt input, such as most 8-bit micropro-
cessors. After the host has received its inter-
rupt and is entering its interrupt service
routine, it reads the CL-CD180 to see which
of the three types of service requests is re-
sponsible for the interrupt. It then acknowl-
edges the interrupt by reading the
appropriate Request Acknowledge Register.
Note that the single interrupt signal must be
generated via the logical OR of the three re-
quest outputs with external output gates, not
by ‘wire-OR'ing’ them.

3b. This method is called ‘Software Polled’. Poll-
ing is often used in situations where the host
system is primarily dedicated to servicing the
serial channels and has few other tasks to
perform. It is often better when the host CPU
has a long interrupt context switch time. In
this method, the host periodically checks the
CL-CD180s to determine if any service re-
quests are pending. If they are, the host ac-
knowledges them in software and proceeds
with the service.

One of the advantages of the CL-CD180 is that it
allows the use of any of the above techniques, or a
combination thereof. Such a combination is re-
ferred to as ‘Mixed-mode Operation’. In a typical
mixed-mode design, normal interrupts are used to
signal to the host that service is required. After the

I 27
DATA BOOK

!

|

——= CIRRUS LOGIC

host enters its interrupt service routine, it services
the CL-CD180 that generated the service request.
The host then polls the CL-CD180s to determine if
more channels require service. Frequently this will
be the case. When the host finds a channel requir-
ing service, it handles it in the usual manner, and
then proceeds to poll again for more service re-
quests. This process continues until all
CL-CD180s have been handled. Because the host
is not exiting and re-entering its own interrupt con-
text each time, much host CPU time is saved, re-
sulting in even faster overall performance.

A mixed-mode design has the advantage that the
software has complete control of whether to be
fully interrupt driven or to poll in certain circum-
stances. A mixed-mode design is recommended to
tune a system for optimum performance.

A CL-CD180 evaluation board can be employed to
analyze CL-CD180 performance and evaluate dif-

CL-CD180

ferent software implementations. Cirrus Logic test-
ing (in an AT-compatible ‘386 machine) found that
a mixed-mode system provided the highest overall
throughput with minimum host CPU loading. This
was generally found to be the case with host pro-
cessors that have relatively long interrupt re-
sponse times, such as the Intel '386.

2.5.1 Method 1a — Full Interrupt —Type A,
Three-Level Interrupt with Three-Level

Acknowledge

This method is illustrated in Figure 2-7. It is best-
suited for 680X0-family processors. The three
CL-CD180 service request lines are connected to
the Interrupt Priority Encoder. When the host per-
forms an interrupt acknowledgment cycle, the
CL-CD180 responds with its vector. The host uses
this vector to jump directly to the appropriate ser-
vice routine. The other methods can also be used
with a 680X0-based system.

IREQ1*
IREQ2*
_— IREQ3*
Eight-Level I O
Priority IACKOUT* IACKIN
Encoder [— CL-CD180 #2
IPL1 - Do-D7
PL2 — cs*
IPL3 — A3-A6
—] A0-A2
M68000
Microprocessor
IREQ1*
IREGQ2*
IREQ3*
IACKIN* IACKOUT* |-
Address CL-CD180 #1
As* Decode Do-D7
AB-A23 Logic cs
A4-A7 A3-A6
A1-A3 A0-A2
Do-D7

514180-7

Figure 2-7. Three-Level Interrupt with Three-Level Acknowledge Example

2 L

DATA BOOK

— May 1993

CL-CD180

2.5.2 Method 1b — Full Interrupt - Type B,
Three-Level Interrupt with Single-Level
Acknowledge

This method is iftustrated in Figure 2-8. It is useful
with 80X86 systems that use the 8259A Interrupt
Controller. Since the 8259A supplies its own vector
to the host when an INTA cycle occurs, the host
can simply read the CL-CD180’s vector by the
method described in the polled interface example

!

—= CIRRUS LOGIC

or a separate chip select decode can be provided
to drive the IACKIN* input.

After the 8259A has supplied a vector to the 80X86
host CPU, the host performs a software acknowi-
edgment to the CL-CD180, which transfers the
CL-CD180 vector to the host and allows the ser-
vice request to be processed.

Interrupt

IREQ1*

Controller
INT {8259A or

IREQ2*
IREQ3*

equivalent)

Microprocessor

IACKOUT* IACKINT
CL-CD180 #1
Do-D7
cs*
A3-A6
—] A0-A2

IREQ1*
IREQ2*
IREQ3*

Address
Decode

IACKIN®* IACKOUTY
CL-CD180 #2

ALE Logic

Do-D7

A8-A23—

cs*

Ad-A7

A3-A6

A1-A3

A0-A2

Do-D7

514180-8

Figure 2-8. Three-Level Interrupt with Single-Level Acknowledge Example

May 1993

E—— 29
DATA BOOK

!

CIRRUS LOGIC

25.3 Method 2b — Interrupt Interface, Single-
Level Interrupt with Single-Level
Acknowledge

This method is illustrated in Figure 2-9. It is best-
suited to host systems having a single interrupt

CL-CD180

input. The three service request lines from the
CL-CD180 are run through an ‘OR’ gate to the
host’s interrupt input. When an interrupt occurs,
the host system polls the CL-CD180s to determine
which of the three levels it was, and acknowledges
it accordingly.

IREQt*
IREQ2*

INT OR {
\

IREQ3*

Microprocessor

Address
Decode

IACKOUT* IACKIN*|—
CL-CD180 #1
D0-D7

cs*
A3-A6
—] AO-A2

IREQ1*
IREQ2*
|IREQ3*

IACKIN® IACKOUT*|—
CL-CD180 #2
Do-D7

ALE Logic
A8-A23

cs*

A4-A7
At1-A3

A3-A6
A0-A2

Do-D7

514180-9

Figure 2-9. Single-Level Interrupt with Single-Level Acknowledge Example

3 — "
DATA BOOK

May 1993

CL-CD180
Eight-Channel Serial Controller

2.5.4 Method 3b — Polled Interface

This method is illustrated in Figure 2-10. Polled
operation can be used with any type of host CPU,
or it can be used in combination with interrupts to
provide a mixed-mode system optimized for a par-
ticular application. In a polled system, the host
reads the Service Request Status Register
(SRSR) within the CL-CD180 to determine
whether there are any channels that need service.
(Note that unlike traditional UARTSs, only one regis-
ter needs to be read to determine if there are any
channels in any device that need attention, and
this saves time).

If the host finds channels needing service, it ac-
knowledges the desired type by reading one of the
three Request Acknowledge Registers. These pro-
vide a vector that can be used to jump directly to
the correct service routine. Processing from this
point proceeds as in the case of interrupt-driven
operation. Note that the difference between this
method and Method 2b lies in how the host system
becomes aware of the need to service the
CL-CD180. In Method 2b a single interrupt starts
the process. In Method 3b the host polls periodi-
cally. The two methods can be combined — an in-
terrupt triggers the first service, but the host
continues to poll until any other pending requests
have been serviced.

May 1993

CIRRUS LOGIC

There is a difference between the CL.-CD180 and
conventional dumb UARTs that makes the
CL-CD180 more efficient even when operating in a
polled environment. With a dumb UART, the host
polls each channel in turn to determine whether it
has any data. With the CL-CD180, the host polls
the CL-CD180s as a group for whether it has data.
If it does, the CL-CD180s will indicate the channel,
rather than the host testing each channel in turn. In
fact, it is not possible for the host to dictate which
channel is to be serviced; the CL-CD180 deter-
mines this order. This minimizes both the number
of polling steps required and the amount of time
each needs, and it also ensures fair, balanced ser-
vice of all channels.

|

There are several ways a host system can poll the
CL-CD180, and each method has certain advan-
tages. The most direct method is to read the Ser-
vice Request Status Register (SRSR). This
register contains three bits that indicate whether
there is a request pending for receive, transmit, or
modem signal change, on the CL-CD180 being
read. There are three more bits that provide the
same information for all CL-CD180s in the system
— these three bits reflect the state of the wire-
OR'’ed external request lines. Thus a single read
operation can determine if there is any activity.

— 31
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

[

|

—= CIRRUS LOGIC

IREQ1*
—1 IREQ2*
-— IREQ3*

IACKOUT* IACKIN*[|

CL-CD180 #2
Do-D7

A3-A6
A0-A2

Microprocessor

| IREQ1*
—1 IREQ2*
— IREQ3*

| IACKIN* IACKOUT*[

CL-CD180 #1
D0-D7

A4-A7 A3-A6

A1-A A0-A2

DO-D?

514180-10

Figure 2-10. Simple Software Polied Interface Example

. - |
3 DATA BOOK May 1993

CL-CD180

I

——== CIRRUS LOGIC

2.5.5 Comparison of Interrupt and Polled Code Sequences
Figure 2-11 and Figure 212 show the code sequences for polled and interrupt service request methods.

Read Service Request Status
from SRSR

Receive
Request
Pending?

v Transmit To
Request > Transmit
Pending? Routine
To
Modem Signal Change Modem
Request Pending? Routine
Read RRAR to Acknowledge,
get Status Vector
I
Good Data N Handle
? data
Y
|jnd Req g Channel Numb: I

1
| Read Number of Bytes from RDCR |

I Set Up Host's Buffer Polntnnj

I Set Loop Counter = RDCR |

[Read RDR |
T

I Write data to Pointer Location '
1

| Increment Pointer I
1

| Decrement Loop Counter |

L]
Loop Counter = 0

L Save Pointer j

1

C Exit ISR)

514180-11

Figure 2-11. Polled Code Sequence

A
May 1993 ™ DATA BOOK 33

l

|

—== CIRRUS LOGIC

CL-CD180
Eight-Channel Serial Controller

(Interrupt Occurs

Entry Point for

l@C——————— Good Data Interrupt

Service Routine

l Read Requesting Channel Number

I Read Number of Bytes from RDCR I

I Set Up Host's Buffer Pointers J

I Set Loop Counter = RDCR I

[Read RDR

|

I Write data to Pointer Location J

r Increment Pointer J

]

I Decrement Loop Counter |

If

Loop Counter =0

[Save Pointer

]

-

Exit ISR

)

514180-12

Figure 2-12. Interrupt Code Sequence

2.5.6 Cascading Service Requests with
Multiple CL-CD180s

Regardless of the method used to support service
requests, multiple CL-CD180s may be cascaded
by tying together all IREQ1* lines, all IREQ2" lines,
and IREQ3* lines. These lines are open drain so
they may be wire-OR’ed. The CL-CD180s are then
daisy-chained by simply connecting the IACKOUT*
of one device to the IACKIN* of the next.

The host knows which CL-CD180 is requesting
service by the value returned by the CL-CD180
from its Global Interrupt Vector Register. Up to 32
CL-CD180s may be cascaded in any one daisy

chain in this manner. The maximum number of
CL-CD180s can be very large, since multiple daisy
chains are possible. The 32-per-daisy-chain limit is
set by the fact that there are five bits in the GIVR
that can be used to identify which CL-CD180 re-
sponded to the service request acknowledge
cycle. The user must program different values into
the upper-five bits of each CL-CD180s GIVR.

Note that thirty-two CL-CD180s is the logical limit
per daisy chain. Since it takes over 1000 ns for an
acknowledgment to ripple down 32 devices, it may
not be efficient to have one long chain in heavy-
traffic applications.

34 R
DATA BOOK

May 1993

CL-CD180
Eight-Channel Serial Controller

NOTE: In some systems that daisy-chain many
CL-CD180 devices, a potential timing hazard
exists if the host processor does not allow suffi-
cient time for the removal of the |ACKIN*/IACK-
OUT" daisy-chain signal to propagate through
all devices. In the event that the host processor
begins I/O operations with another section of
logic and applies DS* (RD* or WR* in an Intel
environment) while an active IACKIN* is being
applied to a CL-CD180 due to propagation
delay time, unpredictable results can occur.
This constitutes an illegal acknowledge cycle.
The failure mode is most often a cessation of
service requests from the device, especially of
the type that was being serviced when the ille-
gal access occurred. Care must be taken to as-
sure that the 35-ns propagation delay per
device is included in any wait-state generation.

2.5.7 Multiple CL-CD180s without Cascading

It is possible to interface several CL-CD180s with-
out using the cascade feature. There is an advan-
tage to this because as there is less delay incurred
while waiting for the service acknowledgment to
ripple down a chain of devices. There are two pos-
sible disadvantages. If each of the CL-CD180’s
three service request lines has a separate input to
the interrupt controller, the interrupt controller is
more complex, and the Fair Share feature does not
work. If the service request lines are wire-OR’ed,
Fair Share works, but the host has to test each
CL-CD180 in turn to see which one generated the
service request. To implement this method, simply
connect the CL-CD180 address and data lines in
the usual manner.

2.5.8 Acknowledging Service Requests

As mentioned in Section 2.5, two different meth-
ods can be used to acknowledge a service re-
quest. One method is hardware-based, and the
other is software-based. The hardware-based
mechanism is a specific type of bus cycle that uses
the IACKIN* and IACKOUT* Signals and the PILR
registers in the CL-CD180. An acknowledge cycle
is defined where IACKIN* and DS* are active and
CS* is inactive. This method is used by processors
that perform interrupt acknowledge cycles, such as
the 680X0.

The software-based mechanism uses three regis-
ters — Receive Request Acknowledge Register,

i

——= CIRRUS LOGIC

Transmit Request Acknowledge Register, and
Modem Request Acknowledge Register. Reading
any of these registers has the effect of acknowl-
edging a service request, and the data read will be
the appropriate vector, i.e., the contents of the Glo-
bal Interrupt Request Vector Register. The low-
three bits of this register will be modified to indicate
the specific type of interrupt being acknowledged.

If the host reads these registers when no service
request is pending, either of two things will hap-
pen. If daisy chaining of acknowledgments is en-
abled, the IACKOUT* Pin of the CL-CD180 will
assert. If daisy chaining is not enabled, the part will
supply a vector with the low-three bits set to a ‘0'.
Thus, it is possible to fish’ for service requests, i.e.,
to acknowledge each CL-CD180 in turn until a
non-zero vector is received.

‘Fishing’ is not usually an efficient software tech-
nique, but may be usetful in some circumstances.
For example, in systems that are normally inter-
rupt-driven, but where interrupts are not available
for diagnostics or other reasons, the host can de-
termine if a service request is pending by reading
the appropriate Request Acknowliedge Register.
The CL-CD180 must be configured not to daisy-
chain; in this case it will return a vector if a request
is pending, or ‘00’ if no request is pending. The
host may try all three levels of request in turn. This
method will work for either single CL-CD180s or
multiple devices. In multiple-device systems, either
disable daisy-chaining on all devices and ‘fish’
each individually, or disable daisy-chaining on the
last device only and ‘fish’ the device at the begin-
ning of the chain.

Both methods of acknowledging service requests
may be used interchangeably. It is usually advan-
tageous to use Mixed Mode. For example, after re-
ceiving an interrupt and servicing it in the normal
manner, the host should read the Service Request
Status Register (SRSR) to see if other requests
are pending. If so, the host can acknowledge by
reading the appropriate Request Acknowledge
Register (RRAR, TRAR, and MRAR) and proceed
to service the request. This avoids the time re-
quired for the host to exit its interrupt routine, only
to re-enter it immediately for the next request.

May 1993

35
DATA BOOK

——..
——r.
——

CIRRUS LOGIC

CL-CD180

Eight-Channel Serial Controller

3. SYSTEM BUS INTERFACE AND SYSTEM CLOCK

36

Receive Bit Engine

[<—RxData

IREQ3" €— RECENVE
IREQ2"* «— SERVICE
IREQ1* €— 1 rRequesT| |
QUEUE
IACKOUT* <€— ‘
IACKIN*—]
SERVICE T:E“R’ﬁé‘E”
REQUEST] | ROM
Logic || REQUEST
QUEUE
MODEM T
SERVICE
| REQUEST CPU I+
QUEUE
g
ADR[0-6] 2=
DATA[0-7] <] G2
Cs* —> £
DS* —
RW —>
DTACK" «— BUS RAM
INTELMOT* — ! INTERFACE]
RESET* —»
CLK —>
PER
«<—> | CHANNEL
TIMER
——> RTS*
l—CTS*
—» DTR*/CD*
l€—DSR*
1/0 PINS
(MODEM ' Legr 3> 4 lines
CONTROL) g4 lines
[€~ 4 lines
> 4 lines
€ 4 lines
[4 lines
| €4 lines

Transmit Bit Engine

[TxData

Dual-Baud Rate
Generators

Receive Bit Engine

[€—RxData

Transmit Bit Engine

- TxData

Dual-Baud Rate
Generators

Receive Bit Engine

[<—RxData

[[

Transmit Bit Engine

> TxData

Dual-Baud Rate
Generators

Receive Bit Engine

<—RxData

Transmit Bit Engine

- TxData

Dual-Baud Rate
Generators

Receive Bit Engine

[€<—RxData

Figure 3-1. Internal Block Diagram

Transmit Bit Engine

- TxData

Dual-Baud Rate
Generators

Receive Bit Engine

[<—RxData

Transmit Bit Engine

> TxData

Dual-Baud Rate
Generators

Receive Bit Engine

I<—RxData

Transmit Bit Engine

| TxData

Dual-Baud Rate
Generators

Receive Bit Engine

[<—RxData

Transmit Bit Engine

F» TxData

Dual-Baud Rate
Generators

DATA BOOK

514180-13

May 1993

CL-CD180
Eight-Channel Serial Controller

3.1 System Interface Considerations

When using the CL-CD180, two areas where sys-
tem architects, designers, and programmers
should consider options are system clock speed,
and Un-clocked versus Clocked-host Bus Inter-
face.

3.2 System Clock and Bit Rate Options

3.2.1 System Clock

System clock is a high-frequency clock (supplied
by the user) used-by the CL-CD180 to derive all the
necessary timing. The CL-CD180 is capable of
handling system clock levels of TTL-compatible
voltage swings; however, the V|_ and Vi specifica-
tions are not identical to all families of TTL logic.
Specifically, the clock signal (and the reset signal)
have lower V|_and higher V|4 than the worst-case
specifications of some TTL families. In general,
any TTL family is adequate if not heavily loaded.
Refer to the DC Specifications in Section 7.3 for
details.

The CL-CD180 operates from an external clock
source. The external clock is 1x the rated fre-
quency. The 1x clock input is strictly specified in

May 1993

i

—= CIRRUS LOGIC

terms of rise and fall time, duty cycle, and V,; and
V|- Commercially-available oscillator modules
typically have poor duty-cycle ratios (60/40) and
poor Voy, therefore it is advisable to specify a
55/45 duty cycle oscillator and to buffer the output
through a 74HC-type device. Conversely, the oscil-
lator used could be twice the rated frequency
which is subsequently divided by two via a
74HC74 (or similar); this provides the proper duty
cycle and V| and V.

The CL-CD180 can be operated from the main
system clock or its own clock. Operation from the
main system clock can reduce the number of
clocks required, and it allows the bus interface be-
tween the system and the CL-CD180 to be
clocked, but in general, typical system clock
speeds are not exact baud-rate multiples. As bit
rates are derived from the clock, it is important to
take this into consideration when selecting a clock
value. If exact baud rates are needed, or the sys-
tem clock is not a convenient value, the CL-CD180
must be supplied with its own clock or crystal.

DATA BOOK

i

—== CIRRUS LOGIC

3.2.2 Bit Rate Options

The CL-CD180 supports independent transmitter
and receiver bit rates on each of its eight channels.
The bit rate is determined by a 16-bit period value
(divisor) stored in the Transmitter Bit Rate Period
Registers (TBPRH and TBPRL) or in the Receiver
Bit Rate Period Registers (RBPRH and RBPRL).
These registers establish the period of the corre-
sponding Transmitter and Receiver Bit Rate
Counters. The value to be loaded to set a given bit
rate is determined by the following equation:

(CLK frequency {in Hertz})

Bit Rate Divisor = - " r——
(16 x desired Bit Rate {in bits per second})

CL-CD180
Eight-Channel Serial Controller

This equation may yield a non-integer result. The
nearest integer value is the optimum choice for that
bit rate and system clock combination. The value
loaded in the Bit Rate Period Registers must be
that integer expressed as a 16-bit binary value. If
rounding is necessary, the percentage bit rate
error may be calculated by:

(Bit Rate Divisor — Integer)} x 100/ Bit Rate Divisor

The popular bit rates and their corresponding divi-
sors at various system clock rates are shown in
Table 3—1.

If operation at 57.6 and 64 kbps is required, a clock
of 12.5 MHz must be used.

Table 3-1. Possible Clock Speeds For Exact Baud Rates
Max Baud Baud Rate Divisor Value
Rate
{(kbps) 12 13 14 15 16 17 18 19 20
Notes 1, 2, and 3 Note 1
64 12.2880
57.6 11.0592 11.9808
56 10.7520 11.6480 12.5440
38.4 7.3728 7.9872 8.6016 9.2160 9.8304 10.4448 11.0592 11.6736 12.2880
NOTES:

1) Allclock speeds are shown as net clock speeds in MHz.

2) Divisors less than 16 may not produce 100% throughput in all cases.

3) Divisors less than 12 may result in errors if all eight channels are active.

3 L
DATA BOOK

CL-CD180

Eight-Channel Serial Controller

——.
———UR
——r

——== CIRRUS LOGIC

Table 3—2 shows possible clock values for various baud rates and divisors. Not every combination is legal
in all cases. Refer to Section 3.2.3 for information on throughput limits.

Table 3-2. Divisors For Standard Baud Rates For Various Clock Speeds

Clock Speeds
Baud Rate
11.0592 MHz | 9.8304 MHz 9.216 MHz

64 kbps? N/A N/A 9
57.8 kbps 12 N/A 10
38.4 kbps . 18 16 15
19.2 kbps 36 32 30
14.4 kbps 48 43 40
9600 bps 72 64 60
7200 bps 96 85 80
4800 bps 144 128 120
2400 bps 288 256 240
1200 bps 576 512 480

600 bps 1152 1024 960
300 bps 2304 2048 1920

150 bps 4608 4096 3840

110 bps 6283 5585 5236

75 bps 9216 8192 7680

[

mended.

May 1993

Note that there are no perfect divisors for 64 kbps at any of these stan-
dard frequencies except 9.216 MHz. However, serial performance at
64 kbps with a 9.216 MHz clock will be unacceptable and is not recom-

DATA BOOK

39

CIRRUS LOGIC

3.2.3 Maximum Throughput Limits

The CL-CD180 is internally a fully static, synchro-
nous design. Consequently, the maximum data
rate handled by CL-CD180 is determined by the
clock speed at which it is operating. There are a
fixed number of CL-CD180 processor cycles re-
quired to process each bit and character; a slower
CL-CD180 processor rate equates to a slower bit
rate. The minimum clock frequency required can
be determined by the data rate needed to be sup-
ported.

In general, the CL-CD180 can maintain 100% full-
duplex throughput when divisors of 16 or greater
are used. For a given master clock frequency, this
limitation can be used to determine the maximum
bit rate at which the system can sustain 100%
throughput on both receive and transmit. Divisors
as small as 12 may be used, however a degrada-
tion in throughput will be observed. This degrada-
tion will be seen as gaps between transmit charac-
ters and are, in effect, extra long stop bits. This is
a fail-safe condition. Divisors smaller than 12 may
work in an application if less than eight channels
are enabled.

WARNING: Extensive testing is required in the user's
end application to determine the maximum
serial performance that can be sustained
without error in that environment. Cirrus
Logic only guarantees that the device will
not fail at bit rates up to 64 kbps when op-
erating at 12.5 MHz and with eight chan-
nels operating.

Lab testing at Cirrus Logic has shown the following
performance characteristics in an IBM-PC compat-
ible environment with a 33-MHz 80486 processor:

Table 3-3. Performance vs. Operating

CL-CD180
Eight-Channel Serial Controller

3.3 CL-CD180 Basic Bus Interface and
Addressing

The CL-CD180 is addressed through an active-low
Chip Select (CS*) in conjunction with seven Ad-
dress Inputs A[0:6] that are mapped CL-CD180 in-
ternal addresses in two addressing modes —
global and channel. In Channel Addressing Mode,
the bits defining the channel to be accessed are
provided from the Channel Access Register (CAR)
within the CL-CD180.

The most-significant Address Input (A6) performs
the selection between global- and channel-specific
addresses. If this bit is a ‘1", the address is global,
and is not associated with any specific channel. If
this bit is a‘0’, the address is channel-related.

With the exception of the FIFOs, ali channel-spe-
cific registers are accessed by first setting the de-
sired channel number in the low-three bits of the
Channel Access Register. FIFOs may only be ac-
cessed within the context of a service routine. At-
tempting to force access to a particular FIFO by
setting the CAR will cause unpredictable and in-
correct results. Within the context of a service re-
quest, the effective channel access value is
automatically controlled by the CL-CD180, thus
the CAR should not be modified by the host sys-
tem during service-request processing.

The advantage of this method is that the host
never performs any address computation to ac-
cess the CL-CD180 during service requests. Be-
cause only the registers specific for the active
channel (i.e., the one being serviced) are accessi-
ble to the host within a service request routine. An
automatic indexing feature handles this, thus
avoiding any burden on the host. Refer to
Section 6.3 on Indexed Indirect Registers for de-
tails.

Intel® Versus Motorola® Interface
Signals and Addressing

The CL-CD180 supports two bus handshake
methods. One is patterned after the Motorola
680X0-family processors, and the other after intel
80X86-bus interfaces. Bus interface selection is
achieved via the INTEL/MOT* Signal. When this

3.31

Frequency

Clock Maximum Typical Throughput
Frequency Data Rate (Receive/Transmit)

8 MHz 38.4 kbps 100%/66%

10 MHz 38.4 kbps 100%/100%

12.5 MHz 57.6 kbps 100%/65%

12.5 MHz 64 kbps 100%/54%

40 L .

DATA BOOK

May 1993

CL-CD180
Eight-Channel S

signal is ‘high’, the Intel Bus Interface is selected,
and when this signal is ‘low’, the Motorola Bus In-
terface is selected. This selection affects the logi-
cal meaning of two pins, but has no effect on bus
timing.

The two signals having dual meaning are RD* ver-
sus DS*, and WR* versus R/W*. When the Intel
Bus Interface is selected, these two pins function
as RD* and WR*. These pins can be connected to
either the IOR* and IOW*, or to MEMRD* and
MEMWR* depending whether the CL-CD180 is
mapped into memory or 1/O space. These pins
then serve to select the CL-CD180, and when ei-
ther is active (along with CS* or IACKIN™) the
CL-CD180 considers itself selected. CS* and
IACKIN* must never be active at the same time.

When the Motorola Bus Interface is selected,
these two signals function as DS* and R/W*. DS*
must be asserted (along with CS* or IACKIN*) for
all types of cycles, and R/W* should be low when
writing to the device.

In either case, the choice of bus interface is entirely
up to the user. This feature is for users conve-
nience, and to accommodate the address and bus-
control logic being used. The CL-CD180 has an 8-
bit data bus, and it is a common practice (when
connecting 8-bit peripherals to 16- or 32-bit sys-
tems) to connect them to only one lane, or one byte
position. Thus, the CL-CD180 Registers will ap-
pear in the host's address space only at every
other byte address. The most common practice is
to connect the CL-CD180 to the portion of the data
bus labelled DO-D7. For the little-endian proces-
sors, such as Intel's, the CL-CD180 will appear at
even addresses (A0 = 0). For big-endian proces-
sors, such as Motorola’s, the CL-CD180 will ap-
pear at odd addresses.

3.3.2 Un-Clocked Versus Clocked Bus
Interface

Depending on the type and speed of the host pro-
cessor, another important choice is determining
the system bus interface to be clocked or un-
clocked with the host CPU clock. Because there is
a ssingle clock for both the bus interface and bit-rate
generation, the decision to use either Clocked or
Un-clocked Bus Interface is affected by whether
exact bit rates are required. Most applications do

——== CIRRUS LOGIC

not require exact bit rates, and operate with rates
varying by one percent or so. If exact bit rates are
required, the clock speed must be a baud-rate mul-
tiple.

One method of bus interfacing may be preferable
to another in certain applications. Although the
easiest way to interface to the CL-CD180 is by
using the un-clocked handshake supplied by
DTACK?*, in some cases it may be better to design
a clocked interface. The latter is true if the host sys-
tem is running at the same clock speed (or a mul-
tiple) of the CL-CD180 speed.

Un-Clocked Bus Interface

An Un-clocked Bus Interface is the easiest inter-
face to implement. Simply connect the address,
data, and control lines in the customary manner,
and use DTACK* to control the number of wait
states either by connecting it to the processor's
DTACK* (if it has one), or by feeding into a wait-
state generator. Figure 3—2 shows a typical Un-
clocked Bus Interface.

The maximum bus cycle time is two clock periods
plus 10 ns, though typically less because this
specification is based on worst-case internal syn-
chronization delays. Using DTACK* saves time;
however, it is permissible to hard-wire the wait-
state generator for the maximum time.

Clocked Bus Interface

The CL-CD180 bus interface is controlled by a
state machine that samples on the falling edge of
the clock. External strobes (CS*, DS*, and R/W*;
or CS*, and RD* or WR*) that meet the setup time
requirement cause a bus cycle to begin. The exter-
nal interface can be designed to meet these setup
time requirements, and to have shorter CL-CD180
access cycles. Figure 3—3 shows a typical Clocked
Bus Interface.

Abus cycle consists of two half-clock periods. Dur-
ing the clock-low period, the transaction is set up
internally, and the local bus arbitration occurs. Dur-
ing the clock-high period, the read or write transac-
tion to RAM occurs. On write cycles, the data from
the host is latched internally on the low-to-high
clock transition. On read cycles, the data is avail-
able shortly after the end of the clock-high period.

May 1993

R 41
DATA BOOK

m

—== CIRRUS LOGIC

Read and write cycles differ slightly in timing; dur-
ing a write, it is permissible to remove the WR* or
DS* relatively early during the high-clock period,
however, this cannot be done during read cycles.
The RD* or DS* Strobe is used as an output en-
able, and must remain low for the data to appear
on the external data bus.

CL-CD180
Eight-Channel Serial Controller

Service request acknowledgment cycles follow a
different timing than ordinary read cycles. First, it is
necessary to have the address stable before as-
serting IACKIN*. Second, the setup time from
IACKIN* and DS* (or RD*) going low to the falling
clock edge is longer due to additional internal logic
involved in service request acknowledge cycles.

A[0:6]) X X
R/W* / \ X
CSs*, DS* \ -/ \
DB[O !7] (\r
DTACK* \
po— — —

514180-14

Figure 3-2. Typical Un-Clocked Bus Interface

CLOCK

DS*
\ ~/ \ NEW CYCLE MAY BEGIN
cs* —\ I
R/W* / DON'T CARE
ADDRESS DON'T CAREX VALID X DON'T CARE
DATA-READ e e o o e - unpernED X VALD P ———————— ——
DTACK*
AVAVAVAAWAN
514180-15
Figure 3-3. Typical Clocked Bus Interface

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

3.4 Interface Examples

There are some general design considerations
when interfacing the CL-CD180 to any host envi-
ronment.

The three Service Request Pins (IREQ1*, IREQ2*,
and IREQ3*) may change at any time, and this can
introduce metastability problems if the interrupt
controller requires clocked signals. Care should be
taken when designing to make sure that all signals
are stable when needed.

The Service Request Pin of the type being ac-
knowledged is negated at the end of the service
acknowledgment bus cycle. Often, during the
course of servicing one channel, another channel
will reach a state where a request would assert,
€.g., while servicing receive on channel one, chan-
nel two’s FIFO fills. The Service Request Bits in the
Service Request Status Register (SRSR) will not
re-assert until approximately two clock periods
after the host completes its write to the End-Of-In-
terrupt Register (EOIR). In polied or mixed-mode
systems, to determine whether another service re-
quest of the same level is pending, and to make
sure that the host does not re-read the SRSR too
quickly, insert a No-Operation (or similar) instruc-
tion.

Performing an ‘invalid’ service acknowledgment
bus cycle on the CL-CD180 is permissible, but it
can cause problems in certain circumstances. An
Invalid Service Acknowledgment is an acknowl-
edgment for which there is no request pending.

If a service request acknowledgment bus cycle is
performed by the host when no service request is
pending, either of two things can happen. if the
value on the address bus matches one of the three
values in the three match (PILR) registers, and
daisy chaining is enabled, the CL-CD180 assumes
that another device down the daisy chain should
receive the request, and asserts its IACKOUT*
Pin. This propagates down the CL-CD180 chain
until eventually the last CL-CD180 asserts its
IACKOUT™. At this point, the system waits end-
lessly unless the bus cycle terminates. The best
method is to connect the IACKOUT" of the last
CL-CD180 in the chain to a bus-error input on the
host. If there are multiple CL-CD180s that are not

!

—= CIRRUS LOGIC

cascaded, the IACKOUT* Signals should be
OR’ed together through a gate or a PAL.

If an acknowledgment occurs and the value on the
address bus does not match any of the Match Reg-
isters, the first CL-CD180 in the chain does not
pass it along or assert DTACK* and the system
waits endlessly unless there is a bus time-out or
other mechanism to detect this condition. In either
of these circumstances, the ‘value’ on the data bus
is likely to be FFh because the bus is floating (this
is system dependent). To make a robust design, do
not use FFh as a valid Global Service Vector Reg-
ister (GSVR) value. If daisy chaining is not en-
abled, then the CL-CD180 will return a vector of
‘00’ for invalid acknowledgments.

3.4.1 Interfacing to 80X86-Family Processors

The Intel 80X86 family processors often use the
8259A as the interrupt controller, that supplies its
own vector during the INTA Cycle. The easiest way
to interface the CL-CD180 to an Intel processor is
by Mixed Mode, as described in Section 2.5.

There is one 'bug’ in the 8259A to be aware of. The
8259A can change the prioritizing of its eight in-
puts, which can result in one of its acknowledge
outputs going low briefly (~30 ns) if an input
changes at a certain time. This typically happens if
a higher-priority input to the 8259A asserts when
the 8259A is about to issue an acknowledge to a
lower-priority device. If this occurs at the beginning
of a cycle, this brief pulse can cause the
CL-CD180 (and other devices) to malfunction.
Care should be taken to make sure that this does
not happen. See Intel 8259A Data Sheet for de-
tails.

3.4.2 Interfacing to 680X0-Family Processors

The 68000-family interface is quite straightforward.
The three service request lines go through a prior-
ity encoder to the 680X0 IPL inputs. The
CL-CD180s IACKIN* Pin is driven by a decoder.

When the 680X0 performs an Interrupt Acknowl-
edge Cycle, it drives its address lines A1, A2, and
A3 with a three-bit value indicating the level being
serviced. The other address lines are set to a 1. If
the level being serviced corresponds to a level as-
signed to the CL-CD180, external decoding logic

May 1993

DATA BOOK

~—=== CIRRUS LOGIC

should assert the CL-CD180 IACKIN* Pin. The
value on address lines A0 to A7 has been pro-
grammed into the PILR registers, so the
CL-CD180 recognizes the acknowledgment and
proceeds as described in the Service Request
Section 2.3.1.

All CL-CD180 service requests can also be routed
to a single interrupt level by using a Mixed-mode
Interface, as described in Section 2.5.

3.4.3 Interfacing to the VME Bus

The CL-CD180 can be -directly interfaced to the
VME Bus, and requires only a small amount of
logic to complete the interface. This is necessary
because service request acknowledgment works
differently on the VME Bus than on the CL-CD180.
VME defines seven levels of interrupts; each level
can be shared among multiple VME cards. During
an Interrupt Acknowledge Cycle, the VME Bus pro-

CL-CD180
Eight-Channel Serial Controller

vides three bits on the address bus, indicating the
level being acknowledged (A1-A3). Each VME
card must pass along an interrupt on all levels it is
not using but the CL-CD180 does not automati-
cally pass an interrupt acknowledgment.

To recognize how this difference can cause a prob-
tem, suppose that the three Service Request lines
from the CL-CD180 are connected to levels 7, 6,
and 5 of the VME Bus (see Figure 3—4). Also, at-
tach a 74XX244 so that during an Interrupt Ac-
knowledgment Cycle provides an 8-bit code
consisting of the three address bits plus five more
hard-wired bits to the CL-CD180. Now, whenever
an acknowledgment of a level 5, 6, or 7 interrupt
occurs, the CL-CD180 either responds or passes
the acknowledgment properly. If an acknowledg-
ment occurs on levels 1-4, the daisy chain ‘breaks’
because the CL-CD180 does not recognize a
match.

ACKOUT*

IRQ7* IREQ1*

IRQ6* IREQ2*

IRQ5* IREQ3*

ACKIN* IACKOUT* IACKIN®
A1-A7 I AO0-Ab6
{ACK* C
74XX244 CL-CD180

VME BUS

(Buffers not shown)

L]

A1-A3 Arbitrary
Value

514180-16

Figure 3—4. Incorrect VME Interface

M*

May 1993
DATA BOOK

CL-CD180

troller

This condition can be easily rectified, as shown in
Figure 3-5. A PAL is used to assert IACKOUT*
whenever IACKIN* occurs on a level not being
used by the CL-CD180. The PAL is programmed
for fixed levels. For example, if the current VME
Bus Interrupt level is 1-4, the PAL asserts IACK-
OUT" whenever IACKIN* is active. If the current

!

CIRRUS LOGIC

level is 5-7, the PAL asserts IACKOUT* when
IACKOUT* from the CL-CD180 is active. If desired,
the assignment of VME Interrupt levels to the
CL-CD180 can be field-programmable by supply-
ing additional inputs to the PAL, indicating the lev-
els being used by the CL-CD180.

p———— 4

ACKOUT*
PAL
IRQ7* IREQ1*
IRQ6* IREQ2*
IRQ5* IREQ3*
IRQ4* IACKOUT* [ACKIN?
IRQ3*
IRG2*
CL-CD180
IRQ1*
ACKIN*
A1-A7 [A0-A6
e
U
74xx244
VME BUS
(Buffers not shown) —J |
A1-A3 Arbitrary
Value
514180-17
Figure 3-5. Correct VME Interface
May 1993 — 45

DATA BOOK

CIRRUS LOGIC
4. SERIAL INTERFACES

4.1 Receiver Operation

4.1.1 Basic Operation

All receivers are disabled upon master reset. To
prepare a receiver, first initialize and then enable it.
Once initialized and enabled, the receiver monitors
the RxD Line and waits for a high-to-low transition,
which indicates a Start Bit. This sampling is per-
formed at one-eighth of the System-clock Rate re-
gardless of the Programmed Bit Rate, and it
provides accuracy of synchronization with the in-
coming data. See Figure 4—1 below for CL-CD180
bit synchronization. Once a transition is detected,
the receiver checks the RxD Input state again (a
half-bit time later) to validate that it is a Start Bit. A
valid Start Bit is defined to be a ‘space’ or a logic
‘0’. If the RxD Input is no longer a ‘space’ then a
false Start Bit is assumed, and the receiver re-
sumes the search for a high-to-low transition. If a
valid Start Bit is detected, the RxD Input is sam-
pled at one-bit time intervals in the middle of the bit
to ensure stable data. Characters are assembiled
according to the programmed content of the Chan-
nel Option Register (COR1). Valid character fram-

Samples at
1/8-system
clock

full-bit | full-bit

Start 1/2-bit
Bit Detect time

full-bit | full-bit full-bit
time time time time time
>

CL-CD180
Eight-Channel Serial Controller

ing (presence of a Stop Bit), and Optional Parity
Bits are checked. After a character is assembled, it
is placed in a temporary Holding Register. Then
the CL-CD180 processor checks for error condi-
tions, FIFO overrun, and special character match
before placing the character and its corresponding
status into the Receive and Status FIFOs.

4.1.2 Receive FIFO Operation

Eight bytes of FIFO are assigned to each receiver
for data storage, in addition to the Receive Holding
Register and the Receive Shift Register. The
CL-CD180 can be programmed to generate a ser-
vice request once the number of data bytes re-
ceived and stored in the FIFO reaches a
programmed threshold. See Figure 4-2 for Re-
ceive Operation. The Receive FIFO Service Re-
quest threshold can be selected by programming
the RxTH Bits 3:0 in the Channel Option Register
3. A service request threshold of one-to-eight char-
acters can be selected. Once this threshold is de-
tined, a service request will be automatically
triggered when the condition is met. It is possible
that by the time the host responds to the service
request, there will be more data in the FIFO than
the threshold level.

full-bit full-bit | full-bit | full-bit
time time time time

514180-18

Figure 4—1. Bit Synchronization in CL-CD180

46
DATA BOOK

May 1993

CL-CD180

An overrun condition occurs when the new data ar-
rives, but the Receive FIFO and the Receive Hold-
ing Register are both full. The new data is lost and
the overrun indication is flagged on the character
in the Holding Register. That character and its sta-
tus including the overrun indication will eventually
be transferred to the host by a Receive Exception
Service Request. Note that this character is good,
and is the last character received before the over-
run occurred.

Receiver Service Requests are enabled or dis-
abled via the Receive Data Bit in the Interrupt En-
able Register (IER). Receive Data Bit, when set to
a ‘1, enables service requests to be asserted for
the above causes.

The Prescaler Period Counter is a 16-bit counter
clocked by the system clock. If the system clock is
a 10-MHz clock, the maximum count will establish
a clock tick every 6.5536 ms. The Prescaler Period

i

——== CIRRUS LOGIC

should be set to generate a minimurmn tick period of
1.0 ms. The Receive Time-out Counter is an 8-bit
counter decremental on every tick of the Prescaler
Period Counter. At the maximum count per tick, the
maximum time-out period is 1.671 seconds.

The Receive Time-out is always enabled to trans-
fer data when the Receive Data Service Request
is enabled. From the system applications view-
point, this time-out function is important for asyn-
chronous data transmission. This is especially true
when a FIFO is in use and a service request
threshold for the FIFQO is set greater than one char-
acter. The Timer Service Request will eliminate
long response times when excessive delay be-
tween characters occurs caused either by the re-
mote operator or due to the line being disabled.
The 'No New Data’ Timer Service Request, which
occurs after all data is transferred to the host, may
be used to manage transfers from the host's re-
ceive data buffers.

I Receive Data Count Register I

\

Receiver

Receive

FIFO

Status

FIFO

Background Code:

H.R.-to-FIFO transfer, flow

-

L Receiver Holding Register

HEEEN

Receiver Shift Register

control, other features
(Polling Loop))

r Foreground Code:
Bit Assembly,
S.R.-to-H.R. transtfer O

_ (interrupt-Driven) J

DTR DSR
Out In

514180-19

Figure 4-2. Recelve Operation

May 1993

47
DATA BOOK

——== CIRRUS LOGIC

4.1.3 FIFO Timer Operations

The CL-CD180 uses the Receive FIFO Timer for
two purposes. The first is to avoid ‘stuck’ (or ‘stale’)
data in the FIFO caused by not receiving enough
characters to trip the threshold, which causes a
service request to be issued. The second is to sig-
nal the host that there has been a relatively long
pause in received data. It is useful for the host to
know that ‘no data has arrived lately’ when manag-
ing relatively large /O buffers. This event flushes
the buffer up to the host for processing.

To avoid ‘stuck’ data, each time the CL-CD180
moves a character into a channel's Receive FIFO,
it sets the channel's Receive FIFO Timer to the
value contained in the channel's Receive Time-out
Period Register (RTPR). if the timer expires before
new data arrives, a Receive Good Data sub-type
service request will be asserted for the channel if
the Receive Data Enable Bit in the IER is set.

The other receive timer option is to generate a ser-
vice request for the first Receive Data Time-out fol-
lowing the transfer of all data from the channel to
the host. This is called the No New Data Time-out
(NNDT). This service request is a Receive Excep-
tion sub-type with a status type of ‘Time-out Excep-
tion’. There is no data character associated with
the Time-out Exception status. This option can be
enabled or disabled by controlling the NNDT Bit in
the IER.

If enough data arrives to fill the Receive FIFO to
the level set by the RxTh Bits in CORS, or if a spe-
cial character arrives in the Receive FIFO and the
RxSC Bit of IER is set, the channel will assert the
Receive Data Service Request without waiting for
the timer to expire.

If the timer times-out and the FIFO is not empty,
the ‘stale data’ condition has occurred, and the de-
vice posts a Receive Good Data Interrupt. If the
timer times-out and there is no data, two conditions
are checked. First, a test is made to see if the fea-
ture is enabled, if it is true, then another flag is
tested to make sure this is the first time the condi-
tion has occurred. If this is true, a Receive Excep-
tion Service Request is posted. (The NNDT
internal flag is armed when the FIFO is emptied).

CL-CD180
Eight-Channel Serial Controller

4.1.4 Recelve Service Requests

The Receive Service Request is unique as it has
two sub-types; i.e., it is capable of returning one of
two different vectors during a service request ac-
knowledge cycle. The two sub-types are Receive
Good Data and Receive Exception. The reason
there are two types within one category of service
request is because while Good Data and Excep-
tions require different handling, they are both of
equal priority and need to be serviced in the order
they were received. Suppose, for example, two
good characters are received, then an erroneous
character, then another good character, then there
must be a service request for the first two bytes of
Good Data, then for the Exception, and then for
more Good Data. If Exception Service Requests
were at a different level, the erroneous character
would be processed either before or after the Good
Data, not in sequence as it should be. Receiver
Service Requests will be invoked under several
conditions.

Conditions that cause a Receive Good Data Ser-
vice Request are:

¢ Receive FIFO threshold reached or exceeded

e Receive FIFO time-out — interval between char-
acter receptions exceeds time-out value

Conditions that cause a Receive Exception Ser-
vice Request are:

e Receive erroneous data (parity error)
e Framing error (No Stop Bit)

o No data received time-out (optional)
e Special character detection

o Break detect

NOTE: Data cannot be read from the Receive FIFO or
the Receive Status FIFO except when the
CL-CD180 is within the context of a Receive
Data Service Request for a specific channel.

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

4.1.5 Receive Good Data™ Service Request

A Receive Good Data Service Request is asserted
for any of the following three conditions:

1) Receive FIFO threshold reached, and the FIFO
contains Good Data.

2) Receive FIFO threshold not reached, but the
FIFO contains Good Data and the Receive Data
Timer times-out.

3) Receive FIFO threshold not reached, but the
FIFO contains Good Data and the newly arrived
data contains an exception condition.

When any of these conditions occur, the modified
service request vector indicates to the host that the
service request is for Good Data.

It is not necessary to take all or any of the available
Good Data when a Good Data Service Request is
received. If a host buffer is too full to accept eight
bytes, a smaller number (even a ‘0’) can be read.
Service request context is then left, and the host
buffer is dealt with first. The CL-CD180 will gener-
ate another Good Data Service Request when any
of the three conditions listed above are met.

The CL-CD180 will immediately generate another
service request if the condition that caused it in the
first place remains true. If no data is read, this is al-
ways the case. If some, but not all of the available
data is read, Conditions 1 and 2 will not be true, but
Condition 3 may be true if an exception condition
caused the Good Data Service Request. If this is a
problem, one solution is to temporarily disable Re-
ceive Service Requests on that channel. To avoid
FIFO overflow, do not delay handling the channel
for too long.

!

——= CIRRUS LOGIC

4.1.6 Receive Exception Service Request

Unusual or exception conditions are reported to
the host one character at a time through the Re-
ceive Exception Service Request. As with normal
receive processing, the host determines the re-
questing channel by reading the GICR. It can then
determine the specific exception(s) by reading the
Receive Character Status Register before per-
forming the appropriate action. Receive Excep-
tions are always one-byte deep; multiple bytes of
exception conditions will cause multiple Receive
Exception Service Requests.

For many exceptions it will not be necessary to
read the Receive Data Register once the Receive
Status Register is read. For example, if special
character detection is enabled, and the service re-
quest is for recognition of a special character, the
character is known by definition because the ex-
ception code indicates which character or charac-
ter sequence was detected.

However, for every exception a byte is placed in the
Data FIFO, even though the contents of that byte
may be suspect data, and the byte is discarded at
the end of the exception service routine regardless
of whether it was read by the host or not. This is
done to keep the Status and Data FIFOs in lock-
step with each other. This is different in the case of
a Receive Good Data Service Request where the
user is free to read as many or as few bytes as de-
sired.

Regardless of the number or type of exceptions
occurring, they will be reported to the host one
character at a time; i.e., the number-of-bytes value
in the Receive Data Count Register is not mean-
ingful. Since every error is reported individually,
there is no Receive Time-out Exception generated
if the only characters in the FIFOs are error or ex-
ception characters.

May 1993

S — 9
DATA BOOK

!

—= CIRRUS LOGIC

4.1.7 Types of Errors

There are four types of errors recognized by the
CL-CD180: parity, framing, line break, and over-
run. If parity checking is enabled, parity errors will
be logged in the Status FIFO and the suspect data
will be placed in the Receive Data FIFO. An error
is also logged for framing, i.e., absence of a Stop
Bit. In these cases, the suspect character is in the
Receive Data FIFO and the appropriate status
byte is placed in the Status FIFO.

When a line-break condition is recognized (zero
data with zero parity, and-no Stop Bit), one NULL
(00) character is loaded into the Receive FIFO,
and a break status is recorded in the Status FIFO.
Note that if odd parity is set and the bits received
are all zeroes, it is marked as both a break charac-
ter and a parity error. Generally when a break char-
acter is received, pre-set parity error may be
ignored. No further FIFO entries will be made until
normal-character reception is resumed, i.e., a
Start Bit is found. The line must go high and then
back to low for this to occur.

Multiple errors in one byte are possible because
the CL-CD180 evaluates the characters bit-by-bit
as it receives them. For example, a parity error will
be detected and flagged before the CL-CD180 rec-
ognizes that a framing error has occurred. Parity
plus framing or parity plus break error can occur,
but framing plus a break error cannot occur be-
cause, if a character is received with every bit
equal to a ‘0, it is marked as a break character. If
some bits are a ‘1", but the Stop Bit is missing, i.e.,
a'0, itis marked as a framing error. Thus, any one
character cannot have both framing and break er-
rors.

The length of the Stop Bit is not checked by
CL-CD180. Any Stop Bit long enough to be sam-
pled in mid-bit time as a ‘1’ will be interpreted as a
valid Stop Bit. In addition to all of the other errors,
if an overrun occurs, the Overrun Error Bit will be
set along with other error bits.

CL-CD180

4.1.8 Types of Exceptions

4.1.8.1 Special Character Recognition

‘Special Character Recognition’ is a feature found
only on the CL-CD180 and other Cirrus Logic data
communications controliers. The on-chip proces-
sor compares every good character received with
user-defined special characters stored in registers
on the chip. Both single-character and two-charac-
ter sequence recognition is possible. This capabil-
ity has several applications, including In-Band
Flow Control. Special-character matches are re-
ported to the host via a Receive Exception Service
Request.

Four Special Character Registers are provided per
channel, allowing received characters to be com-
pared to as many as four special characters. How-
ever, these four registers are shared between
Receive Special Character Detection and the
Send Special Character Command, so some plan-
ning is required for using these characters.

The full set of features and options available as
part of Special Character Recognition allows for
Xon/Xoff flow-control to be implemented transpar-
ently to the host, and at the same time, detect ei-
ther of two other special characters in the data
stream and alert the host of their arrival.

The user may individually enable any CL-CD180
channel to recognize special characters. There are
six bits used to control the various recognition and
flow-control modes.

5 —
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

i

—= CIRRUS LOGIC

The following four registers are used to control character recognition:

Bit Name Register Function

SCDE COR3 Enables detection of special characters. Must be set for In-Band
Flow Control to work.

RxSC IER Enables generation of service requests. Cannot be overridden by
other bits. Does not need to be set for iIn-Band Flow Control to work.

XonCH COR3 Controls single- versus double-character matching.

XoffCH Controls single- versus double-character matching.

COR3

The foilowing table shows the effects of XonCH and XoffCH:

XonCH XoffCH Characters matched

0 0 Match on: any of SCHR1-4

0 1 Match on: SCHR1 or SCHR3 or (SCHR2and SCHR4)
1 0 Match on: (SCHR1 and SCHR3) or SCHR2 or SCHR4

1 1 Match on: (SCHR1 and SCHR3) or (SCHR2 and SCHR4)

NOTE: The two-character pairs may share a common first character; however, the same character must be pro-

grammed in both SCHR1 and SCHR2.

Single- versus double-character recognition is
controlled by XonCH and XoffCH. If single-charac-
ter compare is enabled, the CL-CD180 will com-
pare data in the data stream against the four
special characters stored in the Special Character
Registers (SCHR1-4). If fewer than four special
characters are required, the unused Special Char-
acter Register(s) should be disabled by duplicating
the pattern to be matched in the unneeded regis-
ter. When reporting a special character, the
CL-CD180 always reports the lowest-number Spe-
cial Character Register that matches.

To set up Special Character Recognition, first set
the characters to be matched in Registers SCHR1-
4, then set XonCH and XoffCH according to the
length of match wanted. Set the SCDE Bit, and
lastly enable service requests by setting RxSC.

May 1993

Special characters are reported to the host by
placing the appropriate status word in the Status
FIFO and the recognized special character in the
Receive Data FIFO. In the case of a two-character
sequence, only the second character will be stored
in the Receive FIFO. This is because there is room
only for one character and preserving both is not
needed as these characters are user-defined.

4.1.8.2 Flow-Control Characters

Automatic In-Band Flow Control of the CL-CD180
transmitter is a subset of the Special Character
Recognition capability, so to understand both
these features is important. Refer to Section 4.2
for Transmitter Operation. Flow-control characters
and operation are programmable on a per-channel
basis. This is important to operating systems that
allow users to configure their own terminal settings
independently.

DATA BOOK

i

CIRRUS LOGIC

Because the CL-CD180 performs flow-controf
functions before the data is passed to the host, the
response time required of the host to avoid data
overrun is greatly reduced. Additionally, the flow-
control characters can be stripped from the data
stream, relieving the host from processing them.

——

To use automatic flow-control, the Special Charac-
ter Detection (SCDE) must be enabled via Bit 4 of
Channel Option Register 3 (COR3). This causes
all error-free received data to be compared for a
match with the Special Character Registers
(SCHR1-4). In addition, flow-control must be en-
abled via Transmit In-Band Enable (TxIBE, Bit 6) of
COR2. This causes the special characters to be in-
terpreted as flow-control characters. For single-
character flow-control sequences, SCHR1 is used
as Xon and SCHR2 as Xoff. SCHR3-4 are avail-

CL-CD180
Eight-Channel Serial Controller

able for use as normal special-detect characters. If
two-character sequences are enabled via XoffCH
and XonCH (Bits 6 and 7} of COR3, SCHR1 and
SCHR3 form the Xon sequence, and SCHR2 and
SCHR4 form the Xoff sequence.

If flow-control characters are passed to the host,
they are marked as special characters 1 or 2 in the
Receive Channel Status Register (RCSR). If a
two-character sequence is detected, it is com-
pressed to the second character and a status indi-
cating a match of the first character is set. A valid
two-character sequence requires that both charac-
ters be received without error; if an error occurs on
the second character the first character is treated
as a normal character, and this does not affect
non-flow control special character detection. Bits
affecting flow control are summarized below.

Bit Name Register Function
SCDE COR4 Enables Special Character Recognition.
TxIBE COR2 Enables Automatic Transmitter Flow-Control.
FCT COR3 Sets Transparency Mode of flow-control.
XonCH XoffCH Xon Xoff
0 0 SCHR1 SCHR2
0 1 SCHR1 (SCHR2 and SCHR4)
1 0 (SCHR1 and SCHR3) SCHR2
1 1 (SCHR1 and SCHR3) (SCHR2 and SCHR4)

52 L]

DATA BOOK

May 1993

CL-CD180
Eight-Channel Serial Controller

The FCT Bit controls whether flow-control charac-
ters are passed on to the host. It has meaning only
when In-Band Flow Control is enabled, i.e., TXIBE
is set. When the CL-CD180 receives a flow-control
character or character sequence and FCT is a ‘0,
it will start or stop the transmitter, as required, and
pass the character onto the host as a Receive Ex-
ception. Since there is a one-to-one correspon-
dence between the Status and Receive FIFO, the
flow-control character detected will be stored in the
Receive FIFO, and a status byte indicating special-
character detect will be stored in the Status FIFO.
If FCT is a‘'0’, RxSC must be set to enable service
requests to be issued to the host. Otherwise, flow-
control characters cannot be passed as Receive
Exceptions and will instead be passed as Good
Data.

If the FCT Bitis a ‘1’, the CL-CD180 will still start
or stop the transmitter, as required, but the charac-
ter(s) will be discarded, and no exception will be
posted. In either case, the flow-control status of the
transmitter (on or off) is maintained by the
CL-CD180 in the Channel Control Status Register
(CCSR).

The FCT Bit makes it possible to support ‘escap-
ing’ of flow-control characters. Some systems fol-
low a convention where two identical flow-controt
characters in a row indicates that flow control is not
to be performed, but rather one flow-control char-
acter is to be kept in the normal received-data
stream, and the other ‘escape’ character is to be
discarded. If the CL-CD180 is in such a system,
set the FCT Bit to a ‘0’, allowing flow-control char-
acters to pass onto the host. When the host de-
tects two flow-control characters in a row, it simply
restores the proper flow-control state of the chan-
nel and discards one of the characters. However,
for most systems the FCT Bit can be settoa‘1’, re-
ducing loading on the host.

i

——= CIRRUS LOGIC

4.1.8.3 No New Data Received Time-out

It is sometimes useful for the host to sense that ‘no
data has arrived lately’, when managing relatively
large I/O buffers. This event is used to flush the
buffer up to the host for processing. One of the re-
ceive timer options, No New Data Time-out
(NNDT), generates a service request for the first
Receive Data Time-out following the transfer of ali
data from the channel to the host. This service re-
quest is a Receive Exception sub-type, and can be
enabled or disabled by controlling the NNDT Bit in
the IER. Refer to Figure 4-3 for the timer logic.

The timer is started only on data arrival. If the
CL-CD180 processor determines that the Receive
FIFO is empty, the timer has expired, and there
has been a previous receipt of Good Data (and the
timer feature is enabled), a Receive Exception will
occur with a status indicating that a time-out has
occurred.

If the last Receive Exception Service Request was
triggered by a time-out (to avoid ‘stale’ data) the No
New Data Time-out Service Request will occur im-
mediately after the Data Transfer Service Request
completes. If the last service request was triggered
by reaching the threshold, the timer still has to ex-
pire so that some time will pass before the No New
Data Service Request occurs. Likewise, if the last
service request was triggered by some other error,
such as parity, the timer still has to expire so that
some time will pass before the No New Data Ser-
vice Request occurs.

No New Data Function should not be confused
with the time-out that occurs when there is Good
Data in the FIFO but the threshoid has not been
reached and the timer expires. This event is a Re-
ceive Good Data Service Request, and not a Re-
ceive Exception event. Timing-out to transfer Good
Data before it becomes ‘stale’ is standard, and it
cannot be turned off by the user.

May 1993

- EENSRs— 53
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

|

—== CIRRUS LOGIC

N\ ..from other

Background Scanning background

Detects New Character processing...
Arrived

]

Put Character in FIFO;
Reload Timer

Y

Resume Background
Scanning Loop...

Post Recelve Good
Data Service Request

NNDT Feature
Enabled
?

NNDT
internal flag
‘armed’
?

*Y

Clear NNDT
internal flag

Y

Post Receive Exception
Service Request

J

>

Resume Background
Scanning Loop...

1
|

514180-20

Figure 4-3. No New Data Timer Logic

54 ——— R S —— May 1993
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

4.1.9 Programming Notes

If a special condition (e.g., framing or a parity error)
occurred on a special character, the CL-CD180 will
not interpret this character as matched. Flow-con-
trol characters that are processed and discarded
because FCT is set never cause an overrun.

Special Character Recognition only occurs on
characters that have no other problems or errors.
There is one case where the CL-CD180 will not
find a special character even though the character
has been correctly received. If a good character ar-
rives as the ninth-character (e.g., the FIFO is full),
it stays in a Holding Register. If another character
arrives, the good character in the Holding Register
will have its status marked as ‘overflow’, indicating
that it is the last good character received; however,
it will not be recognized as a special character.

There are two cases where the CL-CD180 might
not detect a two-character sequence. If the first
character has been found, but no other character
has been received for a tong period of time and the
Receive Time-out event occurs, no match will be
found because the first character will have been
flushed up to the host. If special-character detec-
tion is disabled by clearing SCDE just when the
CL-CD180 has received the first two-character
special-character sequence, but has not received
the second character yet, the first character will be
lost.

4.2 Transmitter Operation

4.2.1 Basic Operation

Refer to Figure 4—4 for a diagram of transmitter op-
eration. Upon power-on reset, all transmitters are
disabled with their Transmit Qutput held in the
‘Mark’ or a logic ‘1’ condition. Other channel pa-
rameters are undefined. The minimum configura-
tion of a channel for transmission consists of
specifying the bit rate, parity, and number of Stop
Bits. In-band and Out-of-Band Flow Control should
also be set as desired. Next, set either (or both) of

——=—==CIRRUS LOGIC

the service request enable bits. Then issue the
Transmit Enable Command and either of two ser-
vice request enable bits. For normal operation set
the TxRDY Bit, which will cause a service request
to be issued when the FIFO is empty. Since on
power-up the FIFO is empty, a service request will
be received (less than 1 millisecond), and at that
time data can be transferred to the FIFO. Data can
not be transferred to the FIFO as part of channel
initialization; instead one has to be in the service-
request routine to do this. Refer to the Section 2.3
for details.

Once the channel is initialized and serviced, and a
character is written into the Transmit FIFO, the
transmitter starts to transmit by first sending the
Start Bit (space or a logic ‘0’) followed by the data
character according to predefined character
length, least significant bit first. An optional parity
bit (none, odd, even, or forced) is appended fol-
lowed by the final Stop Bit (a logic ‘1’ or a ‘Mark’).
The length of the Stop Bit can be one, one-and-a-
half, two, or two-and-a-half bit-times long.

The transmitter will continue sending characters
one after the other as long as the Transmit FIFO is
not empty. When the Transmit FIFO becomes
empty and the last character has been sent, the
transmitter will stop transmission and will hold the
TxD Output in the ‘Mark’ (1) condition. Transmis-
sion will resume as soon as there is another char-
acter in the FIFO.

In some cases it must be determined if the channel
is completely done transmitting the last bit of the
last character — for instance, before changing the
bit rate. In such a case, the service request is to be
issued only when the last character has been sent,
rather than when the FIFO is empty. In this case,
instead of setting the TxRDY Bit, set the TxMpty
Bit. This will cause a service request to be issued
only when the transmitter is completely empty.

For details on Transmitter Flow-control Operation,
refer to the Section 4.3.

May 1993

— ERRRES— 55
DATA BOOK

!

|

—= CIRRUS LOGIC

Transmitter
FIFO

-

CL-CD180
Eight-Channel Serial Controller

N

Background Code:
FIFO-to-H.R. transfer, flow

I Transmitter Holding Register

HEEEEEEE

Transmitter Shift Register

control, other features

_ (Polling Loop))

Foreground Code: \
Bit Disassembly,
H.R.-to-S.R. transfer

K (Interrupt-Driven))

RTS CTS
Out |In

514180-21

Figure 4—4. Transmitter Operatlon

4.2.2 FIFO Operation

An eight-byte FIFO is provided for each transmit
channel. In addition to the eight-byte FIFO, the
CL-CD180 also contains a Transmit Holding Reg-
ister and the Transmit Shift Register for each chan-
nel. However, when servicing a Transmit Service
Request, only up to eight characters can be written
into the Transmit Data Register (TDR) consecu-
tively.

4.2.3 Transmit Service Requests

Generating a Transmit Service Request depends
on control bits in the Interrupt Enable Register
(IER). Setting the TxRdy Bit of the IER specifies
that a Transmit Service Request be generated
when the FIFO is empty. When this condition oc-
curs, there is still one character in the Transmit

Holding Register and another character in the
Transmit Shift Register. The host CPU, therefore,
has up to two-character times to respond before
the transmitter output goes into the idle (Mark)
condition.

Setting the TxMpty Bit instead of the TxRdy Bit of
the IER specifies that a Transmit Service Request
be generated only when the FIFO, the Transmit
Holding Register, and the Transmit Shift Register
are empty. When this condition occurs, it means
that all characters have been completely transmit-
ted and the channel can now be re-configured. it is
recommended that one of the two bits be set as
needed, but do not set both bits at the same time.

End of a service request must be signalled to the
CL-CD180 by writing to the End-of-interrupt Reg-
ister (EOIR).

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

4.2.4 Speclal Transmitter Commands

The CL-CD180 is capable of sending special char-
acters preemptively (bypassing the FIFO): sending
break characters and inserting delays or pauses
either between characters or to lengthen a break.
There are two basic mechanisms the CL-CD180
uses for these ‘Send Special Character’ and ‘Em-
bedded Transmit Command’ functions.

4.2.5 Special Character Transmission Via
Send Speclal Character Command

Selected special .characters, or two-character se-
guences, may be transmitted preemptively by set-
ting the appropriate bits in the Channel Command
Register (CCR). The Send Special Character
(SEND SP CHj) Bit of the CCR, when set, initiates
the Send Special Character Command. SSPC0-2
Bits of the CCR then specify which character or
two-character sequence is to be used. The choice
of a single- or two-character sequence is deter-
mined by the XonCH and XoffCH Bits of CORS3.

When a Send Special Character Command is
given, the CL-CD180 will insert the special charac-
ter(s) into the data stream immediately following
the current character in the Transmit Holding Reg-
ister. Thus, it is ensured that the special character
will begin transmitting within two-character times
after the command is issued. The Send Special
Character Command overrides all other flow-con-
trol modes, including the state of TXEN and CTS*.
Generally this is the preferred case. However,
sample CTS* or CD* in some applications to deter-
mine if it is okay to send a character before invok-
ing the Send Special Character Command.

The CCRis reset by the CL-CD180 as an acknowl-
edgment of the command. A new command must
not be issued if the CCR contents are non-zero. A

I

——== CIRRUS LOGIC

send special character command will be recog-
nized and cleared within 125 us (at 15 MHz, pro-
portionally longer at lower clock speeds), unless a
break is being sent. if a break is being sent, the
special character will not be sent until after the
break time is complete.

4.2.6 Embedded Transmit Commands

The CL-CD180 may be enabled to recognize cer-
tain ‘escape’ sequences as commands embedded
in the Transmit Data Stream. These commands are
issued to introduce a time delay between charac-
ters, to insert an idle period during the transmis-
sion, or to send a break on the line.

These capabilities are enabled on a per-channel
basis by setting the Embedded Transmit Com-
mand (ETC) Bit in the Channel Option Register 2
(COR2). The ‘null’ (00) character is used as the
controlling character to initiate the special action.
To preserve data transparency, two mechanisms
are provided to allow the null character to be sent
as data. If the host must transmit a null character
as data, either the ETC Mode may be disabled, or
the null character may be preceded by a null, i.e.,
‘00 00’ will cause one-null character to be sent. If
the ETC Bit is not set, the ‘00’ character has no ef-
fect, and it may be sent as ordinary data. ETC
Mode may be enabled or disabled ‘on-the-fly’.

The CL-CD180 uses the Transmit Timer to gener-
ate time delays between characters in the output
data stream. It is also used to extend the duration
of aline-break transmit condition when the delay is
inserted between the ‘Start Break’ and ‘Stop
Break’ embedded-transmit commands. All of the
timers count ticks are determined by the Prescaler
Counter. The two eight-bit Prescaler Period Regis-
ters (PPRH and PPRL) determine the real-time

May 1993

P 57
DATA BOOK

!

—= CIRRUS LOGIC

length of a tick. A tick is the period of the
CL-CD180 System Clock Input (CLK) multiplied by
the Period Registers’ contents.

4.2.7 Sending Breaks

Line breaks may be sent by embedding the follow-
ing sequences in the data stream (all values are
given in Hex):

0081 Send Break: Enter line-break condition
for at least one character time. The line
will enter the break condition and stay
there until one of the following conditions

is met:

1) Another character needs to be sent.

2) If the Insert Delay Special Character Sequence
immediately follows the Send Break Sequence,
the duration of the break transmission is ex-
tended by the amount of the programmed delay.
The Insert Delay Sequence is: 00 82 xx. This in-
serts a delay of ‘xx’ (interpreted as an unsigned
binary number) times the programmed timer
Yick’ set by the Prescaler Period Registers. Mul-
tiple insert delay commands can be executed
consecutively by the CL-CD180 to allow delays
of arbitrarily long length. If ‘xx’ is a zero, no delay
is inserted.

3) The Stop Break Sequence ‘00 83’ is encoun-
tered next. This sequence is optional, and exists
to provide a way to terminate a break without ac-
tually sending another character. If another char-
acter is being sent anyway, no Stop Break is
required.

If there is no more data to be sent, the TxD Pin re-
mains in the state it was left in by the last character.
Since the Stop Bitis always a'1’, the line will be left
in the idle state after any character, except for the
break character. The break character leaves the
line in the ‘0’ state untii more data needs to be sent.
Long breaks can be sent by simply sending one
break and then waiting. To terminate the break,
send the Stop Break Sequence or send another
character.

Sending long breaks has precedence over the
Send Special Character Command, i.e., the time

CL-CD180
Eight-Channel Serial Controller

delay duration must pass before the special char-
acter will be sent.

4.2.8 Sending Inter-Character Delays

In some applications it is desirable to pause be-
tween characters. For example, certain types of
electro-mechanical teletype equipment cannot
handle characters continuously at their specified
bit rate. To accommodate this, the CL-CD180 al-
lows insertion of a delay between characters.

The user embeds an escape sequence into the
Output Data Stream to generate delays between
characters. When the CL-CD180 encounters the
Insert Delay Escape Sequence, it sets the Transmit
Timer to the value contained in the Escape Se-
quence. When the timer expires, the CL-CD180
loads the next character into the Transmit Shift
Register and resumes output (unless the next
character begins another Escape Sequence). The
Escape Sequence for an inserted delay consists of
three characters: ‘00, ‘82’, and ‘tt". The time-out
value ‘tt’' is expressed in timer ticks.

4.2.9 Summary of Speclal Transmitter
Commands

The ETC Bit in COR2 must be set to enable the fol-
lowing functions:

Char. Sequence Effect

00 00 Send one-null character.

00 81h Send one-character time of
line break.

00 82h xxh Delay for ‘xx’ prescaler time
ticks (i.e., Transmit Timer
Value is xx’).

00 83h Stop break.

58 I
DATA BOOK

May 1993

CL-CD180
Eight-Channel Serial Controller

4.3 Flow Control

Variations in response times and system data
transfer rates between systems communicating
across asynchronous interfaces give rise to a need
to control the flow of data between them. Systems
typically are implemented with a receive buffer for
temporary storage of data. When this buffer is
nearly full, the receiving computer ‘flow-controls’
the remote transmitter. When, after processing the
existing data, more buffer space is available for the
receive process, the receiving computer signals
the remote to resume transmission.

Flow control is implemented in one of two ways —
‘out-of-band’ or ‘in-band’ signaling. Out-of-band
signaling is a hardware-based mechanism, per-
formed via extra wires such as the RTS/CTS and
DSR/DTR pairs. It has the advantage of complete
independence from the data stream. However, it is
not always possible to provide all of the wires nec-
essary to support Out-of-Band Flow Control. Also
standards for implementing Out-of-Band Flow
Control vary widely.

In-Band Flow Control works by inserting special
flow-control characters into the stream of data
being sent. It has the advantage that only the data
circuit is required, thus only two wires are needed.
The disadvantage of In-Band Flow Control is that
the two communicating computers must perform
additional functions, specifically, they must monitor
the data stream for flow-control characters and
take the appropriate action. This can be quite bur-
densome because the host computer that receives
a flow-control command must recognize this event
quickly and respond in a timely manner to avoid
overrun at the remote receiver.

Although there are advantages and disadvantages
to each system, in general the trend is toward In-
Band Flow Control. This is because it is more use-
ful than Out-of-Band Flow Control over a wider
range of applications, such as communication via
modems.

!

—= CIRRUS LOGIC

The CL-CD180 provides significant performance
advantages over conventional solutions during
both the receive processing of and the transmis-
sion of flow-control characters. It does this by han-
dling almost all flow control automatically, without
host intervention. It also provides tools to make
host intervention, when required, much easier. Be-
cause the CL-CD180 performs flow-control func-
tions automatically, before the data is passed to
the host, the response time required of the host is
substantially reduced. The possibility of data over-
run is also reduced. Additionally, the flow-control
characters themselves can be stripped from the
data stream, relieving the host from processing
them. The flow-control status of the transmitter is
always available to the Host as a bit in the Channel
Control Status Register (CCSR).

4.3.1 Receiver Flow Control

The CL-CD180 provides both In-Band (Xon/Xoff))
and Out-of-Band Flow Control functions for ensur-
ing that the receiver does not overflow. In-Band
Flow Control is semi-automatic and helps the host
manage its buffer size. Out-of-Band Flow Control
is fully automatic and can be used to prevent the
CL-CD180 Receive FIFO from overflowing.
Figure 4-5 diagrams the receiver flow-control
logic.

When the CL-CD180 receiver is too busy, the
transmitter can be used to send Xoff/Xon to the re-
mote device. This Receiver Software (In-Band)
Flow Control is covered in Section 4.3.3.

The CL-CD180 transmitter can be controlled by
the remote device. This Transmitter Software (In-
Band) Flow Control is covered in Section 4.3.6.

The current flow-control status is always available
to the host. It is stored in the Channel Control Sta-
tus Register (CCSR). Two bits, Receive Flow-on
and Receive Flow-off, show whether the last flow-
control command sent by the CL-CD180 was on or
off. As long as the receiver is enabled, the
CL-CD180 will continue to receive any data sent
regardless of whether it has requested the remote
to shut off.

May 1993

— E— 59
DATA BOOK

i

—== CIRRUS LOGIC

Receiver FIFO, Status FIFO

CL-CD180

Background Code:
H.R.-to-FIFO transfer, other
features. Flow Control:

Match special character?
DSR* asserted?
DTR* threshold reached?

I Receiver Holding Register

A
HEEEEEEE

Receiver Shift Register

_ (Polling Loop) J

~

Foreground Code:
Bit Assembly,
S.R.-to-H.R. transfer

k (Interrupt-Driven)

DTR DSR
Out In
514180-22

Figure 4-5. Receiver Flow-Control Logic

4.3.2 Receiver Hardware (Out-of-Band) Flow
Control

Out-of-Band Flow Contro! uses the Modem Hand-
shake Signal (DTR*) to control the flow of data.
Whenever the Receive FIFO reaches a user-de-
fined threshold, DTR* will be negated. This event
can be used to signal the remote to stop sending
characters. The threshold is set by four bits in the
Modem Control Option Register 1, and can be any
level from one to eight, or disabled. The DTR* Pin
will also be negated whenever DTR* Mode is set
and the channel is disabled or reset. If DTR* Mode
is not set, the DTR* Pin is not changed by the
CL-CD180, and remains at whatever value the
host sets it to.

While it is possible to set the DTR* threshold lower
than the service request threshold, the part will op-
erate as though the DTR* threshold was the same
as the service request threshold. If the DTR*
threshold is set lower, it will be ignored, and DTR*
will negate when the service request threshold is
reached. If desired, set the DTR* thresholdto a‘1’,
and then it will ‘track’ the other threshold automat-
ically.

The receiver monitors the state of DSR* (if en-
abled) and ignores data on the Receive Data Pin if
DSR* is negated. This feature is controlled by the
DsrAE Bit, Bit 0, of Channel Option Register 2
(COR2).

4.3.3 Receiver Software (In-Band) Flow
Control

Host receive buffers often cannot keep pace with
data being received. The CL-CD180 transmitter
can be used to send flow-control characters to the
remote device. This avoids over-flowing the re-
ceive buffers in the host. However, transmitting
flow-control characters is an additional complica-
tion and source of delay when using conventional
devices. As the host’s receive buffer becomes full,
the transmit process must be flagged to insert a
flow-control character (or sequence) in the Trans-
mit Data Stream. Any data already in the Transmit
FIFO will be transmitted ahead of the flow-control
character, increasing the response time at the re-
mote end.

With the CL-CD180, In-Band Flow Control of the
remote system is semi-automatic; two commands

60 -
DATA BOOK

May 1993

CL-CD180
Eight-Channel Serial Controller

(Send Xon, Send Xoff) can be issued by the host
whenever the host wants to flow-control the re-
mote. These special commands make host pro-
gramming and buffer management easier because
it allows the flow-control character(s) to be sent as
the next character, regardless of the contents of
the Transmit FIFO or host transmit buffers.

Flow-control characters are transmitted via the
send special character command in the Channel
Control Register (CCR). The lower-three bits in the
command determine which of the four-special
characters are to be sent. If two-character flow
control sequences are enabled, requesting either
SCHR1 or SCHR2 causes the appropriate two-
character sequence to be transmitted. Refer to
Section 4.2.5 for Special Character Definition de-
tails. Special characters are transmitted regard-
less of the state of transmit enable or transmit flow
control. Transmitting flow-control characters can
be handled independently of the current state of
the transmit channel. In sending special charac-
ters, the CL-CD180 bypasses any data already in
the Transmit FIFO, thereby minimizing delay in
transmitting flow-control characters. The maximum
delay is two-character times. However, if a break is

i

—= CIRRUS LOGIC

currently being transmitted, the CL-CD 180 will wait
for the break transmission to terminate before the
special character is transmitted, regardless of the
length of the break.

The CL-CD180 keeps a copy of the current state of
the receive flow in the CCSR. Two bits are used to
indicate the current state of the channel regarding
flow control: RxFloff and RxFlon. RxFloff and Rx-
Flon are meaningful only when the CL-CD180 is
flow-controlling the remote. Whenever an Xoff is
transmitted, RxFlon is cleared and RxFloff is set.
When a subsequent Xon is transmitted, RxFloff is
cleared and RxFlon is set. When data is received
from the remote, RxFlon is cleared.

The ‘00’ state is provided as an aid to the program-
mer in determining whether there might be a prob-
lem in a communications link. If RxFlon remains
set during normal operation, it could indicate that
the remote did not correctly receive the last Xon.

If flow-control characters are sent by the host by
embedding them in the Transmit FIFO rather than
using the Send Special Character Function, the
CL-CD180 flow-control logic does not sense them,
and the CCSR is not affected.

The table below summarizes the meaning of RxFloff and RxFlon.

RxFloff RxFlon Meaning
1 1 llegal Mode.
1 0 Xoff is last flow-control character sent (flow off).
0 1 Xon is last flow-control character sent (flow on).
0 0 Flow is on, data has been received.
May 1993 — e— w—— — G

DATA BOOK

CIRRUS LOGIC

4.3.4 Transmitter Flow Control

The CL-CD180 provides both automatic In-Band
(Xon/Xoff) and Out-of-Band Flow Control func-
tions. In-Band Flow Control recognizes special
characters or character sequences for Xon and
Xoff control embedded in the data stream. Out-of-
Band Flow Control uses the modem handshake
signals, RTS/CTS, to control the flow of data. Both
types of flow control are implemented between the
Transmit FIFO and the Transmit Holding Register,
not between the Transmit Holding Register and the
Transmit Shift Register. Figure 4-6 diagrams the
transmitter flow-control logic.

All automatic flow-control functions are controlled
by bits in Channel Option Register 2 (COR2), ex-
cept DTR threshold, which is controlled by Modem
Change Option Register 1 (MCOR1). Channel en-
able and flow-control status is stored in the Chan-
nel Control Status Register (CCSR). A TxEn Bit
shows the enabled status of the channel’s trans-
mitter. Two bits, TxFloff and TxFlon, are used to in-

Transmitter FIFO

4

N

CL-CD180
Eight-Channel Serial Controller

dicate the current state of the channels’ flow
control.

Once the Automatic Flow-Control Modes are in-
voked by the host, all actions will be transparent to
the host. If receipt of flow-control characters by the
host is not desired, the Flow-Control Transparency
Bit of COR3 may be set to not pass received flow-
control characters onto the host. If TxIBE is set, the
CL-CD180 will implement the flow-control function
on the transmitter regardless of the FCT Mode.
The host can review the status of the channel by
reading the Channel Control Status Register.

If flow-control status is needed by the host, the
SCDE and RxSC Control Bits must be set and the
FCT Bit must not be set. A special character detect
status and the special character will be presented
to the host by a Receive Exception Service Re-
quest. If the host wishes to manually flow-control
the transmitter, it can do so by using the TxEn Bit,
which will stop transmission after the current char-
acter completes.

Background Code:
FIFO-to-H.R. transfer, other
features. Flow control:

Send Special Character?
Embedded Transmit Command?
X-on/X-off received?
Assert RTS*?

> Observe CTS*
(\ (Polling Loop) y
Fuly
| Transmitter Holding Register Empty 7~
Bit Foreground Code:
1 Bit Disassembly,
H.R.-to-S.R. transfer
| | | | l | | l _ (Interrupt-Driven)
Tranmsitter Shift Register RTS CTS
Out In

Figure 4-6.

514180-23

Transmitter Flow-Control Logic

6 —
DATA BOOK

u—————= May 1993

CL-CD180
Eight-Channel Serial Controller

4.3.5 Transmitter Hardware (Out-of-Band)
Flow Control

Transmit out-of-band flow control is performed au-
tomatically by the CL-CD180 via the CTS* Pin, if
the CTS Auto Enable (CtsAE) Mode is enabled in
Bit 1 of COR2. In this mode, before a character
from the FIFO is transmitted, the CTS* Pin will be
tested, and, if inactive, transmission will be de-
layed. Since flow control is implemented between
the FIFO and the Transmit Holding Register, when
CTS* is negated, it is possible to get both the cur-
rent character being sent and the character in the
Transmit Holding Register.

However, the Send Special Character Command
(e.g., Xon and Xoff) will override CTS* inactive.
This is generally preferred; however, in some appli-
cations sample CTS* or CD* before sending a spe-
cial character.

To complete the handshake with a remote device,
an RTS Automatic Output (RtsAQ, Bit 2) Mode is
also provided. This causes the RTS Pin to be as-
serted throughout any data transmission: normal,
break, and special characters. The RTS Pin is ac-
tivated whenever there is data in the FIFO and
transmitter registers. It is held active until after the
last Stop Bit of the last character is transmitted.

i

——== CIRRUS LOGIC

4.3.6 Transmitter Software (In-Band) Flow
Control

The CL-CD180 transmitter can be programmed to
respond automatically to flow-control characters
received by the receiver. This feature requires no
host assistance and substantially reduces host
processing requirements. If this Automatic Mode is
enabled, when the remote unit transmits an Xoff
character to the CL-CD180 (to prompt the
CL-CD180 to suspend transmission), the
CL-CD180 will terminate the transmission. The
CL-CD180 may require approximately 500 micro-
seconds (~2 character-times at 38.4 kbps) after re-
ceipt of the Stop Bit to recognize that the character
it has received is a flow-control character and set
its internal flag to stop transmission. Transmission
actually stops as soon as the characters in the
Transmit Shift Register and Transmit Holding Reg-
ister are shifted out.

To enable In-Band Flow Control, two bits must be
set. First, the Special Character Detection (SCDE)
must be enabled via Bit 4 of Channel Option Reg-
ister 3 (CORB3). This causes all error-free received
data to be compared for a match with the Special
Character Registers (SCHR1-4). Second, flow
control is enabled via Transmit In-Band Enable

May 1993

S 63
DATA BOOK

——=—== CIRRUS LOGIC

(TxIBE, Bit 6) of COR2, the special characters are
interpreted as flow-control characters.

Different flow-control protocols use either single-
or two-character sequences for the Xon and Xoff
functions. For single-character flow-controi se-
quences SCHR1 is used as Xon, SCHR2 as Xoff,
and SCHR3-4 as normal special detect charac-
ters. If two-character sequences are enabled, via
XoffCH and XonCH (Bits 6 and 7) of COR3,
SCHR1 and SCHR3 form the Xon sequence and
SCHR2 and SCHR4 form the Xoff sequence.

Many operating systems allow users to define their
own terminal’s flow-control settings independently.
The CL-CD180 allows flow-control characters to
be programmed on a per-channel basis.

The FCT Bit controls whether flow-control charac-
ters are passed on to the host. When the
CL-CD180 receives a flow-control character or
character sequence and FCT is a‘0’, it will start or
stop the transmitter as required, and pass the
character on to the host as a Receive Exception
Service Request. Since there is a one-to-one cor-
respondence between the Status FIFO and the
Receive Data FIFO, the flow-control character de-

CL-CD180

tected will be stored in the Receive Data FIFO, and
a status byte, indicating special character detect,
will be stored in the Status FIFO.

If the FCT Bitis a'1’, the CL-CD180 will still start
or stop the transmitter as required, but the charac-
ter will be discarded, and no exception will be
posted. In either case, the flow-control status of the
transmitter (on or off) is maintained by the
CL-CD180 in the Channel Control Status Register
(CCSR).

If flow-control characters are passed to the host,
they are marked as special characters 1 or 2 in the
Receive Channel Status Register (RCSR). If a
two-character sequence is detected, it is com-
pressed to the second character and a status indi-
cating a match of the first character is set. A valid
two-character sequence requires that both charac-
ters be received without error. If an error occurs on
the second character, the first character is treated
as a normal character, and the second character is
reported as an error via a Receive Exception Ser-
vice Request.

Bits affecting flow control are summarized in the
table below:

Bit Name Register Function
SCDE COR4 Enables Special Character Recognition.
TxIBE COR2 Enables Automatic-transmitter Flow Control.
FCT COR3 Sets Transparency Mode of flow control.
IXM COR2 Sets implied Xon Mode
XonCH XoffCH Xon Xoff
0 0 SCHR1 SCHR2
0 1 SCHR1 {(SCHR2 and SCHR4)
1 0 (SCHR1 and SCHR3) SCHR2
1 1 (SCHR1 and SCHR3) (SCHR2 and SCHR4)

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

The remote device can signal the CL-CD180 to re-
sume transmission in one of two ways depending
on the setting of the Implied Xon Mode (1XM) op-
tion Bit COR2. When the IXM Bit is set, the
CL-CD180 will resume transmission upon receipt
of any character, i.e., each character is an implied
Xon. In implied Xon Mode it is assumed that if the
remote is capable of transmitting data, it is able to
receive as well. If a character is treated as an im-
plied Xon, no special status is recorded in the
RCSR, and the TxFlon Bit is not set in the CCSR.
An implied Xon character will not be stripped if
flow-control transparency is enabled.

When the IXM Bit is not set, the CL-CD180 will
only resume transmission upon receipt of an Xon
character. In addition, the host may force a re-
sumption of transmission by issuing a Transmit En-
able Command, which will clear the TxFloff Bit.

The Xon and Xoff characters or character se-
quences are equal in a Toggle Mode. There is no
special bit to enable this mode. The CL-CD180 de-
tects this mode whenever the Xon character
equals the Xoff character, and it implements Tog-
gle Mode automatically.

——== CIRRUS LOGIC

In Toggle Mode, whenever the special character is
received, the current state of flow control is tog-
gled. If flow control transparency is set, the charac-
ter is dropped. If not in flow-control transparency,
the character is passed to the host. If it is a single
character, the special character status is ‘1’ and
the character is put in the Receive Data FIFO. In
two-character sequence, the second character is
placed in the Receive Data FIFO along with spe-
cial character ‘1’ in the Status FIFO.

The TxFloff and TxFlon Bits indicate channe! sta-
tus when the remote device is flow-controlling the
CL-CD180 transmitter. When the remote requests
the CL-CD180 to stop transmission, the
CL-CD180 will set the TxFloff Status Bit in the
CCSR. If TxFloff is set, the last flow-control char-
acter received was a flow-off. When the remote
sends an explicit flow-on character, the CL-CD180
will clear the TxFloff Bit, and set the TxFlon Bit. (If
flow is resumed because of implied Xon, TxFloff
will be cleared, but TxFlon will not be set). When
the CL-CD180 resumes transmission, the TxFlon
Bit will be cleared. Transmit Flow Status Bits will
also be cleared by enabling or disabling the trans-
mitter or resetting the channe!.

This is summarized in the table below:

TxFloff TxFlon Meaning
1 1 llegal.
1 0 Transmitter is flow-controlled off.
0 1 Transmitter on, no data sent yet.
0 0 Transmitter on, CL-CD180 has sent data, or implied Xon has oc-
curred. This is also the ‘normal’ state of these bits when flow control
is not being used.

DATA BOOK

CIRRUS LOGIC

4.4 Modem Signals and General-Purpose
/O

Each channel of the CL-CD180 has four pins that
can be used either as modem-control or general-
purpose input/output pins. The modem signal
names assigned to these four pins have been cho-
sen to provide an easy reference for systems de-
signers. In fact, they are all simply general purpose
inputs and outputs (if automatic out-of-band flow-
control is not used) that can be individually con-
trolled via the modem signal value register(s).
Since they are general purpose, system designers
may choose to connect the pins in any way that
suits the application.

However, when the system software design
chooses to make use of the automatic out-of-band
flow control with the pins, then the signal naming
convention no longer holds true in some cases, de-
pending on whether the device is used as DCE or
DTE. In this case, it is best to think of the pins in
terms of their actual uses within the CL-CD180
and connect them accordingly, without regard to
their names. The RTS* and CTS* Pins are associ-
ated with the transmitter and the DTR* and DSR*
Pins are associated with the receiver. The table
below shows Cirrus Logic’s recommended signal
hook-up if automatic, out-of-band flow control is
desired.

DCE DTE CL-CD180 Out-of-Band Flow
Pins Control
CTS DTR Signal remote to trans-
mit
RTS Not implemented in
this direction
RTS RTS Request remote per-
mission to transmit
CTS CTS Enable transmitter

For example, if the CL-CD180 is designed to be a
DCE and automatic out-of-band flow control is de-
sired, the pin labeled DTR should be connected to
remote CTS input. If the CL-CD180 is to be used
as the DTE side, then the CL-CD180 CTS output
would be connected to the remote CTS input.

CL-CD180
Eight-Channel Serial Controller

Note that if automatic out-of-band flow contro! is
implemented, the activity of DTR and DSR Pins do
not implement the function assigned to those sig-
nal names by the signailing conventions of the
CCITT and other standards organization. These
names would only apply to these pins if they are
under program control and not under automatic
CL-CD180 control. In fact, the “DTR” function, as
defined, enables the modem to go on- and off-line,
depending on the state of the pin. If automatic con-
trol is used, then DTR would go inactive when the
receive FIFO reached the programmed threshold
thus causing the modem to drop the connection
(carrier) to the remote, which would not be the cor-
rect function. Refer to Section 4.3 for details on op-
eration of modem pins in flow-control applications.

Modem

Control

Pins Function

RTS* Request to Send (general-purpose output).

CcTS” Clear to Send (general-purpose input).

DTR* Data Terminal Ready (carrier detect/gen-
eral-purpose input/output).

DSR* Data Set Ready (general-purpose input).

cD* Carrier Detect (general-purpose inputT).

T Depends on the setting of DTRSEL input: if DTRSEL =1,
DTR/CD Pin is output and thus DTR*; if DTRSEL = ‘0’,
DTR/CD Pin is input and thus CD*.

Modem pins are implemented as 1/O ports acces-
sible by either the CL-CD180 processor or the
host. The modem pins are not connected directly
to the transmit or receive hardware. When a user
programs out-of-band modem functions to be ac-
tive, the CL-CD180 processor will read from and
write to these pins. Specifically, when RTS* and
CTS* are being used for transmit flow control, the
CL-CD180 processor will assert RTS* and sense
CTS*, as required. Likewise, when configured to
do so, the Receive FIFO will negate DTR* when
full. The host should not be allowed to re-assert it
inadvertently. The host is not ‘locked out’ of ac-
cessing these bits; care should be taken so that
these bits are not written to, causing the system to
malfunction.

66 —
DATA BOOK

May 1993

CL-CD180
Eight-Channel Serial Controller

The user has direct control over the RTS* and
DTR* Outputs and can sense the state of CTS*,
CD*, and DSR" Inputs through the Modem Signal
Value Register (MSVR). Since the host is access-
ing these pins directly, there is no delay in the
host's ability to detect a level change. DTR* and
CD* depend on the state of the DTRSEL input.

When the CL-CD180 is programmed to detect
level changes and generate service requests when
level changes occur, it does so in firmware by read-
ing the pins and comparing to a previously stored
value. This function is performed in the main timing
loop of the firmware; the maximum time required to
detect a level change under worst-case conditions
is approximately 2 milliseconds. When the
CL-CD180 is performing this function, the modem
pins are periodically sampled rather than continu-
ously monitored; as such they have very little sen-
sitivity to noise, which is desirable in data
communication applications. However, in ex-
tremely noisy applications, re-read a modem line
which has caused a Modem Signal Change Ser-
vice Request to verify that it has indeed changed
and is not merely malfunctioning. This will elimi-
nate even the slight possibility of a noise pulse
causing erratic operation.

When the CL-CD180 is monitoring modem pins to
control transmit or receive functions, it does not
rely on the previously stored value, but checks the
pins at the appropriate time. Thus, there is very lit-
tle delay in this response. For example, before de-
ciding to transmit another character, it will examine
the CTS* Pin at that time. (The CL-CD180 makes
this decision when moving characters from the
FIFO to the Holding Register, not from the Holding
Register to the Shift Register.) Refer to Section 4.3
for flow-control details.

Note that the logical sense of the modem bits is in-
verted; i.e., writing a ‘1’ to the MSVR causes the
output pin to go to nominal zero volts. Likewise, a
low-voltage input will be sensed as a‘1’.

May 1993

——= CIRRUS LOGIC

Generating Service Requests with
Modem Pins

4.4.1

The CL-CD180 can generate service requests
when any one of the input pins changes state. Ei-
ther or both edges may be detected by setting bits
in the two Modem Change Option Registers
(MCORT1 and MCOR2). For each pin, the user can
individually enable on-to-off or off-to-on transition
detection of the inputs. When the CL-CD180 de-
tects such a transition, it sets the corresponding bit
in the Modem Change Register. If the correspond-
ing bit in the channel’s Interrupt Enable Register is
set, the CL-CD180 will assert its IREQ1* Output.
The user must clear the Modem Change Register
during the service request service routine before
writing to the EOQIR.

The CL-CD180 performs this task by reading the
modem input signals and comparing the current
value with the value read in the last pass through
the outer scanning loop. Because this is the low-
est-priority event in the CL-CD180 scanning loop,
changes may not be detected unless they are sev-
eral hundred microseconds long. Modem input
Pins can be used for purposes such as detecting
the closing of a switch. However, the relatively slow
speed of response should be taken into account
when using Modem Input Pins for this purpose.
The CL-CD180 does not latch the Modem Input
Signals.

4.4.2 Using Modem Pins as
General-Purpose 1/O

Since the modem pins can be directly accessed by
the host, they can be used as general-purpose /O
pins if they are not needed for flow control or
modem interfacing. Simply read from and write to
them as any 1/O port.

— 67
DATA BOOK

!

—= CIRRUS LOGIC

4.5 Testing the CL-CD180 — Loopback
Tests

The CL-CD180 performs a basic internal self-test
whenever it is reset. This test provides a reason-
able degree of confidence that the CL-CD180 is
functioning satisfactorily. There are two additional
tests that can be performed by the user to further
ensure complete functionality. These two test
modes are Local and Remote Loopback. Used to-
gether with diagnostic firmware in the host system,
the Loopback Modes provide very thorough test
coverage of all CL-CD180 functional blocks: the
CL-CD180 processor, ROM, RAM, bus interface,
transmitters/receivers, and random logic.

Local Loopback Mode

Local Loopback Mode is a ‘silent’ loopback, i.e.,
data being sent by the transmitter is internally con-
nected to the receiver without reaching the exter-
nal TxD Pin. Generally, this is advantageous
because it allows diagnostic software to operate
without causing unwanted effects on any remote
device that may be connected to the serial line.
During local loopback, the TxD Pin is in the ‘mark’
(a logic '1') state. If non-silent loopback is also
needed, it can be easily implemented externally
with an AND gate or a jumper plug on the serial
connector.

Local Loopback Mode is invoked by setting the
LLM Bit in the Channe! Option Register 2 (COR2)
and then issuing a channel command to tell the
CL-CD180 that COR2 has changed. When in this
mode, the channels TxD Output is internally
looped back to the channel’'s RxD Input. However,
all other channel parameters including modem
pins continue to work independently and normally.
Receive special character recognition, overflow
handling, and other options may be tested by using
the Local Loopback Mode and transmitting the ap-
propriate character sequences. As shown in
Figure 4-7, the loopback connection is directly
from the TxD Signal to the RxD Signal, i.e., all
transmit and receive logic is tested except the ac-
tual /0 buffers.

CL-CD180
Eight-Channel Serial Controller

Remote Loopback Mode

Remote Loopback Mode is provided to support
testing of devices connected to the serial lines. Re-
mote Loopback is invoked by setting the RLM Bit in
the Channel Option Register 2 (COR2). When in
this mode, the CL-CD180 will echo the received
data to the transmitter for transmission back to the
sender. The received data will not be passed on to
the host.

When in Remote Loopback Mode, the transmitter
continues to run as defined by its own Baud Rate
Registers, not the values being used by the re-
ceiver. The CL-CD180 receives a complete char-
acter, strips off Start, Stop, and Parity Bits, and
then re-transmits it with Parity, Length, and Stop
Bit Output options as defined in COR1. Thus, it is
possible to change baud rate. However, this can
result in receiver overflow. In general, when pro-
gramming for Remote Loopback Operation, the
Transmit Bit Rate should be as fast or slightly faster
than the expected receive rate to avoid possible
overrun and loss of data. The number of Stop Bits
should be set to a one, rather than one-and-a-half
or two, if the application permits it. This ensures
that the effective transmit rate is faster than the re-
ceive rate.

As shown in Figure 4-7, Remote Loopback is
done at the character level and not the bit level.
The Receive and Transmit FIFOs are not used in
Remote Loopback. Characters are transferred di-
rectly from the Receive Holding Register to the
Transmit Holding Register. For a diagnostic mode
that tests the FIFOs, other logic is needed to be im-
plemented by programming the host system to
transfer received characters from the Receive
FIFO to the Transmit FIFO. This will permit full test-
ing of FIFO thresholds, service request logic, spe-
cial character operation, etc.

68
DATA BOOK

May 1993

CL-CD180
Eight-Channel Serial Controller

I

——== CIRRUS LOGIC

I,

I Transmit Shift Register H\ N ¢ ,(I Receive Shift Register |

| |
[|

ITransmit Holding Register] Local Loopback Switchl Receive Holding Register—l

Remote Loopback Switch

Transmit FIFO Receive FIFO

514180-24

Figure 4-7. Local and Remote Loopback Logic

May 1993

— 69
DATA BOOK

CIRRUS LOGIC
5. PROGRAMMING

5.1 Types of Registers
The CL-CD180 contains three types of registers:

e Global Registers — registers not specific to a
particular channel

o Indexed Indirect Registers — special registers
that are mapped to unique functions

e Channel Registers — registers specific to each
channel

Global Registers

Global Registers contain information common to
all channels. They are used primarily for passing
vectors and setting-up service request handling.

Indexed Indirect Registers

Indexed Indirect Registers are special registers
that either point to the FIFOs or signal the end-of-
service request processing. The indexed Indirect
Registers are used primarily to transfer data to and
from the serial channel FIFOs. Such transfers can
be done only during a service request. When ser-
vice requests are being serviced by the host, a
context-switching technique is used by the
CL-CD180 to reduce the number of cycles needed
by the host to transfer data to and from the
CL-CD180. The CL-CD180 makes available to the
host ali the registers pertaining to the channel re-
questing service by mapping them through to the
Indexed Indirect Register addresses. This re-
moves the burden on the host of keeping different
addresses according to which channel is being ac-
cessed.

FIFO information is channeled through either the
Receive Data Register, the Receive Character
Status Register, or the Transmit Data Register of
the Indexed Indirect Register set. Use of the In-
dexed Indirect Registers is valid only during appro-
priate service requests; the Transmit Data
Register can be accessed during Transmit Service
Requests, but not during Receive or Modem Ser-
vice Requests. The Channel Access Register's
(CAR) content is left unchanged from the value last
set by the user, but it is not used in a service re-
quest context. The CAR should not be medified
during a service request. During a service request,
only access the channel that has caused the ser-

CL-CD180
Eight-Channel Serial Controller

vice request to be issued (as defined by the Global
Interrupting Channel Register).

Channel Registers

Channel Registers are used to store parameters
specific to each channel, such as bit rates, special
character processing, and modem options. When
not actively involved in a service request, each
channel can be accessed at any time, indepen-
dently of the other channels. Channel Registers
can be accessed by first writing the number of the
channel to be accessed into the Channel Access
Register. The channel number in the CAR is used
by the CL-CD180 as part of the Channel Register
Address.

Individual CL-CD180 Registers are addressed via
a seven-bit address contained in Address Bus Bits
A6-AQ. Address Bit A6 set to a ‘1’ selects the Glo-
bal Registers, and when set to a ‘0’ selects the
Channel Registers. When the CL-CD180 is not in
a service request context, the active channel is de-
fined in the CAR. The contents of the CAR then be-
come part of the Address Field (along with AO0-A5)
needed to access the Channel Register file.

Off-Limit Registers

The CL-CD180 communicates to the host via
shared access to its on-chip RAM. Of the 128-byte
locations in the CL-CD180 address range, only 41
locations are defined as registers available to the
host. The rest are used by the CL-CD180 for inter-
nal variable storage. Users should not access
these registers because doing so may cause the
CL-CD180 to malfunction.

5.2 Access Duty Cycle

The host access to the CL-CD180 appears to be a
simple static read or write cycle, but the actual ac-
cess occurs by arbitrating for the local (on-chip)
bus and ‘stealing’ one-bus cycle. This is com-
pletely hidden from the user in normal circum-
stances, and successive accesses to the
CL-CD180 may be done ‘back-to-back’ with no
delay. However, if the host were to repetitively
read from (or write to) the CL-CD180 as fast as
possible over many cycles, enough CL-CD180 in-
ternal bus cycles would be ‘stolen’ that the
CL-CD180 processor might not be able to keep
pace with its processing. This situation could only

7 —
DATA BOOK

May 1993

CL-CD180

Serial Controller

occur if the host was continuously testing a bit
while waiting for it to change state. If there is a re-
quirement to do something similar, a delay should
be inserted in the host code so that the net-duty
cycle of accesses is less than ten percent. This
limitation applies only when the CL-CD180 is
sending and receiving data on one or more chan-
nels. When initializing or re-configuring a channel,
these registers can be written to at a fast pace.

5.3 Accessing FIFOs Versus Other
Registers

The FIFO storage array is under the control of the
CL-CD180 at all times. This is necessary to ensure
that the FIFO is available for the CL-CD180 pro-
cessor to access whenever needed. During nor-
mal operation, the CL-CD180 processor sets the
FIFO pointers to the value required to transfer
data, regardless of the value placed in the Channel!
Access Register (CAR) by the user. Therefore, the
user cannot access the FIFOs in this manner.

FIFOs may only be accessed in the context of an
active Service Request. At this time only the
CL-CD180 processor causes the FIFO pointers to
be set to the appropriate value for the channel
being serviced. FIFOs are then accessed via the
Indirect Indexed Registers.

|

m

——== CIRRUS LOGIC

5.4 Initialization

The CL-CD180 initialization begins with a manda-
tory hardware reset applied through the active-low
RESET* Input. The System Clock {CLK) Input
must be active during the hardware reset, and the
reset duration must be at least five clock periods.
It is not necessary to synchronize RESET* Input
with CLK. Refer to Figure 5-1.

Immediately following the hardware reset, the
CL-CD180 goes through a firmware initialization,
reaching an Idle Mode within 500 ps. This may be
verified by the host by reading the Global Interrupt
Vector Register and finding its contents to be FF
Hex. Upon internal reset completion, the user may
then configure the CL-CD180 for the desired chan-
nel functions.

A software reset may be performed by setting cer-
tain bits in the Channel Command Register (CCR).
Setting Bits 7 and 0 to a ‘1’ will reset all channels.
This is done by forcing the CL-CD180 processor to
jump to the same power-up sequence that it uses
upon hardware reset. Whether the reset is caused
by hardware or software, the CL-CD180 does not
initialize every register and RAM location to a de-
fined value. The only sure state is that all channels
will be inactive, no service requests will be pend-
ing, and the Global Interrupt Vector Register will be
FF Hex.

May 1993

DATA BOOK

!

—== CIRRUS LOGIC

Master
Chip
Reset

Global
Initialization

Channel
Initialization

C Initialization)

|

N

Y

Load GIVR with chip ID,
PILRs with vectors, and
Prescale Registers

Y

Load CAR with a0

Y

Load COR1-3 with character
settings and operation modes

Y

Issue COR change command
In CCR

\2

Load SCHR1-3, MSVR,
MCOR1-2, Transmit/Receive
Baud Rate Counters, |ER.

Y

Increment CAR

Last
Channel
{CAR=8)

CL-CD180
Eight-Channel Serial Controller

After either a hardware reset via the RESET Pin or a software reset
via a CCR command, wait until the GIVR = xFF before proceeding
with chip initialization.

When the CL-CD180 is ready, begin by loading the GIVR with the
chip ID if there are more than one CL-CD180 in the system. Load
the Service Match Registers with the vectors that will be used
during service acknowledge cycles. Load the Prescale Registers
with the value chosen for the basic time count for timer operations.

In preparation for channel initialization, load the CAR with a ‘0’ to
access Channel Zero Registers.

Before making any changes to the Channel Option Registers, wait
for the CCR to contain a value of zero to ensure that the CL-CD180
is not processing a previous change command for that channel.

Load the Channel Option Registers with the values to enable the
desired modes of operation and character parameters such as
parity, stop bits, etc.

Inform the CL-CD180 that one or more Channel Option Registers
have changed via the COR Change Command.

Load the Special Character Registers with the patterns that will be
used during special character operations; the Modem Change
Option Registers for modem interrupt conditions; the MSVR with the
states of DTR/RTS as necessary and the baud rate constants for
Transmit and Recsive Baud Rate Generators. Set the appropriate
bits in the SRER Register for the interrupt conditions desired.

If more channels, go back to the top of the loop.

514180-25

Figure 5-1. Initialization

72
DATA BOOK

CL-CD180

5.5 Global Initialization

The user must initialize the CL-CD180 by pro-
gramming the following Global Registers before
starting normal operations on the ports — Pre-
scaler Period Registers, the Global interrupt Vec-
tor Register, and the three Service Match
Registers (PILR).

5.6 Service Request Initialization

To prepare the CL-CD180 for service requests the
following registers must be initialized:

e Global Interrupt Vector Register (GIVR)

e three Service Match Registers (PILR1, PILR2,
PILR3)

o Gilobal Interrupting Channel Registers (GICR)

The Gilobal Interrupt Vector Register consists of
five bits of user-supplied information, and three
bits of CL-CD180-supplied service request group
information. This concatenated vector supplied by
the CL-CD180 during a service-request-acknowl-
edgment cycle will direct the host to the proper ser-
vice request subroutine. The host writes the five
MSBs into the GIVR during initialization. These
five bits may be either a chip ID number or a code
that is appropriate for service request handling. In
multiple-cascaded—CL-CD180 applications, these
five bits must have a unique value for each
CL-CD180 to identify which CL-CD180 is respond-
ing to a service request cycle.

Three registers in the Global Register set —
Modem Service Match Register (PILR1), Transmit
Service Match Register (PILR2), and Receive Ser-
vice Match Register (PILR3) store the service re-
quest values for the three types of service
requests. These levels are used to match with the
value that appears on the address bus during a
service-request-acknowledgment cycle. Since
these levels are system dependent, the user must
initialize these registers with the proper values.

The following three registers are used to provide
the channel number of the channel requesting ser-
vice — GICR1, GICR2, and GICR3. Reading any
of these registers causes the CL-CD180 to ‘mask-
in’ three bits specifying the channel number of the
currently active channel. Normally these registers
are read by the host when it is handling a service

i

—= CIRRUS LOGIC

request. In this case, the three bits will be the num-
ber of the channel requesting service. If any of the
three GICR Registers are read when the
CL-CD180 is not in a service request context, the
three bits will be the current value in the CAR.

Bits 4:2 are masked into the contents of these reg-
isters by the CL-CD180 when it is read by the host.
The actual contents of the register are not modi-
fied.

These three registers are provided as a conve-
nience to the user. In most applications the user
will only use one of these locations and set the reg-
ister to an arbitrary value. However, in some cases
it may be useful to be able to record information
about the state of the CL-CD180 (or the software
driving it) that is associated with each of the three
service request types. In this case, the user may
store desired information in the unused bits. When
entering a service routine, the software can check
these bits (a ‘sub-vector’) to read recorded states.

5.7 Prescaler

The Prescaler Period Register (PPR) determines
the fundamental ‘tick’ rate for all CL-CD180 on-
chip timers, the Receiver Data Time-out and
Transmitter Real-time Delay Timers. The PPR
counts Clock (CLK) periods, and the minimum
PPR value used must guarantee a ‘tick’ length of
not less than 1.0 milliseconds. This requires a min-
imum value of 2666h for 9.830-MHz CLK, or2710h
for 10-MHz CLK. When operating at lower clock
speeds than this, a value of at least 2666h must be
used. As shown in the Internal Operation Flow
Chart, Figure 2-3, processing timer events is in
the outer (lowest priority) loop of the CL-CD180
firmware. A timer tick that is too short may result in
two ticks occurring within one pass through the
outer loop; this would resuit in missing one tick.
This is not fatal, but it would result in inaccurate
timings.

5.8 Channel Initialization and Changes

Prior to enabling the individual channels, program
the Channel Registers with desired channel op-
tions and parameters such as character lengths,
parity type, Receive FIFO thresholds, modem sig-
nal detection levels, bit rates, etc. When ready to
begin, enable service requests.

May 1993

73
DATA BOOK

!

—= CIRRUS LOGIC

Channel initialization is accomplished by first writ-
ing to the CAR Register with the number of the
channel to be programmed. This channel number
will automatically become part of the address for
subsequent channel register programming. The
host can use the same set of register addresses
for all channels, thus eliminating the need to calcu-
late addresses.

Certain channel options are controlled by the three
Channel Option Registers. All changes to the
Channel Option Registers must be accompanied
by setting the appropriate, Channel Option Regis-
ter ‘changed’ Bits in the Channel Command Reg-
ister (CCR). The CL-CD180 processor regularly
samples the CCR for any value that is not a ‘0’. If
the CCR is not a ‘0’, the CL-CD180 decodes the
command or commands, acts on them, and clears
the CCR to signify completion of the commands.
New commands must not be issued until any exist-
ing commands have been completed.

5.9 Transmitting Data

When transmitting data, a service request is re-
ceived when the Transmit FIFO is empty. The
number of the channel requesting service (i.e., the
one with the empty FIFO) is available from the
GICR. If there is more data to be sent, transfer up
to eight bytes to the FIFO. If no data is available,
disable the channel. The easiest way to accom-
plish this is by clearing the appropriate bit in the In-
terrupt Enable Register (IER). When new data is
available, re-enable the channel via the IER, and a
new service request for transmit data is received.
At that time, transfer the data to the FIFO. Chan-
nels can be enabled or disabled by giving enable
and disable commands via the Channel Command
Register (CCR), but it is a slower process.

in some cases, it is necessary to know when a
channel has sent the last bit of the last character
rather than an empty FIFO. One example would be
when changing bit rates. Two bits in the Interrupt
Enable Register (IER), TxMpty and TxRdy, control
the exact conditions for generating a service re-
quest. TxRdy indicates when the FIFO is empty,

CL-CD180

and TxMpty indicates when the last bit has been
sent. It is acceptable to have both bits set but
proper operation will be achieved by switching
from the FIFO empty status to the transmitter
empty status when it is necessary to know that all
data has been completely sent. If they are set, the
FIFO Empty Service Request will always occur
first. If there is no more data to be sent, the Trans-
mitter Empty Service Request will be received
later, but in the mean time, FIFO empty requests
may also be received. Once the last bit of the last
character has been sent, a channel can be re-con-
figured.

5.10 Receiving Data

When receiving data, a service request will be sent
(for Good Data) when either the number of re-
ceived bytes meets the threshold level, the Re-
ceive Time-out expires, or there is Good Data
followed by a Receive Exception Condition (the
CL-CD180 must transfer all the Good Data before
giving the Exception). In all cases, the service-re-
quest routine reads the channel number request-
ing service (from GICR) and the number of bytes
available (which can be more, the same, or less
than the number set as the threshold) from the Re-
ceive Data Count Register (RDCR}), and proceeds
to transfer that many bytes, if possible.

Itis not necessary to transfer as many bytes as are
available or any bytes at all. if the host's buffer is
nearly or completely full, the host can accept only
those bytes it has room for, disable Receive Ser-
vice Requests, exit the Service Request Routine,
process the buffer, enable Receive Service Re-
quests, and wait for the next service request. If no
bytes are transferred during a Receive Service Re-
quest, and Receive Service Requests are still en-
abled, the CL-CD180 will immediately re-request
service because the internal conditions that
caused the request to be issued are still true. The
host may either disable service requests or sus-
pend host service request processing; however,
both of these options should be implemented care-
fully as suspending service requests may result in
an overflow condition if the suspension lasts too
long.

74 e,
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

—= CIRRUS LOGIC

6. DETAILED REGISTER DESCRIPTIONS

6.1 Register Map Quick Reference

Hex Hex Hex

Binary Address Address Address
Name Description Access Address (8bit)! (Intel®)? (Motorola®)® Page
GLOBAL REGISTERS
GFRCR Gilobal Firmware Revision Code Register R/W 110 1011 $6B $D6 $D7 77
SRCR Service Request Configuration Register R/W 1100110 $66 $CcC $CD 77
PPRH Prescaler Period Register High RW 1110000 $70 $E0 $E1 80
PPRL Prescaler Period Register Low RWwW 111 0001 $71 $E2 $E3 80
PILR1 Modem Service Match Register RW 110 0001 $61 $C2 $C3 80
PILR2 Transmit Service Match Register R/W 1100010 $62 $C4 $C5 80
PILR3 Receive Service Match Register RW 110 0011 $63 $C6 $C7 81
GIVR Global Interrupt Vector Register RW 100 0000 $40 $80 $81 82
SRSR Service Request Status Register R 110 0101 $65 $CA $CB 82
MRAR Modem Request Acknowledge Register R 111 0101 $75 $EA $EB 83
TRAR Transmit Request Acknowledge Register R 111 0110 $76 $EC $ED 83
RRAR Receive Request Acknowledge Register R 111 0111 $77 $EE $EF 83
GICR1 Global Interrupting Channel Register 1 R/W 100 0001 $41 $82 $83 83
GICR2 Global Interrupting Channe! Register 2 R/W 1000010 $42 $84 $85 83
GICR3 Global Interrupting Channe! Register 3 RW 1000011 $43 $86 $87 83
CAR Channel Access Register RW 1100100 $64 $C8 $C9 84
INDEXED INDIRECT REGISTERS
RDCR Receive Data Count Register R 000 0111 $07 $0E $OF 85
RDR Receiver Data Register R 111 1000 $78 $FO $F1 86
RCSR Receiver Character Status Register R 111 1010 $7A $F4 $F5 86
TDR Transmit Data Register W 111 1011 $78 $F6 $F7 87
EOIR End-of-interrupt Register w 111 1111 $7F $FE $FF 87
CHANNEL REGISTERS
IER Interrupt Enable Register R/W 0000010 $02 $04 $05 88
CCR Channel Command Register R/W 000 0001 $01 $02 $03 89
COR1 Channel Option Register 1 RW 000 0011 $03 $06 $07 92
COR2 Channel Option Register 2 RW 0000100 $04 $08 $09 93
COR3 Channel Option Register 3 R/W 0000101 $05 $0A $0B 94
CCSR Channel Control Status Register R 000 0110 $06 $oC $0D 95
RBR Receiver Bit Register R 011 0011 $33 $66 $67 96
RTPR Receive Time-out Period Register R/W 0011000 $18 $30 $31 96
RBPRH Receive Bit Rate Period Register High R/W 011 0001 $31 $62 $63 96
RBPRL Receive Bit Rate Period Register Low R/W 0110010 $32 $64 $65 96
TBPRH Transmit Bit Rate Period Register High RW 0111001 $39 $72 $73 97
TBPRL Transmit Bit Rate Period Register Low R/W 011 1010 $3A $74 $75 97
May 1993 75

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

—= CIRRUS LOGIC

6.1 Register Map Quick Reference (cont)

Hex Hex Hex
Binary Address Address Address

Name Description Access Address (8bit)! (intel)®> (Motorola)® Pege
CHANNEL REGISTERS (cont.)

SCHR1 Special Character Register 1 RW 000 1001 $09 $12 $13 97
SCHR2 Special Character Register 2 R/W 0001010 $0A $14 $15 97
SCHR3 Special Character Register 3 R/W 000 1011 $0B $16 $17 98
SCHR4 Special Character Register 4 R/W 000 1100 $oC $18 $19 98
MCR Modem Change Register RW 0010010 $12 $24 $25 99
MCOR1 Modem Change Option Register 1 R/W 0010000 $10 $20 $21 100
MCOR2 Modem Change Option Register 2 R/W 0010001 $11 $22 $23 101
MSVR Modem Signal Value Register RW 010 1000 $28 $50 $51 101
MSVRTS Modem Signal Value — Request To Send W 010 1001 $29 $52 $53 102
MSVDTR Modem Signal Value — w 010 1010 $2A $54 $55 102

Data Terminal Ready

NOTES:

1) Hex Address for 8-bit processor.

2) Address for Intel-style processor, see below.

3) Address for Motorola-style processor, see below.

In the above register map, the binary addresses are shown relative to the CL-CD180 address lines. In 16-
and 32-bit systems, it is a common practice to connect eight-bit peripherals to only one byte lane. In 16-
bit systems, the CL-CD180 appears at every other address, i.e., AQ in the CL-CD180 is connected to A1
in the host. In 32-bit systems, the CL-CD180 appears at every fourth address, i.e., A0 in the CL-CD180
is connected to A2 in the host. In both of these cases, the addresses used by a programmer will be dif-
ferent than what is shown.

For instance, in a 16-bit Motorola 68000-based system (or other ‘big-endian’ processors), the CL-CD180
is placed on data lines DO-D7, which are at odd addresses in the Motorola manner of addressing. The A0
in the CL-CD180 is connected to A1 of the 68000. Thus, CL-CD180 address $40 becomes $81 to a pro-
grammer. |t is ‘left-shifted’ one bit, and A0 must be ‘1’ for low-byte (D0-D7) accesses.

In a 16-bit Intel system (or other ‘little-endian’ processors), the CL-CD180 is again placed on data lines
DO-D7, but these are at even addresses. The AQ in CL-CD180 is connected to the A1 in the host, but the
host's A0 must be a ‘0’ to access data lines D0O-D7.

Many 32-bit processors have internal logic to ‘steer’ the data to the correct pins regardless of address
value. However, if the processor employed does not, a scheme similar to the one described for 16-bit ma-
chines can be used, except that the CL-CD180 addresses are shifted two bits instead of one.

Even though not all of the CL-CD180 registers are intended to be read/write, there is no hardware mech-
anism to prevent the user from writing to them. The registers should, in some cases, not be written to by
the host. See the individual register descriptions for details.

N
76 OATA BOOK May 1993

CL-CD180
Eight-Channel Serial Controller

I

|

6.2 Global Registers

Global Registers provide a function common to all channels. There are two groups of Global Registers:
ones that control the configuration of the CL-CD180 and ones that control service requests/interrupts.

6.2.1 Miscellaneous Registers

Global Firmware Revision Code Register (GFRCR) ($6B) — Read/Write

Firmware Revision Code

This register is initialized by the firmware during the power-on reset initialization routine to contain the cur-
rent firmware version code of the CL-CD180. A Revision ‘B’ CL-CD180 is set to $81, and Revision ‘C’is
set to $82.

This register is a RAM location and may be modified by the user. The CL-CD180 sets it to the defined
value only when a hardware or software reset is performed, and its contents are otherwise ignored. This
value can be modified to indicate the configuration status of the CL-CD180, or to indicate any other re-
quirement.

6.2.2 Configuration Registers

Service Request Configuration Register (SRCR) ($66) — Read/Write

PkgTyp RegAckEn DaisyEn GlobPri UnFair lHeserved AutoPri PriSel

This register configures the CL-CD180 depending on the method chosen for handling service requests.
In addition to the ‘traditional’ interrupt-based host interface, writing the appropriate bits in this register pro-
vides for software- rather than hardware-based service request acknowledgments, fixes service request
priorities in either of two ways, and controls Fair Share Interrupt operation. This register preserves com-
patibility with existing CL-CD180 software. For this reason, this register defaults to all zeroes and must be
enabled for each new feature as desired.

RegAckEn and DaisyEn Bits are related to each other, and perform service-request acknowledgments by
accessing registers within the CL-CD180 instead of asserting hardware signalis.

Service requests are prioritized by four other bits. AutoPri enables the priority scheme; PriSel, GlobPri,
and UnFair determine the specific priority to be used.

May 1993 L E—— 77
DATA BOOK

!

|

—== CIRRUS LOGIC

Bit

CL-CD180
Eight-Channel Serial Controller

Description

Bit 7

PkgTyp: This read-only bit indicates the CL-CD180 package type. This bit is a ‘0’
for the 84-pin PLCC.

Bit 6

RegAckEn: Enables register-based service-request acknowledgments. If this bit is
a ‘0, register-based acknowledgments are not accepted. In this case, the results
of a read of any of the service-acknowledgment registers are undefined. This is the
default state of RegAckEn, and it ensures compatibility with earlier versions of the
CL-CD180.

When RegAckEn is enabled, register-based acknowledges allow the user’s soft-
ware to acknowledge a service request by reading from a register rather than by
driving the external IACKIN* Signal. This is convenient in applications where inter-
rupts are not supported or where polling is preferred. Setting this bit does not dis-
able the function of the IACKIN* Signal.

Bit5

DalsyEn: Enables daisy-chaining of register-based service acknowledgments.
When DaisyEn is a‘1’, a CL-CD180 being addressed with a register-based service
acknowledgment (a read takes place from a register-acknowledgment address) for
which it has a pending request, will place the contents of the Global Interrupt Vector
Register modified by the service type on the data bus.

When DaisyEn is a“‘1’, a CL-CD180 being addressed with a register-based service
acknowledgment, for which it does not have a pending service request, asserts
IACKOUT" to pass the acknowledgment down the daisy chain. The next CL-CD180
in the chain will see the acknowledgment as an IACKIN* acknowledgment. The
Service Request Acknowledge Register addresses must be placed in the corre-
sponding Service Match Registers (PILR1, PILR2, and PILR3) as part of the user
setup for daisy-chaining of register-based service acknowledgments.

if daisy-chaining of register-based service acknowledgments is not used, the Ser-
vice Match Registers may be programmed with any address codes that the user
finds convenient for use with the ‘normal’ IACKIN* service-acknowledge mecha-
nism.

If DaisyEn is a ‘0’ and a CL-CD180 is addressed with a register-based service ac-
knowledgment for which it does not have a pending service request, it will respond
by providing an interrupt vector with a modification code of ‘000". The addressed
CL-CD180 treats this as an interrupt acknowledge cycle, but with passing inhibited,
it must ‘take’ the acknowledge with an ACK level of ‘00’ (none of the interrupt types).

RegAckEn must be a ‘1’ to enable register-based service acknowledgments.
DaisyEn has no effect on daisy-chain operation of the regular IACKIN*/IACKOUT*
chain.

DATA BOOK

CL-CD180

et
——
e —————

Eight-Channel Serial Controller

Bit

———== CIRRUS LOGIC

Description (cont.)

Bit 4

GlobPri: When AutoPriis used, if GlobPriis setto a‘1’, the CL-CD180 will prioritize
across muitiple CL-CD180s sharing IREQ lines. If GlobPri is set to a ‘0’, the
CL-CD180 will accept the acknowledge for the highest priority on-chip interrupt. In
both cases, automatic prioritizing is only done on type 1 (normally the modem sig-
nal change type) interrupt acknowledgments through the IACKIN* mechanism or
the register-based acknowledge mechanism.

When using GlobPri and AutoPri, it is possible to use the CL-CD180 with the three
IREQ lines wire-OR’ed together. In this configuration, with any interrupt request as-
serted, the global values of all requests will appear asserted. GlobPri should be a
‘0" to force prioritization among the interrupt sources on-chip. When no on-chip in-
terrupts are pending, the acknowledgment will be subject to daisy-chaining. See
DaisyEn description.

Bit 3

UnFair: Fairness Override Bit. If UnFair is a ‘0", normal Fair Share Interrupt control
is performed. If UnFair is a '1", the fair bits are all forced to a ‘1", disabling the Fair
Share mechanism. This is useful when the AutoPriority Option is used, and the dif-
ferent IREQ lines are wire-OR’ed together.

Bit 2

Reserved. Must be a‘0'.

Bit 1

AutoPri: When set, indicates that the CL-CD180 should prioritize service requests
in the manner selected by the PriSel Bit. In conjunction with the GlobPri Bit, either
local (within the chip) or global (across daisy-chained chips) prioritization is done.
With AutoPri set, auto-prioritization is performed only when a type 1 (modem) in-
terrupt acknowledgment is recognized. Acknowledgments of type 2 (transmit) and
3 (receive) interrupts continue to be unique and specific even with AutoPri set. This
offers a form of local override to Auto-prioritization for Transmit or Receive Service
Request when continuing a second-priority service routine. If not set, the user must
indicate the service request being acknowledged by the choice of service request
acknowledge register.

AutoPri x GlobPri => look at IREQin to prioritize globally.
AutoPri x GlobPri* => look at IREQ to prioritize locally.

Bit 0

PriSel: Prioritized interrupt order option. If AutoPri is set, PriSel selects the highest-
priority service request. If PriSel is a ‘0", receive requests have the highest priority.
If PriSel is a ‘1", transmit requests have the highest priority. Modem signal change
request priority is fixed at the lowest priority.

May 1993

- B—— 79
DATA BOOK

CL-CD180

i

—== CIRRUS LOGIC

Prescaler Period Register — High (PPRH) ($70), Low (PPRL) ($71) — Read/Write

[]

Binary Value

These two registers provide the initialization value for the Timer Prescaler that is clocked by the system
clock. This establishes the clock for the various on-chip timers.

The value loaded into these registers must establish a clock period of at least 1.0 ms. For a clock speed
of 10 MHz, the value must be 10,000 (decimal) or larger. The values in these registers will be programmed
to be FF (Hex) automatically upon a hardware reset.

Modem Service Match Register (PILR1) ($61) — Read/Write

1 Binary Value

This register must contain the value for Modem Signal Change Service Requests that will be presented
on the Address Bus A0-A6 by the host to indicate the type of service request being acknowledged when
IACKIN* is asserted. This register, along with the other two Match Registers, is compared to the value on
the Address Bus during acknowledgment cycles so that the CL-CD180 can determine the service request
being acknowledged by the host.

Bit 7 must be programmed to a ‘1'. The CL-CD180 compares all eight bits internally, but there are only
seven address lines. Bits 6:0 of the register are compared to A6:AQ of the Address Bus. Bit 7 of the reg-
ister is compared with a logic ‘1"

Within any one CL-CD180, the three Match Registers must have unique values. In multiple CL-CD180
designs where service acknowledgments are cascaded, all Match Registers of the same type (e.g.,
Modem) must have the same value.

In designs using register-based service acknowledgments (RRAR, TRAR, and MRAR), the addresses of
these registers must be placed in the equivalent Match Register so that PILR1 contains $75.

Transmit Service Match Register (PILR2) ($62) — Read/Write

1 Binary Value

This register must contain the value for Transmit Data Service Requests that will be presented on the Ad-
dress Bus A0-A6 by the host to indicate the type of service request being acknowledged when IACKIN*
is asserted. This register, along with the other two Match Registers, is compared to the value on the Ad-
dress Bus during acknowledgment cycles so that the CL-CD180 can determine the service request being
acknowledged by the host.

Bit 7 must be programmed to a ‘1'. The CL-CD180 compares all eight bits internally, but there are only
seven address lines. Bits 6:0 of the register are compared to A6:A0 of the Address Bus. Bit 7 of the reg-
ister is compared with a logic ‘1’.

Within any one CL-CD180, the three Match Registers must have unique values. in multiple-CL-CD180
designs where service acknowledgments are cascaded, all Match Registers of the same type (e.g.,
Transmit) must have the same value.

80 S BE— May 1993
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

CIRRUS LOGIC

In designs using register-based service acknowledgments (RRAR, TRAR, and MRAR), the addresses of
these registers must be placed in the equivalent Match Register so that PILR2 contains $76.

Receive Service Match Register (PILR3) ($63) — Read/Write

1 Binary Value]

This register must contain the value for Receive Data Service Requests that will be presented on the Ad-
dress Bus A0-A6 by the host to indicate the type of service request being acknowledged when IACKIN*
is asserted. This register, along with the other two Match Registers, is compared to the value on the Ad-
dress Bus during acknowledgment cycles so that the CL-CD180 can determine the service request being
acknowledged by-the host.

Bit 7 must be programmed to a ‘1. The CL-CD180 compares all eight bits internally, but there are only
seven address lines. Bits 6:0 of the register are compared to A6:A0 of the Address Bus. Bit 7 of the reg-
ister is compared with a logic ‘1'.

Within any one CL-CD180, the three Match Registers must have unique values. In muitiple-CL-CD180
designs where service acknowledgments are cascaded, all Match Registers of the same type (e.g., Re-
ceive) must have the same value.

In designs using register-based service acknowledgments (RRAR, TRAR, and MRAR), the addresses of
these registers must be placed in the equivalent Match Register so that PILR3 contains $77.

May 1993 - - S 81
DATA BOOK

CL-CD180

i

—== CIRRUS LOGIC

Global Interrupt Vector Register (GIVR) ($40) — Read/Write

[Binary Value T2 IT1 ITO
Bit Description
Bits 7:3 These bits are user-defined. However, in a multiple-chip design, these five bits

must have a unique value in each CL-CD180 to identify which CL-CD180 is return-
ing a vector during service acknowledgments. When writing to this register, write
eight bits at once; the CL-CD180 will modify the low-three bits automatically. Note
that if this register is read in a normal manner, the original eight bits will be read
and the modified bits from the last acknowledgment cycle will not be preserved.

Bits 2:0 These three bits indicate the group/type of service request occurring. These bit are
supplied by the CL-CD180 during an acknowledgment cycle.
IT2 IT1 ITO Value Group/Type

0 0 0 0 No Request Pending *

0 0 1 1 Modem Signal Change Service Request
0 1 0 2 Transmit Data Service Request

0 1 1 3 Receive Good Data Service Request

1 0 0 4 Reserved

1 0 1 5 Reserved

1 1 0 6 Reserved

1 1 1 7

Receive Exception Service Request

* This code is returned by the CL-CD180 only when RegAckEn is set, and DaisyEn is not
set. In this condition, the CL-CD180 must provide a vector when acknowledged. If the
CL-CD180 receives an acknowledgment for which it does not have a request pending, it
will return ‘000"

6.2.3 Service Request/interrupt Control Registers

Service Request Status Register (SRSR) ($65) — Read Only

iivi 1] iv [0] IREQ3ext IREQ3int IREQ2ext IREQ2int IREQ1ext IREQ1int

The i-level Bits, ilvi[1] and ilvi[0], are the current context code from the service request context stack. They
are encoded as follows:

ilvi[1:0] Context

00 Not in a service request context

11 CL-CD180 is in a Receive Service Request context
10 CL-CD180 is in a Transmit Service Request context
01 CL-CD180 is in a Modem Service Request context

An accepted interrupt acknowledge cycle pushes a new context onto the stack.

NOTE: The IREQ Status Bits are positive true, and the IREQ* Pins are negative true. The “...int’ (internal) values
are local to the chip being read, and the ‘...ext’ (external) values are present externally on the pin, i.e., the
result of the wire-OR’ed function.

82 May 1993
DATA BOOK

CL-CD180 e
Eight-Channel Serial Controller

Modem Request Acknowledge Register (MRAR) ($75) — Read Only

Transmit Request Acknowledge Register (TRAR) ($76) — Read Only
Receive Request Acknowledge Register (RRAR) ($77) — Read Only

I Modified Interrupt Vector provided on read I

The Service Request Acknowledge Registers are read-only registers that return an appropriate interrupt
vector when read. Reading one of these registers has the effect of a service acknowledgment cycle in the
CL-CD180 (not necessarily the one addressed; it may be one further down the daisy chain). The vector
supplied on the data bus during the cycle is described under the Global Service Vector Register descrip-
tion. RegAckEn must be set for these registers to operate properly.

Global Interrupting Channel Registers 1, 2, 3 (GICR) ($41-$43) — Read/Write

Binary Value c2 C1 co Binary Value —I

There are three registers used to provide the channel number of the channel requesting service. Reading
any of these registers will cause the CL-CD180 to ‘mask-in’ three bits, specifying the channel number of
the currently active channel. Normally these registers are read by the host when it is handling a service
request. In this case, the three bits wili be the number of the channel requesting service. If any of the three
GICR Registers are read when the CL-CD180 is not in a service request context, the three bits will be the
current value in the CAR. Bits 4:2 are masked into the contents of this register by the CL-CD180 when it
is read by the host. The actual contents of the register are not modified.

These three registers are provided as a convenience to the user. In most applications, the user will only
use one of these locations, and will set the register to an arbitrary value. All types of service routines
would use this register. However, in some cases it may be useful to be able to record information about
the state of the CL-CD180 (or the software driving it) that is associated with each of the three service re-
quest types. In this case, the user may associate an individual register with each level of service request,
and store whatever information is desired in the unused bits. When entering a service routine, the soft-
ware can check these bits (a sub-vector) to read recorded states.

Bit Description
Bits 7:5 User-defined. Set to a specific value by the user.
Bits 4:2 Defines the service requesting channel number.
c2 Ct C0 Channel Number
0 0 0 Channel 0
0 0 1 Channel 1
0 1 0 Channel 2
0 1 1 Channel 3
1 0 0 Channel 4
1 0 1 Channel 5
1 1 0 Channel 6
1 1 1 Channel 7
Bits 1:0 User-defined. Set to a specific value by the user.

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

——= CIRRUS LOGIC

Channel Access Register (CAR) ($64) — Read/Write

rReserved | Reserved l Reserved | Reserved A7 (0) Cc2 C1 Co

This register contains the channel number used for channel-oriented host read or write operations when
the host is not in a service request service routine. When the CL-CD180 and the host are in a service
request routine, the CL-CD180 supplies the service-requesting channel number via the Global interrupt-
ing Channel Register. The Channel Access Register contents are not used during service request. The
host service request routine is restricted to accessing only the register set of the service-requesting chan-
nel and the Global Registers.

The Channel Access Register is used by the host when the host is setting up or modifying the configura-
tion of the channel. It is also used to issue certain channel-specific commands such as sending a flow-
control character.

Bit Description
Bits 7:4 Reserved, must be a‘0'.
Bit 3 Internally, to the CL-CD180, this is Address Bit 7. This bit completes the external

to internal CL-CD180 register address mapping, but it is only to be used for test
purposes. In normal operation, this bit should always be a ‘0.

Bits 2:0 Channel number

cC2 C1 Co Channel Number
0 0 0 Channel 0

0 0 1 Channel 1

0 1 0 Channel 2

0 1 1 Channel 3

1 0 0 Channel 4

1 0 1 Channel 5

1 1 0 Channel 6

1 1 1 Channel 7

DATA BOOK

CL-CD180 %

Eight-Channel Serial Controller
— ———== CIRRUS LOGIC

6.3 Indexed Indirect Registers

Certain registers are specially designed to facilitate service-request handling. These registers do not exist
as distinct registers, and can be thought of as pointers. These registers provide functions that are valid
only during service-request service routines, and they must not be accessed at other times.

Three of the registers are actually pointers to the Transmit and Receive FIFOs, i.e., when referenced they
cause the appropriate FIFO to be accessed. These registers are: Receive Data Register, Receive Char-
acter Status Register, and Transmit Data Register.

The CL-CD180 maintains all channel-specific information. During data transfer between the host and the
CL-CD180, the CL-CD180 uses a context-switching technique to switch the proper channel-specific in-
formation into the Global Registers for use by the host. This reduces the processing burden on the host
by eliminating the need to calculate address offsets.

6.3.1 Receive Data Count Register (RDCR) ($07) — Read Only

0 o [o 0 CT3 CT2 CT1 CTo
Bit Description
Bits 7:4 Reserved, mustbe a'0'.
Bits 3:0 Specifies the number of Good Data bytes for transfer from the Receive FIFO at the

time of service request. This may be larger or smaller than the threshold level set
by the user. This register reflects the actual amount of data available, which can be
greater than the threshold level if service-request response is slow, or less than the
threshold if some other event (such as an error condition) has caused the Receive
Good Data Interrupt. This register need only be read when receiving Good Data;
by default all exceptions are one character, and the value in this register during a
Receive Exception is not defined or meaningful. The RDCR will contain a zero if
the current service request is for the NNDT case.

CT3 CT2 CTt CTO Numberof good bytes

0 0 0 0 will not occur
0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8
1001 to 1111 will not occur

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

i

—== CIRRUS LOGIC

6.3.2 Recelve Data Register (RDR) ($78) — Read Only
D7|D6|D5ID4|D3JD2 D1|Doj

This register accesses the Receive Data FIFO for the channel. It is used by all channels to transfer Re-
ceive FIFO data to the host. Successive reads transfer bytes from the FIFO to the host. Reading this reg-
ister increments an internal pointer to the Data and Status FIFOs. During service-request routines for
Good Data, this is the only register that must be read. During service-request routines for Receive Excep-
tion, the Receive Status Register must be read first, then this register may be read. If both the RCSR and
this register are to be read, the RCSR must be read first because reading this register causes the FIFOs
to ‘pop’.

Any attempt to write to this register will cause unpredictable results.

6.3.3 Receive Character Status Register (RCSR) ($7A) — Read Only

Time-out | SCDet2 | SCDeti | SC Deto Break [PE] FE OE

This register accesses the status information for the current receive character.

Bit Description

Bit 7 Time-out: Indicates that the Receive FIFO is empty, and no data has been re-
ceived within the receive time-out period. There is no data character associated
with this status and no other status bits are valid if the Time-out Bit is set. Must be
armed by the NNDT bit in IER.

Bits 6:4 Special Character Detect (SCD0-2):
SCD2 SCD1 SCDO Status

0 0 0 None detected

0 0 1 Special Character 1 or Special Character 1 and 3 sequence
matched (only if Special Character 1 and 3 sequence is
enabled).

0 1 0 Special Character 2 or Special Character 2 and 4 sequence
matched (only if Special Character 1 and 3 sequence is
enabled).

0 1 1 Special Character 3 (only if Special Character 1 and 3
sequence is not enabled).

1 0 0 Special Character 4 (only if Special Character 2 and 4

sequence is not enabled).

NOTE: No special-character match is performed if any type of error occurs. The second
character of a two-character sequence cannot cause a receiver overrun.

Bit 3 Break: Indicates that a break has been detected.
Bit 2 Parity Error: Indicates that a parity error has been detected.
Bit 1 Framing Error: indicates that a bad Stop Bit has been detected.
86 — May 1993

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

i

—= CIRRUS LOGIC

Bit Description (cont.)

Bit 0 Overrun Error: Indicates that new data has arrived but the CL-CD180 FIFO and
Holding Registers are full. The new data is lost and the overrun indication is flagged
on the last character received before the overrun occurred.

Multiple errors in one byte are possible because the CL-CD180 evaluates the character bit-by-bit as it re-
ceives it. For example, a parity error will be detected and flagged before a framing error. If a character is
received with every bit (including the stop bit) equal to a ‘0, it is marked as a line-break. If some bits are
a'1’, but the Stop Bit is ‘missing’ a ‘0", it is marked as a framing error. If odd parity is set and the bits re-
ceived are all zeroes, it is marked as both a break character and a parity error. In addition to any other
bits, the OverrunJBit will be set if an overrun has occurred.

Any attempt to write to this register will cause unpredictable results.

6.3.4 Transmit Data Register (TDR) ($7B) — Write Only

D7 D6 D5 D4 D3 D2

o

1 DO

When servicing a Transmit Data Service Request, the Transmit Data Register accesses the Transmit FIFO
of the service-requesting channel. Data is written to the Transmit Data Register by the host; the
CL-CD180 automatic FIFO pointer mechanism will place the data into the service-requesting channel's
Transmit Character FIFO. Up to eight bytes of data may be written into the TDR during Transmit Data Ser-
vice Request.

Any attempt to read from this register will cause unpredictable results.

6.3.5 End of interrupt Routine Register (EOIR) ($7F) — Write Only

Irrelevant Value

This is a dummy register, and must be written to by the host's service request routine to signal to the
CL-CD180 that the current service-request service is concluded. This must be the last access to the
CL-CD180 during a service-request routine. Writing to this register will generate an internal End-of-Ser-
vice Signal, which ‘pops’ the CL-CD180’s service-request-context stack, aliowing the CL-CD180 to re-
sume normal processing and also service other channels. Service-request contexts may be nested, as
explained in Section 2.4, i.e., one can respond to and service a higher-priority event while in the middie
of a lower-priority service request routine (nesting subroutine calls within other subroutines).

Any attempt to read from this register will cause unpredictable results.

May 1993 87
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

—== CIRRUS LOGIC

6.4 Channel Registers

There are eight sets of Channel Registers, but only one set is available at any given time. This offers the
software-simplifying advantage that a given register is at the same address regardless of the channel
number. To access a given channel's registers, first point to them by writing the channel number to the
Channel Access Register.

6.4.1 Interrupt Enable Register (IER) ($02) — Read/Write

r DSR | cD] cTsS RxD RxSC TxRdy TxMpty NNDT

A ‘1'in each bit position enables service request generation for the associated cause.

Bit Description

Bit 7 Data-Set-Ready (DSR) Service Request: When enabled, generates a Modem-
Change Service Request on the selected level changes of the DSR Input.

Bit 6 Carrier Detect (CD) Service Request: When enabled, generates a Modem-
Change Service Request on the selected level changes of the CD Input.

Bit 5 Clear-To-Send (CTS) Service Request: When enabled, generates a Modem-
Change Service Request on the selected level changes of the CTS Input.

Bit 4 Recelve Data Service Request: When enabled, the Receive Data Service Re-
quest is generated for receive data and Receive Exceptions.

Bit 3 Receive Special Character (RxSC) Service Request: When enabled, the Re-
ceive Data Exception Service Request is generated when a received character
matches one of the four user-defined special characters. When disabled, Receive
Exceptions will be generated for error conditions and time-outs only. If flow-control
transparency is set, flow-control characters will be stripped, and no Receive Spe-
cial Character Exceptions will occur.

Bit 2 Transmit Ready (TxRdy) Service Request: When enabled, the transmitter will
generate a service request when the Transmit FIFO becomes empty. Set this bit
when first beginning transmission on a channel, and before attempting to write data
to the Transmit FIFO. Enabling the service request will cause an immediate Trans-
mit Service Request, allowing it to write data into the Transmit FIFO in the usual
manner. This bit may be set and cleared as needed to regulate the assertion of
Transmit Data Service Requests on each channel. This technique is preferred over
disabling the transmitter.

Bit 1 Transmitter Empty (TxMpty) Service Request: When enabled, a service request
is generated when the Transmit FIFO, the Transmit Holding Register, and the
Transmit Shift Register are all empty. This mode is provided to allow the host to de-
termine when all bits have been sent and it is safe to alter a channel’s configuration.

Bit O No New Data Time-out (NNDT) Service Request: When enabled, a Receive Ex-
ception Service Request is generated after the completion of data transfer from the
CL-CD180 to the host. This feature assists in buffer management by providing a
notice of a gap in the Receive Data Stream longer than the time-out period.

88 May 1993
DATA BOOK

CL-CD180

!

—== CIRRUS LOGIC

6.4.2 Channel Command Register (CCR) ($01) — Read/Write

RESETCHAN] COR CHNG SENDSPCHI CHAN CTL | D3 J D2 | D1 l DO—I

The CCR is a special register used to prompt the CL-CD180 processor to indicate if any channel param-
eters have changed. Bits are set in the CCR to indicate which of several commands to carry out. The
CL-CD180 processor notes changes in these bits and makes the required adjustments to the hardware;
this process can take from microseconds to milliseconds. Therefore, it is important that the host CPU
waits until the CL-CD180 processor has finished the current command before issuing any more com-
mands, or continuing with any operation that the command will affect. For example, after setting the Local
Loopback Bit in COR2, the host must wait until the command is complete before resuming transmission.
If the host does not wait, characters may not be properiy looped back.

The CL-CD180 processor indicates completion by clearing the CCR.

Bit Description

Bit 7 Reset Channel Command.

Bit 6 Channel Option Register Command.

Bit 5 Send Speciai Character(s) Command.

Bit 4 Channel Control Command.

Bits 3:0 Defined by the type of command being issued; see the following descriptions.

Reset Channel Command

RESETCHANIO|0|O|0|0IOITYPE|

This is a software reset command. There are two types of reset — Channel Reset (type 0), which resets
only the current channel, and Global Reset (type 1), which resets the entire part to its power-up condition.
When the channel reset command is issued, the CL-CD180 disables the transmitter and the receiver and
clears the Data and Status FIFOs of the channel. Channel parameters will not be affected by a Channel
Reset.

Bit Description

Bit 7 Reset Channel Command, must be a ‘1.

Bits 6:1 Not used. Must be a‘0'.

Bit 0 Reset Type: If the Reset Type Bit is a ‘0", a software reset of the channel is per-

formed. The transmitter and receiver are disabled, and all FIFQOs are cleared
(flushed). If the Reset Type Bit is a ‘1’, an on-chip firmware initialization of ali chan-
nels is performed. All channel and global parameters are reset to their power-on
reset condition.

L - I
May 1993 DATA BOOK 89

CL-CD180
Eight-Channel Serial Controller

!

|

—= CIRRUS LOGIC

Channel Option Register Change Command

0 COR CHG| 0] 0 |coa3 COR2 COR1 N/U

Changes made to some Channe! Option Register Bits must be signalled to the CL-CD180 by this com-
mand. Any combination of COR changes may be indicated by one command. All of the bits in CORS3 take
effect immediately, and all of the bits in COR2 (except LLM) take effect immediately. In other words, when
changing COR3 or any of COR2 (except LLM), it is not necessary to issue a Channel Option Register
Change Command. However, to preserve compatibility with older CL-CD180 designs, it is acceptable to
set these bits.

Bit Description

Bit 7 Must be a‘0'.

Bit 6 Channel Option Register Change Command, must be a ‘1.

Bits 5:4 Must be a ‘0"

Bit 3 Channel Option Register 3 changed (no longer required).

Bit 2 Channel Option Register 2 changed (required only for Local Loopback Mode
change).

Bit 1 Channel Option Register 1 changed.

Bit 0 Not used.

Send Special Character(s) Command

0 0 SEND SP CH | 0 0 SSPC2 SSPCA SSPCO]
Bit Description
Bits 7:6 Must be a ‘0’
Bit5 Send Special Character(s) Command, must be a ‘1’.
Bits 4:3 Must be a‘0'.
90 T — ———— May 1993

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

i

—== CIRRUS LOGIC

Bit Description (cont.)
Bits 2:0 Special Character Select
SSPC2 SSPC1 SSPC0 Function

0 0 0 Do not use

0 0 1 Send Special Character 1, or characters 1 and 3 in
sequence if COR3 [XonCH)] defines a two-character
sequence.

0 1 0 Send Special Character 2, or characters 2 and 4 in
sequence if COR3 [XoffCH] defines a two-character
sequence.

0 1 1 Send Special Character 3

1 0 0 Send Special Character 4

Y 1 0 1 Do not use
1 1 0 Do not use
1 1 1 Do not use
Channel Control Command
0 0] 0 CHAN CTL | XMTREN | XMTR DIS | RCVREN | RCVR DIS

Bit Description
Bits 7:5 Must be a0’
Bit 4 Channel Control Command, mustbe a'1’.
Bit 3 Transmitter Enable
Bit 2 Transmitter Disable
Bit 1 Receiver Enable
Bit 0 Receiver Disable

When turning the receiver or transmitter on or off, it is faster to simply enable and disable service requests
(IER) rather than using the Channel Control Command.

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

—= CIRRUS LOGIC

Channel Option Register 1 (COR1) ($03) — Read/Write

Parity | ParM1 | ParM0 | Ignore Stop 1 Stop 0 CHL 1 CHLO]

Changes to this register must be signalled via the Channel Command Register.

Bit Description
Bit 7 Parity:
1 = odd parity.
0 = even parity.
Bits 6:5 Parity Mode 1 and 0: Defines Parity Mode for both the transmitter and the receiver.
ParM1 ParMo0 Parity
0 0 No parity
0 1 Force parity (odd parity = force 1, even = force 0)
1 0 Normal parity
1 1 Not used
Bit 4 Ignore: Ignore parity

0 = Evaluate parity on received characters.
1 = Do not evaluate parity on received characters.

Bits 3:2 Stop Bit Length: Specifies the length of the Stop Bit.
Stop1 Stop0 Stop Bt
0 0 1 Stop Bit
0 1 1 1/2 Stop Bits
1 0 2 Stop Bits
1 1 2 1/2 Stop Bits
Bits 1:0 Character Length:
CHL1 CHLO Character Length
0 0 5 bits
0 1 6 bits
1 0 7 bits
1 1 8 bits

DATA BOOK

CL-CD180

!

|

Eight-Channel Serial Controller

—== CIRRUS LOGIC

Channel Option Register 2 (COR2) ($04) — Read/Write

IXM | TXIBE | ETC LLM RLM RtsAO I CtsAE | DSrAE]

Changes only to Bit 4 (LLM) of this register must be signalled via the Channel Command Register.

Bit

Description

Bit 7

Implied Xon Mode (IXM): This bit has meaning only when in the automatic Trans-
mit In-Band Flow-control Mode. During Transmit In-Band Flow-control Mode, the
CL-CD180 stops transmission upon detection of an Xoff character or character se-
quence. The IXM Bit determines whether the CL-CD180 should restart transmis-
sion based on receipt of an Xon character or any character. When IXM Bit is set,
the CL-CD180 will restart transmission upon detection of any character. When IXM
Bit is not set, the CL-CD180 will wait for the Xon character or character sequence
to restart the transmission.

Bit 6

Transmit In-Band (Xon/Xoff) Flow Control Automatic Enable (TxIBE): The
CL-CD180 in the Transmitting Mode is flow-controlied by the remote. Upon receipt
of the Xoff character, the CL-CD180 terminates transmission after the current char-
acter in the Transmit Shift Register, and the character in the Transmit Holding Reg-
ister is sent. The CL-CD180 will resume transmission upon receipt of the Xon char-
acter, or any character, depending on the state of the IXM Bit.

Bit 5

Embedded Transmitter Command Enable (ETC): If set, the embedded special
transmitter command functions are enabled.

Bit 4

Local Loopback Mode (LLM):
1 = Enables the Local Loopback Mode.
0 = Disables the Local Loopback Mode.

Bit 3

Remote Loopback Mode (RLM):
1 = Enables the Remote Loopback Mode.
0 = Disables the Remote Loopback Mode.

Bit 2

RTS Automatic Output Enable (RtsAO): When set, if the channel is enabled, the
CL-CD180 will automatically assert the RTS* Output when it has characters to
send. If CtsAE is also set, it will wait for CTS* to respond prior to transmission.

Bit 1

CTS Automatic Enable (CtsAE): Enables the CTS* Input to be used as automatic
transmitter enable or disable.

Bit 0

DSR Automatic Enable (DsrAE): Enables the DSR* Input as automatic receiver
enable or disable.

May 1993

- 93
DATA BOOK

!

CIRRUS LOGIC

CL-CD180
Eight-Channel Serial Controller

Channel Option Register 3 (COR3) ($05) — Read/Write

Xon CH | Xoff CH | FCT | SCDE RxTH3 RXTH2 RxTH1 RXTHO

Changes to this register do not have to be signalled via the CCR.

Bit

Description

Bit 7

Xon Character Definition:

0 = Xon Character is a single-character code, and it is defined by Special Charac-
ter.

1 = Xon Character is a double-character sequence, and it is defined by Special
Characters 1 and 3.

Bit &

Xoff Character Definition:

0 = Xoff Character is a single-character code, and itis defined by Special Character
2.

1 = Xoff Character is a double-character sequence, and it is defined by Special
Characters 2 and 4.

Bit5

Flow-Control Transparency (FCT) Mode:

0 = Flow-control characters received will be given to the host by Receive Exception
Service Requests.

1 = Flow-control characters received will not be given to the host by Receive Ex-
ception Service Requests.

Bit 4

Special-Character Detection Enable:
0 = Special-Character Status detection is disabled.
1 = Special-Character Status detection is enabled.

Bits 3:0

RxFIFO Threshold:
RxTh3 RxTh2 RxTh1 RxTHO Status

0 Do not use
1 character
2 characters
3 characters
4 characters
5 characters
6 characters
7 characters
8 characters

- 0000000

O = = =t 2 OO0 00
O~ =200 =2 =200
O -0 -20O0O 42020

1001 to 1111 Reserved, do not use.

94

DATA BOOK

= - May 1993

CL-CD180 e
Eight-Channel Serial Controller

6.4.3 Channel Control Status Register (CCSR) ($06) — Read Only

RXEN RxFloff RxFlon] N/U TXEN TxFloff I TxFlon | N/U |

This Status Register stores the current state of the channel. It may be read by the host at any time. If the
host determines that a flow-control state is inappropriate, it may be cleared by enabling or disabling the
transmitter or receiver by CCR command.

Bit Description

Bit 7 RxEn Receiver Enable:
0 = Receiver is disabled.
1 = Receiver is enabled.

Bit 6 RxFloff Receive Flow-off:
0 = Normal
1 = The CL-CD180 has requested the remote to stop transmission (Send Xoff
Command has been given to the channel). This bit will be reset when the
CL-CD180 has requested the remote to restart transmission, or when the receiver
is enabled or disabled, or when the channel is reset.

Bit 5 RxFlon Receive Flow-on:
0 = Normal
1 = The CL-CD180 has requested the remote to restart character transmission
{Send Xon Command has been given to the channel). This bit is reset when the
next (non-flow control) character is received, or when the receiver is enabled or dis-
abled, or when the channel is reset.

Bit 4 Not used.

Bit 3 TxEn Transmitter Enable:
0 = Transmitter is disabled.
1 = Transmitter is enabled.

Bit 2 TxFloff Transmit Flow-off:
0 = Normal
1 = The CL-CD180 has been requested by the remote to stop transmission. This
bit is reset when the CL-CD180 receives a request to resume transmission, or
when the transmitter is enabled or disabled, or when the channel is reset.

Bit 1 TxFlon Transmit Flow-on:
0 = Normal
1 =The CL-CD180 has been requested by the remote to resume transmission. This
bit is reset once character transmission is resumed, or when the transmitter is en-
abled or disabled, or when the channel is reset.

Bit O Not used.

May 1993 —] 95
DATA BOOK

CL-CD180

i

—= CIRRUS LOGIC

6.4.4 Receiver Bit Register (RBR) ($33) — Read Only

rReserved I RxD | Start Huntl Reserved Reserved Reserved Reserved ReservedJ

This register monitors certain functions of the actual receive hardware. It should never be written to as
this will cause the CL-CD180 to fail. Only two of the bits are defined herein; however, the other bit posi-
tions can change value, so these bits should be ‘masked-out’ before testing.

Bit 6 is the sampled state of the RxD Pin, as sampled at the last bit-rate clock edge. This is not the actual
RxD Input, as RxD cannot be sampled in real time. If no data has been received for a period of time, this
bit will still reflect the last sampled state of the line at the end of the last character. This is because the
line is not sampled when the CL-CD180 is looking for the Start Bit of a new character.

Bit 5 indicates whether the CL-CD180 is looking for a Start Bit. If Bit 5 is a ‘1’, it is looking. If Bit 5 is a ‘0’,
it is receiving a character.

6.4.5 Receive Time-out Period Register (RTPR) ($18) — Read/Write

Receiver Data Time-out Period

This register defines the time period for two functions related to the Receive FIFO. As each character is
moved to the Receive FIFO, the Receive Timer is reloaded with the Receive Data Time-out Period. The
Receive Timer is then decremental on each tick of the Prescaler Counter. If the Receive Timer reaches a
‘0, it causes a Receive Good Data Service Request.

There is another optional feature called No New Data Time-out. When enabled, the Receive Timer will
generate a Receive Exception if the timer expires after the last data is transferred from the FIFO to the
host. This is intended to teil the host that no more data is arriving, and to go ahead and process the buffer.

The Receive Time-out Period Register defines the time-out period for both of these functions. It counts in
time increments defined by the prescaler.

6.4.6 Receive Bit Rate Period Register — High Byte (RBPRH) ($31) and Low Byte (RBPRL) ($32)
— Read/Write

Receive Bit Rate Divisor Byte |

These two registers contain the 16-bit pre-load value for the Receive Bit Rate Counter. This count estab-
lishes the basic Receiver Clock Rate, which must be 16 times the desired Receiver Bit Rate. These reg-
isters are reset to a ‘0’ by RESET*. The period established for the 16 times Receiver Clock Rate is equal
to the RBPR 16-bit binary value times the System Clock (CLK) Period.

96 T —— _ May 1993
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

i

—== CIRRUS LOGIC

6.4.7 Transmit Bit Rate Period Register — High Byte (TBPRH) ($39) and Low Byte (TBPRL) ($3A)
— Read/Write

[Transmit Bit Rate Divisor Byte |

These two registers contain the 16-bit pre-load value for the Transmit Bit Rate Counter. This count estab-
lishes the Transmitter Clock Rate, which must be 16 times the desired Transmitter Bit Rate. The precise
period established for the 16 times Transmitter Clock is equal to the RBPR 16-bit binary value times the
System Clock (CLK) Period. These registers are reset to a ‘0’ by RESET*.

6.4.8 Special Character Register 1 (SCHR1) ($09) — Read/Write

Special Character 1

This register stores the right-justified bit pattern for Special Character 1. Unused bits must be a‘0". During
receive, this character is one of the four characters compared with the received data for special-character
recognition. If a match occurs with one of these four characters, it is noted in the Receiver Status FIFO
entry accompanying the received character unless a double-character compare is enabied. In this case,
the Receive Status FIFO entry will not be made until both characters are compared and matched.

During transmit, this register contains the characters that are sent as a result of the Send Special Char-
acter 1 command. If two-character sequences are enabled, Characters 1 and 3 will be sent.

Special Character 1 defines the Xon character or the first-half of the Xon-character sequence. The second
half is Special Character Register 3.

6.4.9 Special Character Register 2 (SCHR2) ($0A) — Read/Write

Special Character 2]

This register stores the right-justified bit pattern for Special Character 2. Unused bits must be a‘0’. During
receive, this character is one of the four characters compared with the received data for special-character
recognition. If a match occurs with one of these four characters, it is noted in the Receiver Status FIFO
entry accompanying the received character unless a double-character compare is enabled. In this case,
the Receive Status FIFO entry will not be made until both characters are compared.

During transmit, this register contains the characters that are sent as a result of the Send Special Char-
acter 2 command. If two-character sequences are enabled, Characters 2 and 4 will be sent.

Special Character 2 defines the Xoff character or the first-half of the Xoff-character sequence.

HE e —
May 1993 DATA BOOK 97

N CL-CD180
e — Eight-Channel Serial Controller

6.4.10 Special Character Register 3 (SCHR3) ($0B) — Read/Write

Special Character 3

This register stores the right-justified bit pattern for Special Character 3. Unused bits must be a‘0’. During
receive, this character is one of the four characters compared with the received data for special character
recognition. If a match occurs with one of these four characters, it is noted in the Receiver Status FIFO
entry accompanying the received character unless a double-character compare is enabled. In this case,
the Receive Status FIFO entry will not be made until both characters are compared.

During transmit, this register contains the characters that are sent as a result of the Send Special Char-
acter 3 command.

Special Character 3 may Be the second-half of the Xon-character sequence.

6.4.11 Speclal Character Register 4 (SCHR4) ($0C) — Read/Write

Special Character 4

This register stores the right-justified bit pattern for Special Character 4. Unused bits must be a‘0’. During
receive, this character is one of the four characters compared with the received data for special character
recognition. If a match occurs with one of these four characters, it is noted in the Receiver Status FIFO
entry accompanying the received character unless a double-character compare is enabled. In this case,
the Receive Status FIFO entry will not be made until both characters are compared.

During transmit, this register contains the characters that are sent as a result of the Send Special Char-
acter 4 command.

Special Character 4 may be the second-half of the Xoff-character sequence.

98 May 1993
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

—== CIRRUS LOGIC

6.4.12 Modem Change Register (MCR) ($12) — Read/Write

DSRchg | CbDchg CTSchg 0 0] 0 | 0 [0 |

The CL-CD180 sets bits in this register when it recognizes a level change on a modem pin, as pro-
grammed by the Modem Change Option Registers. Changes detected will be a cause for asserting the
Modem Service Request if corresponding Service Request Enable Bits are set. Once the service request
is asserted, updates to this register are inhibited until End-of-Interrupt Register (EOIR) is written at the
end of the Modem Service Request Routine. The host must clear these register bits during the service
routine.

Bit Description
Bit 7) DSR Changed: A logic ‘1’ denotes that the Data-Set-Ready Input has changed
state.
Bit 6 CD Changed: A logic ‘1’ denotes that the Carrier Detect Input has changed state.
Bit 5 CTS Changed: A logic ‘1’ denotes that the Clear-to-Send Input has changed state.
Bits 4:0 Must be a‘0’.
May 1993 e ———GSS——— 0

DATA BOOK

———.
Plm—"Y
——

—= CIRRUS LOGIC

CL-CD180
Eight-Channel Serial Controller

Modem Change Option Register 1 (MCOR1) ($10) — Read/Write

DSRzd [CDzd | CTSzd] 0 DTRth3 DTRth2 DTRth1 DTRthO

This register is used to define the current state change options to be monitored.

Bit Description

Bit 7 DSRzd Is a ‘1’: Detect high-to-low voltage transition on DSR* Input (zero-to-one
transition of DSR (MSVR) Bit).

Bit 6 CDzd is a ‘1’: Detect high-to-low voltage transition on CD* Input (zero-to-one tran-
sition of CD (MSVR) Bit).

Bit 5 CTSzd is a ‘1’: Detect high-to-low voltage transition on CTS* Input (zero-to-one
transition of CTS (MSVR) Bit).

Bit 4 Must be a ‘0’

Bits 3:0 Defines the threshold level that causes negation of DTR* when this flow-control op-

tion is specified. Normally, this level should be equal to or higher than the service-
request level threshold as set in CORS. If it is set lower than the service-request
threshold, it will default to the service-request threshold level.

DTRth3 DTRth2 DTRth1 DTRthO Function

0 0 0 0 Automatic DTR Mode disabled
0 0 0 1 1 character
0 0 1 0 2 character
0 0 1 1 3 character
0 1 0 0 4 character
0 1 0 1 5 character
0 1 1 0 6 character
0 1 1 1 7 character
1 0 0 0 8 character

100
DATA BOOK

May 1993

CL-CD180
Eight-Channel Serial Controller

!

—= CIRRUS LOGIC

Modem Change Option Register 2 (MCOR2) ($11) — Read/Write

DSRod Chod | CTSod [0 0 o [o [o |
This register is used to define the current state change options to be monitored.
Bit Description
Bit 7 DSRod is a ‘1’: Detect low-to-high transition on DSR* input (one-to-zero transition
DSR (MSVR,) Bit).
Bit 6 CDod is a ‘1’: Detect low-to-high transition on CD* Input (one-to-zero transition of
CD (MSVR) Bit).
Bit 5 CTSod is a ‘1’: Detect low-to-high transition on CTS* Input (one-to-zero transition
of CTS (MSVR) Bit).
Bits 4:0 Must be a‘0'.
6.4.13 Modem Signal Value Register (MSVR) ($28) — Read/Write
DSR CD [CTS I N/U N/U N/U DTR RTS

This register is read to determine the current input levels on the Modem Input Pins. It is written to supply
an output value for the RTS* and DTR* Pins. The register bits have the opposite polarities from the actual
states on the individual pins. Writing a ‘1’ causes the pin to go to nominal zero volts.

Bit Description
Bit 7 DSR: Current state of Data-Set-Ready Input.
Bit 6 CD: Current state of Carrier Detect input.
Bit 5 CTS: Current state of Clear-to-Send Input.
Bits 4:2 Not used.
Bit 1 DTR: Current state of Data-Terminal-Ready Output.
Bit 0 RTS: Current state of Request-to-Send Output.
May 1993 ———— ()1

DATA BOOK

T am— CL-CD180
Eight-Channel Serial Controller
CIRRUS LOGIC 8

6.4.14 Modem Signal Value Request-To-Send (MSVRTS) ($29) — Write Only
0 | 0 | 0 | 0 0 0 0] RTS

In the Modem Signal Value Register, a write to either RTS or DTR affects the state of the other one. This
can be a problem when the CL-CD180 is using one of these signals for fiow control and the other one
needs to be used under host control. This register writes to RTS without affecting the state of any other
bits. RTS is at Bit 0.

6.4.15 Modem Signal Value Data-Terminal-Ready (MSVDTR) ($2A) — Write Only

0 0 0 0 0 0 [DTR 0

In the Modem Signal Value Register, a write to either RTS or DTR affects the state of the other one. This
can be a problem when the CL-CD180 is using one of these signals for flow control and the other one
needs to be used under host control. This register writes to DTR without affecting the state of any other
bits. DTR is at Bit 1.

102 P May 1993
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

—= CIRRUS LOGIC

7. ELECTRICAL SPECIFICATIONS

7.1 Absolute Maximum Ratings

Operating Ambient TEMPEratUreccoooiiiiiiiii e cenee 0°C to 70°C
Storage TEMPETAUIE ...t e s -65°C to 150°C
All voltages, with respect to groundc..ccooceeriiiiivinciinn e -0.5 volts to V. + 0.5 volts
Supply VORAGE (Vo) oo e +7.0 volts
Power DiSSIPAtIONcoccoiiiiiii i 0.5 watt

NOTE: Stress above those listed under Absolute Maximum Ratings may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any conditions above those
indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat-
ing conditions for extended periods may affect device reliability.

7.2 Recommended Operating Conditions

SUPPIY VORAGE (Vor) v eeeereemieieeeee ettt sttt et e sn et 5 volts £ 5%
Operating free-air ambient temperature ... 0°C < Tp < 70°C
SYSTEIM CIOCK ..v ittt etie ettt et eere e st st et e e st et aen e eb b e sbe et e b easeabesrnateeaaeas 12.5 MHz

7.3 DC Electrical Characteristics
(@ Vee = Svolts £ 5%, Tp= 0°Cto 70°C)

NOTE: Before beginning any new design with this device, please contact Cirrus Logic, Inc., for the latest errata in-
formation. See the back cover of this document for sales office locations and phone numbers.

Symbol Parameter MIN MAX Units Conditions

ViL Input Low Voltage -0.5 0.8 \

VIH Input High Voltage 2.0 Vee \ (See note below)
VoL Output Low Voltage 0.4 \ loL= 8 mA

VoH Output High Voltage 24 Vee \ loy = -8 MA

e Input Leakage Current -10 10 pA 0 < Vjp< Vg

I Data Bus three-state leakage current -10 10 uA 0 < Vout< Ve
loc Open Drain Output Leakage -10 10 uA 0 < Vgut < Ve
lcc Power Supply Current 75 mA CLK = 12.5 MHz
May 1993 e — — T — 103

DATA BOOK

P ey —————
e ———
——tA

CIRRUS LOGIC

CL-CD180

Eight-Channel Serial Controller

7.3 DC Electrical Characteristics (cont.)

Symbol Parameter MIN MAX Units Conditions
Cin Input Capacitance 10 pF
Cout Output Capacitance 10 pF

NOTE: Clock and RESET* Viy MIN = 2.7 volts.

7.4 Index of Timing Information

Figure

Figure 7-1.
Figure 7-2.
Figure 7-3.

Figure 7—4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.
Figure 7—11.
Figure 7-12.
Figure 7-13.

Figure 7-14.

DATA BOOK

Title Page

ClockedBus Interface Reset
ClockedBus Interface Clocks iiiiiiiiinn..
Clocked Bus Interface Read Cycle,

Motorola®-Style Handshake.

Clocked Bus Interface Service Acknowledgment Cycle,
Motorola®-Style Handshake.ocoiiiiiienii.

Clocked Bus Interface Write Cycle,
Motorola®-Style Handshake.ooooiiiieiiiiiaiiii.

Clocked Bus Interface Read Cycle,
Intel®-Style Handshake.

Clocked Bus Interface Service Acknowledgment Cycle,
Intel®-Style Handshake.l

Clocked Bus Interface Write Cycle,
Intel®-Style Handshake.

Un-Clocked Bus Interface Read Cycle,
Motorola®-Style Handshake.coviiiriinieinanann...

Un-Clocked Bus Interface Service Acknowledgment Cycle,
Motorola®-Style Handshake.ooiiiiiiiiinaa.

Un-Clocked Bus Interface Write Cycle,
Motorola®-Style Handshake.c.coiiiiiiiii..

Un-Clocked Bus Interface Read Cycle,
Intel®-Style Handshake.ttt

Un-Clocked Bus Interface Service Acknowledgment Cycle,
Intel®-Style Handshake. . ..

Un-Clocked Bus Interface Write Cycle,
Intel®-Style Handshake.co.viiiiiii i

May 1993

CL-CD180
Eight-Channel Serial Controller

!

——= CIRRUS LOGIC

7.5 AC Electrical Characteristics

Internally, the CL-CD180 is a fully clocked design; however, the hardware intertace to the CL-CD180 may
be either un-clocked or clocked. An un-clocked interface is generally easier to implement, especially if the
CL-CD180 and its host are operating at different clock speeds. A clocked interface may be faster in some
applications.

7.5.1 Clocked Bus interface

Data transfers to or from the device occur in two steps. The first step occurs during the clock-low time. If
the read/write state machine detects that it is time to do a cycle, it acquires the internal bus. The second
step, that of actually transferring the data, occurs during the clock-high time. The cycle is complete at the
end of the clock-high time.

The read/write state machine determines that it is time to do a cycle when there is a falling edge on the
clock and both CS* and DS* are low. There is a specified setup time which must be met to guarantee that
the cycle will begin. If this setup is not met, the cycle will occur one clock later. If the cycle is recognized,
arbitration for the internal bus is done during the clock-low time. Addresses (and data, if a write cycle)
must meet another setup time specification to the rising edge of the clock for the actual data transfer to
occur properly during the clock-high time. In addition, the addresses must remain valid throughout the
clock-high time, as specified. If the cycle is a write cycle, data must remain valid as specified. If the cycle
is a read cycle, data is guaranteed valid for a specified time after the rising edge of the clock.

Service Acknowledge Cycles are a special case of read cycles. The service acknowledge ‘read’ (which
returns the Global Service Request Vector value to the host) is started when the read/write state machine
detects both DS* and another internal signal derived from both IACKIN* and DS*. There are two possible
worst-case paths to consider when determining whether DS* and IACKIN* meet the necessary setup
times to guarantee recognition on a particular clock edge. The longest path is DS*; it must propagate
through a gate, an 8-bit comparator, a state machine, and another gate before arriving at the read/write
state machine. The setup time for this is given in Table 7-1.

The other critical path is IACKIN*; it must pass through a state machine and a gate before arriving at the
read/write state machine. The setup time to guarantee recognition on a particular clock edge is given in
Table 7-1. Intel-style pin names are shown in {curly brackets}. All times are in nanoseconds, unless oth-
erwise specified.

May 1993 — w— 105
DATA BOOK

N CL-CD180
fo———— . .
===CIRRUS LOGIC Eight Channe Sertl Controllr
Table 7-1. Clocked Timings

Number
in Description MIN? MAX® Notes
Figures

4 Setup, DS*{RD*} and CS* low to CLK low, for read or write cycle to start 15 b
(‘'ordinary’ reads and all writes)

2 Setup, DS* {RD*} low to CLK low, for Service Acknowledge Cy_cle to 30 c
start (IACKIN* Cycles and read cycles from Acknowledge Registers)

3 Setup, IACKIN* low to CLK low for cycie to start 15

4 Setup, Address Valid to CS* and DS* low 5

5 Setup, Address Valid to DS* (service acknowledge cycles) 7 g

6 Setup, Write Data Valid to CLK high 0

7 Setup, R/W* {RD*, WR"} stable to DS* and CS* low (read, write cycles) 0 b.e

8 (DS* and CS*), or (RD* and CS*), or (WR* and CS*), high 10 tg

9 Hold time, CS* low after CLK high (read, write cycles) 40 h

10 Hold time, DS* {RD*} after valid data 0 Infinity n

11 Hold time, Address Valid after CLK high 40 h

12 Hold time, Write Data Valid after CLK high 25

13 Hold time, IACKIN* low after next CLK low 7 i

14 Clock Period (T «) 80 500 i

15 Clock Low Time 37.6 250 i

16 Clock High Time 424 250 i
Clock Duty Cycle 47% 53%

17 Clock Rise/Fall time 3 k

18 RESET pulse width (after power is good and clock is stable) gec;:ggz

19 Data Bus out of Hi-Z after CLK low 0

20 Read Data Valid after CLK high 66

21 IACKIN* to IACKOUT* propagation delay 30

22 IACKOUT" high after IACKIN* high 30

23 DS* {RD*} high to data bus three-state 0 25

24 DTACK" assert after CLK high (DTACKDLY = 0) 35

25 DTACK* assert after CLK low (DTACKDLY = 1) 30

26 DTACK* negate after DS* {RD* or WR*} negation 20

106 May 1993

DATA BOOK

CL-CD180
Eight-Channel Serial Contro

i

ller

—= CIRRUS LOGIC

Table 7-1. Clocked Timings (cont.)

Number
in Description MIN® MAX?® Notes
Figures
27 IACKOUT" assert after CS* and DS* active on register acknowledge cy- 40 m
cle with no match
28 DTACK* active pull-up time n
29 IACKOUT* high after end of cycle 30

Unless otherwise noted, all values are in nanoseconds (ns).

The reference to DS* and CS* refers to whichever one goes active last; that is, both signals must meet the setup time require-

ment.

Enabling the Register Acknowledge (‘regack’) feature changes the timing somewhat, even on cycles where ‘regack’ is not

being used.

Calculated value; guaranteed by design, but not tested.

For Motorola-style interface, refers to R/W*.

For Intel-style interface, refers to RD* or WR* (whichever is inactive for that cycle).

A cycle must positively end before another begins; that is, control signals shall return to states such that no cycle is pending or

active.

Guaranteed by design, but not tested.

During Register Based Acknowledge cycles, these signals must be held in the correct state until valid data is presented by the

device, as indicated by DTACK* going active. Note that in daisy-chain applications, the response from the chain may be quite

long due to the IACKIN*-|ACKOUT* propagation delay required for the actual interrupting device to receive the select

(IACKIN*). Waiting for the active DTACK" from the chain will eliminate any timing problems relating to these parameters.

i JACKIN* must be low for at least one clock period plus setup and hold times if there is only one CL-CD180 in the daisy chain.
If there is more than one CL-CD180 in a daisy chain, IACKIN* must be low until it has rippled all the way down the chain.

1" When using the clock out (CKOUT) of one CL-CD180 to drive subsequent CL-CD180s (such as in daisy-chain environments),

CKOUT is skewed (delayed) by 3 ns from the internal clock. Therefore, on subsequent CL-CD180s, setup times are improved

by 3 ns and hold times are derated by 3 ns.

For clock periods greater than 100 ns (10 MHz or less clock), rise and fall time may be 5 ns maximum.

Greater than a ‘0’ by design, but not tested.

™ This is the time for IACKOUT* to assert on register acknowledge cycles. IACKOUT* asserts if the device determines the ac-
knowledgment is not intended for that part. If IACKOUT* asserts, the device does not drive the data bus or assert DTACK*.
These functions are left to a device further down the daisy chain that accepts the acknowledge cycle.

" DTACK* sources current (drives ‘high’} until the voltage on the DTACK* line is approximately 1.5 volts. Then DTACK* goes to

an ‘open-drain’ (high-impedance) state.

[L I =N o (=]

T ©

- x

May 1993 S R 107
DATA BOOK

|

. CL-CD180
==CIRRUS LOGIC _EightCh

annel Serial Controller

Vee

CLK /

18
RESET*
Figure 7-1. Clocked Bus Interface Reset
14
16 15
Figure 7-2. Clocked Bus Interface Clocks

108 == -

DATA BOOK

CL-CD180

!

|

—= CIRRUS LOGIC

cL-cp1so / \ y \ / \

cLOCK \ Y

1 -— —»{ 8 "—
DSt - \ / ‘*\ NEW CYCLE MAY BEGIN
- 10]
cs* \ j
L 9
— 7 j—
W / \ DON'TCARE
4 | |
[—— 11| —
ADDRESS 2ONT Y VALID DON'T CARE
— 19|<— g~ 20 3> — 23 '4—
DATA-READ — — — = |- — -(UNDEFINED)(VALID) -----------
— | 24 |t~ 125
DTACK*
\
- 28
|- 26
IACKIN*
—m{ 29 }47
IACKOUT*
- 27 ~>\ /

Figure 7-3. Clocked Bus Interface Read Cycle,
Motorola®-Style Handshake

- 108
DATA BOOK

——.
—.
——R

|

—= CIRRUS LOGIC

CL-CD180

CL-CD180
CLOCK
DS* |—2 — = 8 lg—
/
\ [/ \\ NEW CYCLE MAY BEGIN
10 |-
[—
cs
-
RIW*
ADDRESS VALID DON'T CARE
—»119 —= 23
DATA-READ = = = — = = = = = = = = UNDEFINED X' VALID Y- —————-————.
—{ 24|~ P25
DTACK*
28
8 26
> 13
IACKIN® o
\
\
——— 21 e«
IACKOUT* 22
Figure 7-4. Clocked Bus Interface Service Acknowledgment Cycle,
Motorola®-Style Handshake

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

i

—= CIRRUS LOGIC

CL-CD180 / \
cLOCK \ / \
1 —»! 8 }4—

\ // \ NEW CYCLE MAY BEGIN

cs* °
\
—| 7 g—
R/W* DON'T CARE

4 |lg—

.
TN

l—— 11 —

ADDRESS 2ORT VALID DON'T CARE

6

ref—12
DATA-WRITE DON'T CARE VALID DON'T CARE

— 24'4— {25
DTACK*
A\))

w

Lt 26
JACKIN®
IACKOUT*
Figure 7-5. Clocked Bus Interface Write Cycle,
Motorola®-Style Handshake
May 1993 — e— 111

DATA BOOK

|

CL-CD180
Eight-Channel Serial Controller
=="CIRRUS LOGIC —L

M

e

/ * NEW CYCLE MAY BEGIN

”

\ DON'T CARE

_>
/
10
-~ 11| —
ADDRESS 29N VALID DON'T CARE
_>

— 19|<— - 20
DATA-READ — — — = = = 4 UNDEFINED)L VALID Yomm -

—>l 24'4— 25
DTACK*
\ | .

g 26
IACKIN*
IACKOUT*
— o\ /
Figure 7-6. Clocked Bus Interface Read Cycle,
intel®-Style Handshake
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

i

|

——= CIRRUS LOGIC

ce/ N\N_ / N_/ N_/

RD* —>5’<—2—> —»8‘4—

let— 11| —
ADDRESS DON’T CARE)(VALID DON'T CARE
—
VALID

—{10 [~ 42* 23
DATA-READ _ _ _ o e e oo ~{ UNDEFINED X --------
25
24— P
DTACK* 3
\ I *ﬁ
28
— 3 > 26
IACKIN* \
N\
= 13
l—— 21 22
IACKOUT*

Figure 7-7. Clocked Bus Interface Service Acknowledgment Cycle,
Intel®-Style Handshake

DATA BOOK

!

|

—= CIRRUS LOGIC

CL-CD180
Eight-Channel Serial Controller

CL-CD180 / N / \
CLOCK
we 21! ‘—’,8 [
\ / \
«— 9 —
cs*
\ j

—>] (7
/ \ DON'T CARE
-« 11—
ADDRESS 29N VALID DON'T CARE
6
le- 12
DATA-WRITE DON'T CARE VALID DON'T CARE
— 24'47 {25
DTACK* I
\) 2
’4— 26
IACKIN®
IACKOUT*
Figure 7-8. Clocked Bus Interface Write Cycle,
intel®-Style Handshake
114 -

DATA BOOK

May 1993

CL-CD180
Eight-Channel Serial Controller

7.5.2 Un-Clocked Bus Interface

i

——

CIRRUS LOGIC

Un-clocked timing diagrams represent worst-case synchronization delays. That is, they reflect the maxi-
mum number of clock cycles required to complete the operation.

Internally, the CL-CD180 fully synchronizes all signals; thus, the user need not be concerned with setup
times or metastability. The vast majority of CL-CD180 designs employ an un-clocked Bus Interface.

All times are based on a master clock (CLK) of 15 MHz. All times are measured in nanoseconds. Intel-
style handshake signals (where appropriate) are shown in {curly brackets}.

Table 7-2. Un-Clocked Timings

Number . Description MIN? MAX? Notes
1 Setup time, address to CS*, DS* {CS*, RD* or WR*} 5 b
2 Setup time, R/W* to CS* or DS* [¢] b
3 Hold time, address after CS* or DS* {CS* or RD* or WR*} 0 cd
4 R/W* hold time after CS* and DS* 5 cd

Delay time, DTACK* assert to valid read data: a1
5 lf DTACKDLY =0 .30
If DTACKDLY =1
DTACK" assert after CS* or DS* {RD*} or IACKIN*
6 If DTACKDLY =0 150 b.e
If DTACKDLY =1 175
7 Hold time, read data after CS* and DS*{RD*} high 1 30 cto
CS* or DS* {RD*} high from DTACK"* low)
8 lf DTACKDLY =0 31 d.h.i.g
If DTACKDLY = 1 3
9 DTACK" inactive from (CS* or IACKIN®) or DS* high 30 cl.d
10 DS* {RD*} high pulse width 10 d
11 Setup time, Address to IACKIN* 23 k1
12 Setup time, write data to DS* {or WR*} low -10
13 Hold time, write data after DS* {or WR*} high 0
14 x_REQ* deassert after DTACK* asserted 2 Tck + 50 m
15 Setup time, R/W* {WR*} and CS* to IACKIN* low 0 n
16 x_REQ* reassert delay after write to EOSRR 2 Tclk + 50 o.p
17 IACKIN* assert/deassert to IACKOUT* assert/deassert prop delay 30
18 Data bus out of high-impedance after DS* {RD*} low 5 a
19 Setup time, address to DS* {RD*} during acknowledge cycles 7
20 IACKOUT* assert after CS* and DS* {RD"} active on register ac- 40 r
knowledge cycles with no match
21 DTACK* active pull-up time $

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

——= CIRRUS LOGIC

Unless otherwise noted, all values are in nanoseconds (ns).

During read cycles, CS* and DS* {RD*} are gated together internally. This specification is with respect to whichever goes ac-
tive (low) last.

During read cycles, CS* and DS* {RD*} are gated together internally. This specification is with respect to whichever goes inac-
tive (high) last.

This specification is with respect to whichever goes inactive (high) last.

The values given is for 15-MHz operation. The time depends on system clock rate and the chosen DTACKDLY option. The
actual time in any case can be determined by the formula:

It DTACKDLY = 0, then the time is 1.5(Tclk) + 43 ns

If DTACKDLY = 1, then the time is 2.0(Tclk) + 48 ns

This specification is with respect to whichever of IACKIN* and DS* {RD*} goes active (low) last.

The data bus is three-stated immediately after removal of DS* {RD*}. The device is guaranteed to be off the bus by the speci-
fied maximum time. The time can be as short as the minimum time. The hardware design should assure that the data has
been read before DS* {RD*} is removed.

In multiple-CL-CD180 designs, the Interrupt Acknowledge cycle must be long enough to accommodate the IACKIN* to
IACKOUT* daisy-chain propagation delay from the first to the last CL-CD180. IACKIN* must remain low until after DTACK*
asserts.

For Acknowledge cycles, this specification refers to IACKIN* instead of CS*.

During Interrupt Acknowledge cycles, IACKIN® is asserted instead of CS*; CS* should remain high. Note that IACKIN* timing
is not always the same as CS*.

During acknowledge cycles, addresses must propagate through the Service Match Registers. If a service request is pending
on this CL-CD180, the match must finish before IACKIN* asserts. This is ensured by the specifications.

This specification is with respect to IACKIN* only.

™ This specification refers to one of Receive, Transfer, or Modem Service Request Outputs (RREQ*, TREQ", MREQ").

This specification is with respect to DS*. CS* and R/W* must be high before the assertion of DS* to avoid the possibility of the
CL-CD180 misinterpreting the cycle as a read or write.

This is the time required to reassert a service request if the internal conditions of the CL-CD180 are such that the request
should be asserted.

This specification refers to one of Receive, Transfer, or Modem Service Request Outputs (RREQ*, TREQ*, MREQ").

The data bus is guaranteed to become active after DS* {RD*} low and before data is valid.

This is the time for IACKOUT* to assert on register acknowledge cycles. IACKOUT* asserts if the part determines the ac-
knowledgment is not intended for that part. If IACKOUT* asserts, the part does not drive the data bus or assert DTACK*.
These functions are left to a device further down the daisy chain that accepts the acknowledge cycle.

DTACK* sources current {drives ‘high’) until the voltage on the DTACK" line reaches 1.5V. At that time, DTACK* switches to
an ‘open-drain’ (high-impedance) state.

o [~

o a

o —

= - = =

- o > -

- o

«

116 - Muy 1993
DATA BOOK

CL-CD180

i

—= CIRRUS LOGIC

. 1 [-— —» 3
ADDRESS VALID x

—>|2

Cs*, Ds* _\

g 10

\ /

| 18 ->| 5 -« 7
DATA-READ _ _ _ @ o - ——— INVALID VALD Y memem e -
lt— 6 8 —port——9 21
DTACK*

g— 20
IACKOUT* /
Figure 7-9. Un-Clocked Bus Interface Read Cycle,
Motorola®-Style Handshake
May 1993 117

-
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

—== CIRRUS LOGIC

S T P —» 3
ADDRESS X VALID X

IACKIN*

[———— 17 |————— 17
IACKOUT*

e _/ X

18 l— 5 > 7
READDATA _ _ _ _ _ _ _ - INVALID VALID| Y- mme-a— -
’4— 6 — |-t 8 — Yot 9 21
DTACK* \
N\
}4 14 j/'
x_REQ*

Figure 7-10. Un-Clocked Bus Interface Service Acknowledgment Cycle,
Motorola®-Style Handshake

/-]
118 e— May 1993

CL-CD180

I

CIRRUS LOGIC

——

—>’ 1 f— —» 3
ADDRESS X VALID X
RW* # 2 ret— —»| 4 y—
cs* /
—
N_ / \
- 10
Ds*
4
/
— 12 = 13 }*
WRITEDATA . - m m e — = (VALID) _________ -
legf—— 6 8 — pwrt——9 21
DTACK*
16 :'
x_REQ*

Figure 7-11. Un-Clocked Bus Interface Write Cycle,
Motorola®-Style Handshake

May 1993

119
DATA BOOK

i

—= CIRRUS LOGIC

CL-CD180
Eight-Channel Serial Controller

ADDRESS VALID X
cs* __‘1‘ > / 3 ‘
\ /
l«——10
RD* /
-\
N\ /
5
—»| 18 ’4? -7 4’\
DATA-READ o - — — = — — — - (INVALIDX VALID) ---------
lf—— 6 — ek 8 Joo- Lo 9 21
DTACK* \
\
IACKOUT* »

Figure 7-12. Un-Clocked Bus Interface Read Cycle,
Intel®-Style Handshake

DATA BOOK

CL-CD180

Eight-Channel Serial Controller

ADDRESS

IACKIN*

IACKOUT*

WR*
cs*

RD*

READ-DATA

DTACK*

x_REQ*

——= CIRRUS LOGIC
— 11 e —» 3
X VALID X
— /

—>’15<— | 4 }4—
1/ \ X
e y 4—10‘1
........ vl R R

[— 6 — Pt~

\

Figure 7-13. Un-Clocked Bus Interface Service Acknowledgment Cycle,
Intel®-Style Handshake

May 1993

DATA BOOK

|

CL-CD180

IN

—= CIRRUS LOGIC

ADDRESS VALID X

”
.

WRITEDATA - — — — = (VALD | Vemmmmee e
la—— 6 8 — ol 9 21
DTACK*
16
x_REQ*

Figure 7-14. Un-Clocked Bus Interface Write Cycle,
Intel®-Style Handshake

122 I Muy 1993
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

i

—== CIRRUS LOGIC

8. PACKAGE DIMENSIONS — 84-Pin PLCC

[1.185 MIN -
LISMAX g
[1.158 MAX ’l
mlislalfclialulwlcBalal jalelislalicslolicBalalal
\ A
1
n
1
1]
1
n
D x
Z
o 3
u o n
i =2
D x
z
p 2
b =2
no--
1]
1]
1]
1]
1]
1

[wun |
:) 5
+ e

.020 .050 {013 MIN
MIN TYP .021 MAX

NOTE: The dimensions are in inches.

——i
———
———

CL-CD180

CIRRUS LOGIC
9. ORDERING INFORMATION

The order number for the 100-pin part is:

CL-CD180-10PC—-C

Cirrus Lagic, Inc.:l_ | T— Revision *
Product Line: T .
Communications, Data Ceg‘ziﬁtr‘r"r:rg;"ge-
Part N
art Number Package Type:
Internal Reference Number — P=PLCC

t Contact Cirrus Logic, Inc. for up-to-date information on revisions.

Eight-Channel Serial Controller

124 A
DATA BOOK

May 1993

CL-CD180
Eight-Channel Serial Controller

I

——= CIRRUS LOGIC

Appendix A

Differences Between Revision B and Revision C

The CL-CD180 Revision C is an enhanced version of the CL-CD180 Revision B octal UART. Several new
features have been provided that add flexibility to both the hardware and software interface of the device.
The Revision C device provides a 25% performance increase over the Revision B device, the result of
increasing the clock speed from 10 MHz maximum to 12.5 MHz in Revision C. The clock input for a
Revision C device requires a 47%/53% (or better) duty cycle (see Section 7 of this data book).

The pinout of the CL-CD180 Revision C version is identical to the CL-CD180 Revision B device.

The GFRCR Register of the CL-CD180 Revision C device indicates its version by returning a value of hex
82 when read. The bit definition is as follows:

Bit 7 Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0
1 0 0 [¢] [¢] o] 1 0

The sections below describe the new features and capabilities of the Revision C device.

A.1 MSVDTR and MSVRTS — Separated Control of DTR and RTS Outputs

In Revision C devices, two new registers have been added to aid manual control of the DTR and RTS
outputs. They are the MSVDTR and MSVRTS Registers (address hex 2A and 29, respectively). In the
Revision B device, it is not possible to write to either DTR or RTS without affecting the other. These new
registers in Revision C allow individual access to the respective modem output pin.

MSVDTR Register:

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
X X X X X X DTR X
MSVRTS Register:
Bit 7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
X X X X X X X RTS
May 1993 — 125

DATA BOOK

CL-CD180
Eight-Channel Serial Controller

!

——= CIRRUS LOGIC

A.2 Active DTACK* Release

The Revision C device provides an active driver on the DTACK* output to reduce the signal rise time on
the trailing edge of the DTACK* strobe. In the CL-CD180 Revision B device, DTACK" was simply released
(three-stated) at the end of the DTACK cycle, and it relied on the external puli-up resistor to pull the signal
to the logic ‘1’ state. Depending on the value of the resistor chosen and the number of devices on the
DTACK* line, signal rise times could be quite long. The Revision C implements a special driver on the
DTACK* output that actively drives the DTACK* to the logic ‘1" state and then immediately releases it so
that it does not interfere with other devices on the shared signal. The puli-up resistor, however, is still
required to keep the signal at the logic ‘1’ state when it is not being driven.

A.3 Register-Based Acknowledge

Five new registers have been added to Revision C to provide a more flexible host interface. Three of these
new registers have been provided for systems that do not generate the IACKIN* Signal as a normal part
of an interrupt service routine or that do not implement an interrupt-based system. These registers aliow
the interrupt acknowledge cycle to be initiated by performing a simple register read cycle. Thus, they are
in the regular register address map and are selected in the same way as any other register. For easier
implementation of polled systems, the two other new registers provide interrupt status; no external logic
is necessary. These two new registers also allow interrupt configuration to enable the new features.

These five registers are: Receive Request Acknowledge Register (RRAR), Transmit Request Acknowl-
edge Register (TRAR), Modem Request Acknowledge Register (MRAR), Service Request Configuration
Register (SRCR), and Service Request Status Register (SRSR).

A.3.1 Receive Request Acknowledge Register (RRAR) Address = 77 (hex) (Read Only),
Transmit Request Acknowledge Register (TRAR) Address = 76 (hex) (Read Only),
Modem Request Acknowledge Register (MMAR) Address = 75 (hex) (Read Only)

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
X X X X X IT2 IT1 ITO

These three virtual registers provide a means to acknowledge a service request without implementing an
ACKIN cycle. For example, if the Revision C device is requesting service for a transmit condition, a read
from the TRAR address will put the device in the service acknowledge context in the same manner as an
IACKIN* cycle (with a proper match for the PILRx Registers) would have done on the Revision B device.
The vector that will be returned during the read cycle will be the same as is provided by the GIVR (now
GSVR) Register during the IACKIN* cycle. The value will be whatever was previously loaded into the five
most significant bits of the GSVR with the three remaining bits (IT2-IT0) providing the request type vector.
For receive service requests, the host reads from the RRAR address, and for modem requests, it reads
from the MRAR address. At the end of the service routine, host software must still perform the dummy
write to the EOIR (now EOSRR) Register to terminate the service and take the device out of the service
context. There is a slightly longer address setup time for accesses from the RRAR, TRAR, and MRAR;
these will be provided when device characterization is complete but will be approximately 15 to 20 ns as
opposed to the 6 to 10 ns required for a normal register read/write.

NOTE: These registers are only accessible if register-based acknowledges are enabled in the Service Request
Configuration Register (see below). If not enabled this way, reading from these registers will have unpre-
dictable results.

126 e May 1993
DATA BOOK

CL-CD180 —N
Eight-Channel Serial Controller —
——== CIRRUS LOGIC

A3.2 Service Request Configuration Register (SRCR) Address = 66 (hex)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 RegAckEn DaisyEn GlobPri Unfair not used AutoPri PriSel

This register is used to enable any or all of the new options available for service requests in the CL-CD180
Revision C. Each function is described below.

RegAckEn — Register-Based Acknowledge Enable

I this bit is ‘0", register-based acknowledgments are not accepted and the results of a read of any of the
service acknowledgment registers is undefined. This enable bit provides backwards compatibility with
Revision-B-based software. To enable any of the new features, this bit must be set so that previous ver-
sions of a software driver will not inadvertently activate the register-based acknowledge.

DaisyEn — Enable Daisy-Chain Register-Based Acknowledgments

When DaisyEn is a ‘1", a Revision C device addressed with a register-based service acknowledgment (a
read occurs from a register acknowledgment address) for which the device does not have a pending ser-
vice request, asserts IACKOUT* to pass the acknowledgment down the daisy chain. The next CL-CD180
in the chain will see the acknowledgment as an IACKIN* acknowledgment. The Service Request Acknowi-
edge Register addresses must be placed in the PILR Registers as part of the user setup for daisy-chain-
ing of register-based service acknowledgments. If daisy-chaining of register-based service
acknowledgments is not used, the PILR Registers may be programmed with any address codes the user
chooses for use with the ‘normal’ IACKIN* service acknowledge mechanism.

It DaisyEn is a ‘0", and a Revision C device is addressed with a register-based service acknowledgment
for which the device does not have a pending service request, it will respond by providing an interrupt
vector with a modification code of ‘000'.

RegAckEn must be a ‘1" to enable register-based service acknowledgments.
GlobPri — Set Mode of Global (Across Multiple CL-CD180 Revision C Devices) Priority

When AutoPri is used, if GlobPri is a *1’, then the Revision C device will prioritize across multiple
Revision C devices sharing REQ lines. If GlobPriis a'0’, then the device accepts the acknowledge for the
highest priority on-chip interrupt. in both cases, automatic prioritizing is only performed for Type 1 (the
modem signal change type) interrupt acknowledgments. Both the IACKIN* mechanism and the register-
based acknowledge mechanism are subject to AutoPri treatment.

UnFair — Fairness Override Bit

If UnFair is a ‘0", normal fair-share interrupt control is performed. If UnFair is a‘1’, the fair bits are all forced
to ‘1, disabling the fair-share mechanism. This is useful when the Automatic Priority Option is used and
the different REQ lines are wire-OR’ed together.

AutoPri — Automatic Prioritizing Select

When this bit is set, it means that the device should prioritize service requests in the manner selected by
the PriSel Bit. In conjunction with the GlobPri Bit, either local (within the chip) or global (across daisy-
chained chips) prioritization is done. With AutoPri set, automatic prioritization is performed when a MREQ
interrupt is acknowledged. Acknowledgments of TREQ and RREQ interrupts continue to be unique and
specific even with AutoPri set. This offers a form of local override to automatic prioritization for transmit or
receive service when the user wishes to continue in a specific priority service routine.

May 1993 S — — 127
DATA BOOK

CL-CD180
Eight-Channel Serial Controller

i

—== CIRRUS LOGIC

If AutoPri is not set, the user must indicate the service request being acknowledged by the choice of Ser-
vice Request Acknowledge Register.

PriSel — Prioritized Service Request Order Select

If AutoPri is set, the PriSel Bit selects the highest priority service request. If PriSel is a ‘0", receive requests
have the highest priority. If PriSel is a ‘1’, transmit requests have the highest priority. Modem Signal
change request priority is fixed at the lowest priority.

A.3.3 Service Request Status Reglster (SRSR) Address = 65 (hex)

Bit7 Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 Bit0
ILV[1] ILV[O] . RREQext RREQint TREQext TREQint MREQext MREQint

This register provides information about the current state of the device as related to service requests.
Three different types of information is available from this register:

TREQInt, RREQInt, MREQint — Internal Requests Active
If the Revision C device has any of the service requests posted, the corresponding bit will be set.
TREQext, RREQext, MREQext — External Requests Active

These three bits reflect the current state of the external request pins. If a request is active (whether inter-
nal or external), its corresponding bit will be set. For example, if the TREQext is set and the TREQint is
not, then another device in the chain is requesting service. However, if both the TREQint and TREQext
are set, then at least the device being queried is requesting service (another device in the chain might
also be requesting service on this same level).

ILV[1], ILV[0] — Internal Service Context Code

These two bits indicate the current context code of the service request context stack. The encoding is as
follows:

ILV[1] ILV[O] Context
0 o Not in a service request context
1 1 In a receive service request context
1 [¢] In a transmit service request context
] 1 In a modem service request context

A.4 R/W* Hold Time After CS* and DS*

This AC parameter (Number 4 in Table 7—2) has been changed to 5 ns (minimum) in the Revision C de-
vice.

128 SR May 1993
DATA BOOK

pm—— " Y
—f.
——
———t——l
——lR

——= CIRRUS LOGIC

Direct Sales Offices

CL-CD180

Data Book

Domestic
N. CALIFORNIA SOUTH CENTRAL New Brunswick, NJ SINGAPORE
San Jose AREA TEL: 908/603-7757 TEL: 65/3532122

TEL: 408/436-7110
FAX: 408/437-8960

Austin, TX
TEL: 512/794-8490

FAX: 908/603-7756

FAX: 65/3532166

FAX: 512/794-8069 SOUTH EASTERN TAIWAN
S. CALIFORNIA AREA Taipei
Tustin Plano, TX Boca Raton, FL TEL: 886/2-718-4533

TEL: 714/258-8303
FAX: 714/258-8307

TEL: 214/985-2334
FAX: 214/964-3119

TEL: 407/362-5225
FAX: 407/362-5235

FAX: 886/2-718-4526
UNITED KINGDOM

Thousand Oaks CENTRAL AREA International Hertfordshire, England

TEL: 805/371-5381 Chicago, IL TEL: 44/0727-872424

FAX: 805/371-5382 TEL: 708/490-5940 GERMANY FAX: 44/0727-875919
FAX: 708/490-5942 Herrsching

ROCKY MOUNTAIN TEL: 49/08152-2030
AREA NORTHEASTERN FAX: 49/08152-6211
Denver, CO AREA

TEL: 303/786-9696 Andover, MA JAPAN

FAX: 303/786-9695 TEL: 508/474-9300 Tokyo

TEL: 81/3-3340-9111
FAX: 81/3-3340-9120

FAX: 508/474-9149

The Company

Cirrus Logic, Inc., produces high-integration peripheral controller circuits for mass storage, graphics,
and data communications. Our products are used in leading-edge personal computers, engineering
workstations, and office automation equipment.

The Cirrus Logic formula combines innovative architectures in silicon with system design expertise.
We deliver complete solutions — chips, software, evaluation boards, and manufacturing kits — on-
time, to help you win in the marketplace.

Cirrus Logic’s fabless manufacturing strategy, unique in the semiconductor industry, employs a full
manufacturing infrastructure to ensure maximum product quality, availability and value for our
customers.

Talk to our systems and applications specialists; see how you can benefit from a new kind of
semiconductor company.
© Copyright, Cirrus Logic, Inc., 1993

Cirrus Logic, Inc., believes the information contained in this document is accurate and reliable. However, it is subject to change
without notice. No responsibility is assumed by Cirrus Logic, Inc., for its use, nor for infringements of patents or other rights of third
parties. This document implies no license under patents or copyrights. Cirrus Logic, S/LA, FeatureChips, AutoMap, UXART, Good
Data, Fair Share and SimulSCAN are trademarks of Cirrus Logic, Inc. Other trademarks in this document belong to their respective
companies. Cirrus Logic, Inc., products are covered under one or more of the following U.S. patents: 4,293,783; Re. 31,287;
4,763,332; 4,777,635; 4,839,896; 4,931,946; 4,975,828; 4,979,173; 5,032,981; 5,122,783; 5,131,015; 5,140,595; 5,157,618;
5,179,292; 5,185,602.

CIRRUS LOGIC, Inc., 3100 West Warren Ave. Fremont, CA 94538

/og ? TEL: 510/623-8300 FAX: 510/226-2180 514180-004

oz7aos V. _

