AN5186FB

VIF/SIF IC for car-TV

Overview

The AN5186FB is a VIF/SIF signal processing IC for in-car television. The video and sound are completely separated by the adoption of split carrier method. Also, high performance and high function have been realized by the incorporation of in-car circuits such as soft mute and SD.

Features

- Split carrier method sound detection circuit
- Electric field detection and band detection type soft mute and SD
- Multipath detection circuit
- VIF uses quasi-synchronous detection which is invulnerable to electric field fluctuation.
- Video output pin for diversity detection (no noise inverter)

Applications

• In-car televisions

Block Diagram

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	V _{CC1}	10	Audio output
2	VIF detection coil 1	11	SMTC2
3	VIF detection coil 2	12	S meter output
4	SSC	13	AMDC input
5	AFT detection coil	14	AMDC detection
6	AMDC adjustment	15	AMDC output
7	Video output 2	16	AFC output
8	Video output 1	17	V _{CC2}
9	SMTC1	18	SIF detection coil

Pin No.	Description	Pin No.	Description
19	SMA1	32	OSC1
20	SMA2	33	OSC2
21	2nd limiter input	34	RF AGC delay adjustment
22	GND2	35	IF AGC output
23	1st limiter output	36	IF AGC input
24	SIF reference voltage	37	SIF input 1
25	V cont. adjustment	38	SIF input 2
26	1st limiter bypass	39	GND 1
27	1st limiter input	40	VIF input 1
28	GND3	41	VIF input 2
29	SD output	42	RF AGC output
30	Mixer output	43	VIF reference voltage
31	V _{CC3}	44	AFT output

Pin Descriptions (continued)

Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit
Supply voltage	V _{CC}	V_{CC1} , V_{CC2} , V_{CC3}	10.2	V
Supply current	I _{CC}	$I_{\rm CC1}$, $I_{\rm CC2}$, $I_{\rm CC3}$	80	mA
Power dissipation *2	P _D	425		mW
Operating ambient temperature *1	T _{opr}	-30 to +85		°C
Storage temperature *1	T _{stg}	-55 to +150		°C

Note) *1: $T_a = 25^{\circ}C$ except power dissipation, operating ambient temperature and storage temperature.

*2: The power dissipation is for the IC only when $T_a = 85^{\circ}C$ in free air.

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V_{CC1} , V_{CC2} , V_{CC3}	7.2 to 10.0	V

Electrical Characteristics at $T_a = 25^{\circ}C$, $V_{CC1} = V_{CC2} = V_{CC3} = 8.0 \text{ V}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
VIF block						
Video detection output 1	V _{O8}	Video: 10 stairs – Y, m = 87.5%	1.7	2.0	2.3	V[p-p]
Video detection output 2	V ₀₇	Video: 10 stairs – Y, $m = 87.5\%$	1.7	2.0	2.3	V[p-p]
Sync. peak value voltage 1	V _{P8}		2.7	3.1	3.5	V
Sync. peak value voltage 2	V _{P7}		2.7	3.1	3.5	V
Video frequency characteristic	f _C	Output –3dB frequency for 1 MHz	6	8		MHz
RF AGC operating sensitivity	G _{RF}	Input level difference to become $V_{42} = 1.5 \rightarrow 7 \text{ V}$	_	1.0	3.0	dB
RF AGC maximum sink current	I _{AGCmax}	$V_{34} = 2.5 V, V_{36} = 2 V$	2.2	2.9	3.6	mA
RF AGC minimum sink current	I _{AGCmin}	V ₃₄ = 2.5 V, V ₃₆ = 3 V	-2	0	2	μΑ
AFT detection sensitivity	μ_{AFT}	$\Delta f = \pm 25 \text{ kHz}$	13	20	27	mV/kHz
AFT maximum output voltage	V _{AFTmax}	$f = f_P - 500 \text{ kHz}$	4.2	4.7	5.0	V
AFT minimum output voltage	V _{AFTmin}	$f = f_P + 500 \text{ kHz}$	0	0.3	0.8	V
Video output resistance 1	R _{O8}	$V_{36} = 0 V$	20	50	120	Ω
Video output resistance 2	R ₀₇	$V_{36} = 0 V$	20	50	120	Ω
SIF block/mixer block		-				
S meter gradient 1	ΔV_{S1}	f = 10.7 MHz	1.3	1.7	2.1	V
S meter gradient 2	ΔV_{S2}	f = 10.7 MHz	1.45	1.85	2.25	V
Audio detection output	V _{OS}	$\begin{split} V_{IN27} &= 70 \text{ dB}\mu, \text{f} = 10.7 \text{ MHz}, \\ \text{f}_M &= 1 \text{ kHz}, \Delta \text{f} = \pm 25 \text{ kHz} \end{split}$	125	160	195	mV[rms]
Mix. conversion gain	V _{CG}	No modulation, $V_{IN37} = 70 \text{ dB}\mu$	24	30		dB
Audio output resistance	R _{O10}		260	380	500	Ω
S meter output resistance (pin 12)	R _{O12}		60	160	260	Ω
Circuit current	I _{CC}	V_{CC1} , V_{CC2} , $V_{CC3} = 8.0$ V	51	63	75	mA

• Design reference data

Note) The characteristic values below are theoretical values for designing and not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
VIF block						
VIF input sensitivity	V _{VS}	Input level to become $V_{O8} = -3 \text{ dB}$	_	42	49	dBµ
VIF maximum allowable input	V _{Vmax}	Input level to become $V_{O8} = +1 \text{ dB}$	103	108	_	dBµ
Video S/N	S/N _V	BPF: 10k to 4M	50	56	_	dB
Differential gain	DG	Video: 10 – stairs	0	4	8	%
Differential phase	DP	Video: 10 – stairs	0	4	8	%
Intermodulation	IM	P/C = 2 dB, P/S = 12 dB	30	36		dB
Black noise detection level	ΔVBN	Difference from sync. peak value voltage	_	- 0.85	_	V
Black noise clamp level	ΔV_{BNC}	Difference from sync. peak value voltage	_	0.6		V

Electrical Characteristics at $T_a = 25^{\circ}C$, $V_{CC1} = V_{CC2} = V_{CC3} = 8.0 \text{ V}$ (continued)

• Design reference data (continued)

Note) The characteristic values below are theoretical values for designing and not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
VIF block (continued)						
AFT defeat SW operating voltage	V _{AFTSW}		0.4	0.8		V
VIF input resistance	R ₁₄₀	f = 58.75 MHz		1.8		kΩ
VIF input capacitance	C ₁₄₀	f = 58.75 MHz		3.2		pF
VIF reference voltage	V _{REG}			5.0		V
SIF/mixer block		-				<u> </u>
S meter voltage 1	V _{S1}	V _{IN27} = without input	0.05	0.5	1.1	V
S meter voltage 2	V _{S2}	$V_{IN27} = 40 \text{ dB}\mu$	1.0	1.7	2.4	V
S meter voltage 3	V _{S3}	$V_{IN27} = 70 \text{ dB}\mu$	2.3	3.4	4.5	V
S meter voltage 4	V _{S4}	$V_{IN27} = 100 \text{ dB}\mu$	3.9	5.2	6.5	V
AFC offset voltage	V _{AFC}	V _{IN27} = without input	- 0.1	0	0.1	V
Limiting sensitivity	V _{LIM}	$V_0 = 0 \text{ dB}$, input for 3 dB down		32	38	dBµ
SD sensitivity	SDS	Input when SD output becomes 4.5 V or more at $V_4 = 2$ V		38		dBµ
SD bandwidth	SDW	Bandwidth when SD output becomes 4.5 V or more at $V_4 = 2$ V		140		kHz
SIF input resistance	R ₁₃₇	f = 54.25 MHz		2.7		kΩ
SIF input capacitance	R _{C37}	f = 54.25 MHz	_	3.2	_	pF
Mixer output resistance	R ₀₃₀	f = 10.7 MHz	_	300	_	Ω
S/N sensitivity	N _{OUT}	$V_{IN37} = 22 \text{ dB}\mu$ no modulation, however, S is the output when 1 kHz 100% modulation.	22	30		dB
Audio S/N	S/NA		60	65		dB
AM rejection ratio	AMR	$V_{IN27} = 70 \text{ dB}\mu, \text{ AM} = 30\%$	48	54		dB
Total harmonic distortion	THD	$f_M = 1 \text{ kHz}, \Delta f = \pm 25 \text{ kHz}$	0	0.2	1.0	%
Soft mute attenuation	ΔMute			50		dB
Multipath detection	ΔV_{MP}	$f = 100 \text{ kHz}, V_{IN13} = 70 \text{ dB}\mu, 110 \text{ dB}\mu$	_	1.5		V
SIF reference voltage	V _{REF}		_	4.1		V

Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	voltage
1	_	Power supply pin 1: Power supply pin for VIF Use range: 7.2 V to 10 V (typ. 8 V)	DC (typ. 8 V)
			[Z = low]
2	V_{REG} (5 V) 2.4 k Ω 2.4 k Ω	VIF detection coil pin 1	fp = 58.75M ∠0° phase shift DC, approx. 3.8 V
	2		$[Z = 2.4 \text{ k}\Omega]$
3		VIF detection coil pin 2	fp = 58.75M ∠0° phase shift DC, approx. 3.8 V
	777		$[Z = 2.4 \text{ k}\Omega]$
4	$V_{\text{REF}} (4.2 \text{ V}) V_{\text{CC2}} (8 \text{ V})$ $(4) \qquad \qquad$	SD detection adjusting pin: Detection sensitivity adjustment for SD output	DC approx. 2.1V [Z = 16 kΩ]
5	V_{REG}	AFT detection coil pin	fp = 58.75M ∠90° phase shift
			DC, approx. 2.6 V $[Z = 6 k\Omega]$

Pin No.	Equivalent circuit	Description	voltage
6	CC2 (8 V)	Multipath detection adjusting pin: Detection sensitivity adjustment of multipath output	DC approx. 1.9 V [Z = 6.8 kΩ]
7	200 Ω	Video output pin 2	AC approx. 2 V[p-p]
8	Ρin 7 8 777 777 200 Ω	Video output pin 1: Output after passing through noise inverter	
9	25 kΩ 200 kΩ 200 Ω 777	Soft mute filter pin 1	DC 0 V to 4.1V $[Z = 25 \text{ k}\Omega]$
10		Audio output pin	AC (differs according to input conditions) $[Z = 380 \Omega]$

Pin No.	Equivalent circuit	Description	voltage
11	150 kΩ 7777 (1) 777	Soft mute filter pin 2: Adjusting voltage of ASC and ATC, etc.	DC [Z = 200 Ω]
12	$\frac{200 \Omega}{12}$	S meter voltage output pin 1	DC 0 — Signal input level $[Z = 270 \text{ k}\Omega]$
13	$V_{CC2} (8 V) \qquad 5 V$	Multipath input pin: Detection sensitivity is adjusted by external resistor.	DC approx. 1.9 V [Z = low]
14	$\frac{1}{1.9 \text{ V}} 300 \text{ k}\Omega$	Multipath detection pin	DC, approx. 1.2 V $[Z = 6.3 \text{ k}\Omega]$ Rising low Falling 330 Ω
15	200 Ω 15) 300 Ω 7/77 7/77 15)	Multipath output pin	DC approx. 1.9 V (0 V to 4.1 V) $[Z = 18 \text{ k}\Omega]$
16	$V_{CC2} (8 V)$ 16 777 $V_{REF} (4.2 V)$	AFC output pin	DC approx. 4.2 V 5 V - 3.5 V

Equivalent circuit voltage Pin No. Description 17 Power supply pin 2: DC Power supply pin for SIF (typ. 8 V) Use range; 7.2 V to 10.0 V (typ. 8 V) 18 SIF detection coil pin AC V_{CC2} (8 V) Ħ approx. 0.9 V[p-p] ∠90° phase shift (18)V_{CC2} (8 V) DC, approx. 8 V 500 Ω [Z = high]┨┠ 18 pF 777 777 19 Soft mute adjusting pin 1: DC V_{CC2} (8 V) Soft mute start point adjustment (0 to V_{REF}) (4.2 V) $100 \ k\Omega$ (voltage input from outside) [Z = high] 230Ω (19 TT20 Soft mute adjusting pin 2: DC Soft mute gradient adjustment [Z = low] $\frac{1}{2}$ k Ω (20)21 DC = 0 V2nd limiter input pin $[Z = 300 \Omega]$ (21)300 Ω T TTTTT

Pin No.	Equivalent circuit	Description	voltage
22	22	GND pin 2: GND pin for SIF	_
	777		[Z = low]
23	Ο V _{REF} (4.2 V)	1st limiter output pin	ACfs = 10.7M DC approx. 4.0 V [Z = 500 Ω]
24	V _{CC2} (8 V)	SIF reference voltage: Reference voltage pin for SIF	DC approx. 4.2 V [Z = low]
	V _{REF} 24		
25	V _{REF} (4.2 V) •	S meter voltage adjusting pin	DC approx. 3.5 V [Z = low]
26	V_{REF} (4.2 V)	1st limiter bias pin	DC approx. 3.1 V $[Z = 7.5 \text{ k}\Omega]$
27	$\begin{array}{c} 300 \ \Omega \\ \hline \\ 26 \\ \hline \\ 777 \\ $	1st limiter input pin	AC $fs = 10.7M$ DC $approx. 3.1 V$ $[Z = 300 \Omega]$

Pin No.	Equivalent circuit	Description	voltage
28	(28) 	GND pin 3: GND pin for mixer	 [Z = low]
29	$V_{CC2} (8 V)$ 200Ω 200Ω 29 $10 k\Omega$	SD output pin	$\int_{0}^{5 \text{ V}} \int_{0 \text{ V}}^{5 \text{ V}}$ $[Z = 200 \Omega]$
30	$\begin{array}{c} V_{CC3} (8 V) \\ 200 \Omega \\ \hline \\ 200 \Omega \\ \hline \\ 200 \Omega \\ \hline \\ 30 \\ \hline \\ \\ 777 \end{array}$	Mixer output pin	AC [Z = 200 Ω]
31	_	Power supply pin 3: Power supply pin for mixer Use range; 7.2 V to 10.0 V (typ. 8 V)	DC (typ. 8 V) [Z = low]
32	^{800 Ω} ^{200 Ω} ^{300 Ω}	OSC input pin 1	$\frac{DC}{approx. 7.0 V}$ $[Z = 300 \Omega]$
33	$\begin{array}{c c} & & & & \\ \hline & 5 & k\Omega \\ \hline & 5 & k\Omega \\ \hline & & 5 & k\Omega \\ \hline & & 5 & k\Omega \\ \hline & & & 5 & k\Omega \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	OSC input pin 2	DC approx. 4.4 V $[Z = 5 k\Omega]$

Pin No.	Equivalent circuit	Description	voltage
34	V _{REG} (5 V)	RF AGC delay adjusting pin	DC approx. 4.4 V
	34 200 Ω 34 30 kΩ 777		[Z = high]
35	V _{REG} (5 V)	IF AGC output pin	DC
			[Z = high]
36	V _{REG} (5 V)	IF AGC input pin	DC
	36 ^{200 Ω} 30 kΩ 777		[Z = high]
37	V_{REG} (5 V) 6.7 k Ω $(3 \text{ k}\Omega)$ $(3 \text{ k}\Omega)$	SIF input pin 1	AC f = fs (54.25 MHz) DC level approx. 2.7 V
38		SIF input pin 2	$[Z = 3 k\Omega]$

Pin No.	Equivalent circuit	Description	voltage
39	(39) 	GND pin 1: GND pin for VIF	 [Z = low]
40	V_{REG} (5 V) 6 k Ω 2 k Ω 2 k Ω	VIF input pin 1	AC f = fp (58.75 MHz) DC level approx. 2.6 V
41		VIF input pin 2: Input for VIF amp. and balanced input	$[Z = 2 k\Omega]$
42	(42) 50Ω (42) 777 777 $RF AGC$ $adjustment$ 83Ω (42) 777 777 777 777 777 777 777	RF AGC output pin: Collector open output so that arbitrary bias is usable. (max. 12.5 V)	DC
43	$19 \text{ k}\Omega$ 43 $1.2 \text{ V} \qquad 6 \text{ k}\Omega$	VIF reference voltage pin: Reference voltage pin for VIF	DC level approx. 5 V [Z = low]

Pin No.	Equivalent circuit	Description	voltage
44	_o V _{REG} (5 V)	AFT output pin	DC
			[Z = high]

■ Application Circuit Example

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.