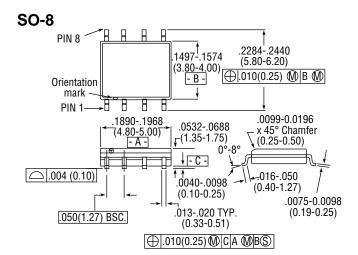


MMIC Medium Level Mixer 1700 - 2000 MHz

MD54-0003

V2.00

Features


- Low Conversion Loss
- +21 dBm Input Power @ 1 dB Compression
- Typical Two-Tone IM Ratio of ≥50 dBc
- LO Drive Level: +11 to +23 dBm
- DC 200 MHz IF Bandwidth
- Low Cost Plastic SOIC Package

Description

M/A-COM's MD54-0003 is a passive mixer that achieves the performance of a double balanced diode mixer in a low cost surface mount plastic SOIC 8-lead package. The MD54-0003 is ideally suited for use where high level RF signals and very wide dynamic range are required. Typical applications include frequency up/down conversion, modulation, demodulation in systems such as base station receivers and transmitters for DCS1800, PCS and PHS applications.

The MD54-0003 uses FETs as mixing elements to achieve very wide dynamic range in a low cost plastic package. The mixer operates with LO drive levels of +11 dBm to +23 dBm. No DC bias is required.

M/A-COM's MD54-0003 is fabricated using a mature 1-micron GaAs process. The process features full IC passivation for increased performance and reliability.

8- Lead SOP outline dimensions Narrow body .150 (All dimensions per JEDEC No. MS-012-AA, Issue C) Dimensions in () are in mm.

Unless Otherwise Noted: .xxx = \pm 0.010 (.xx = \pm 0.25) .xx = \pm 0.02 (.x = \pm 0.5)

Ordering Information

Part Number	Description
MD54-0003	SOIC 8-Lead Plastic Package
MD54-0003TR	Forward Tape & Reel*
MD54-0003RTR	Reverse Tape & Reel*
MD54-0003SMB	Designer's Kit

Standard reel size is 7 inches. If other reel size is required, consult factory for part number assignment.

Electrical Specifications

Test Conditions: RF = 1850 MHz (-10 dBm), LO = 1710 MHz (13 dBm), IF = 140 MHz, T_A = +25°C

Parameter	Test Conditions	Units	Min.	Тур.	Max. 9.5	
Conversion Loss		dB		8.5		
Isolation	LO to RF	dB	20	27		
	LO to IF	dB		12		
	RF to IF	dB		10		
VSWR	LO Port			2.5:1		
	RF Port			2.0:1		
	IF Port			2.0:1		
Input 1 dB Compression	RF Freq. = 1800 MHz, LO = +13 dBm	dBm		+21		
Two-Tone IM Ratio ¹	Two tones at -10 dBm each,					
	Tone spacing = 100 kHz, IF = 140 MHz	dBc	50	65		

^{1.} IMR vs RF drive level can be calculated by the formula: IMR = $50 - (1.5 \times P_{IN})$

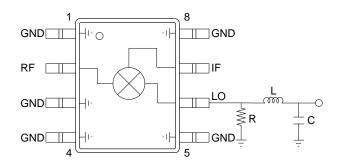
M/A-COM, Inc.

Specifications Subject to Change Without Notice.

1

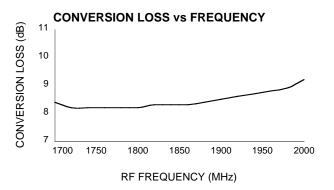
North America: To

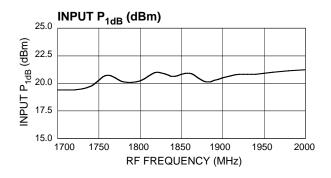
Tel. (800) 366-2266 Fax (800) 618-8883 Asia/Pacific: Tel. +81 (03) 3226-1671
Fax +81 (03) 3226-1451


Europe: Tel. +44 (1344) 869 595
Fax +44 (1344) 300 020

Absolute Maximum Ratings¹

Parameter	Absolute Maximum		
RF Input Power ²	+22 dBm		
LO Drive Power ²	+23 dBm		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		


- Operation of this device above any one of these parameters may cause permanent damage.
- 2. Total power for RF and LO ports should not exceed +23 dBm.

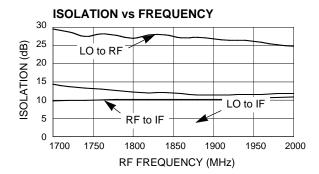

Functional Diagram³

3. External matching network on LO Port: R = 330 ohms, L = 3 nH, C = 3.3 pF

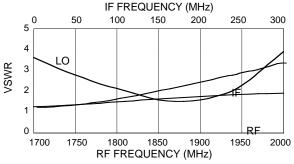
Typical Performance

Specifications Subject to Change Without Notice.

Spurious Table


		17	48.2	62.3	71.7	73.4
HARMONIC OF LO (n)		17	40.2	02.3	71.7	73.4
	4x	6.9	47.2	61.1	61.7	63.4
		10.3	28.9	63.0	71.3	70.6
	3x	0.3	28.9	61.3	63.5	61.6
		-8.8	25.7	52.1	71.5	72.1
	2x	-18.8	25.9	61.3	61.5	62.1
		-13.1	0	67.5	71.3	72.6
	1x	-23.1	0	61.1	61.9	62.6
		Х	2.1	56.8	72.3	69.3
	0x	X	2.1	61.7	62.3	59.8
		0x	1x	2x	3x	4x
	Harmonic of RF (m)					

The spurious table shows the spurious signals resulting from the mixing of the RF and LO input signals, assuming down conversion. Mixing products are indicated by the number of dB below the conversion loss. The lower frequency mixing term is shown for two different RF input levels. The top number is for an RF input power of -5 dBm, the lower number is for -15 dBm.


$$\begin{array}{l} \mid mF_{RF} - nF_{LO} \mid, \; RF = -5 \; dBm \\ \mid mF_{RF} - nF_{LO} \mid, \; RF = -15 \; dBm \end{array}$$

RF Frequency = 1850 MHz

LO Frequency = 1710 MHz

RF, LO and IF VSWR vs FREQUENCY, LO = +13 dBm

M/A-COM, Inc.

2